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“People slowly accustomed themseluves to the idea that the
physical states of space itself were the final physical reality.”

—ProrEson AvserT Envsrend
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William Kingdon Clifford 1870 Vv e Spees

Intro

"I wish here to indicate a manner in which S 3

these speculations may be applied to the 'f‘gH

investigation of physical phenomena. | hold -Wh y

. - eeler

in fact: S311

1. That small portions of space are in - space moves

fact of a nature analogous to little hills - Hamiltonian GMD
on a surface which is on the average - X without X
flat; namely, that the ordinary laws of N

geometry are not valid in them.
- connected sums

- prime manifolds

2. That this property of being curved or —"

distorted is continually being passed

from one portion of space to another Superspace

after the manner of a wave.

BH Cosmology

3. That this variation of the curvature of

space is what really happens in that

phenomenon which we call the mo-

tion of matter, whether ponderable or

etherial.

4. That in the physical world nothing else
takes place but this variation, subject
(possibly) to the law of continuity.”
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Topologies for two BHs S e
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What |S a "’ Body” ? Matter from Space
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"In conclusion, the geons make only this contribution to science:
it completes the scheme of classical physics by providing for the
first time an acceptable classical theory of the concept of body.”
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J.A. Wheeler in " Geons” (Phys. Rev. 97, 1955)
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Spacetime as space’s history atter from Space
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Spacetime, M, is foliated by a one-parameter family of embeddings & of the
3-manifold X into M. X is the image in M of X under &;.



A four-function worth of arbitrariness SEESHIEREEE
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For q € X the image points p =&t (q) and p’ =& qt(q) are connected by
the vector 0/0tl, whose components tangential and normal to Z; are 3
(three functions) and an (one function) respectively.



Kinematics of hypersurface deformations

> In local coordinates y* of M and x™ of X the generators of normal and
tangential deformations of the embedded hypersurface are

)
_ 3
N = [ @ o mtyol
m 3
T = [ @ om0 ol

> This is merely the foliation-dependent decomposition of the tangent vector
X(V) at y € Emb(X, M), induced by the spacetime vector field V =
an+ 3%0q:

5

SdyH (x)

X(V) = L & x VH (y(x))
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Matter from Space

Intro

» The vector fields X(V) on Emb(X, M) obey GR
-RrP3
_ -2 BHs
X(V), X(W)] = X([V,W]) , i
- 341
i.e. Vi X(V)is a Lie homomorphism from the tangent-vector fields on - space moves
- - Hamiltonian GMD
M to the tangent-vector fields on Emb(X, M). e
> In terms of the normal-tangential decomposition: 3-manifolds

- connected sums
- prime manifolds

- two ]RPSS
Ts, Tg/] =—T '
(Mg, T ] (B.B] > S—
(Ts, Nl = —Ng(q), BH| Cosmology
[N, Noc’] = _eTocgradh[oc’)foc’gradh (o)
» Here € = 1 for Lorentzian and = —1 for Euclidean spacetimes, just to keep

track of signature dependence.



Hamiltonian Geometrodynamics

> Theidea is to let Hamiltonian represent hypersurface deformations (Poisson
action)

> Theorem (Teitelboim, Kucha¥ 1973-4): The most general local realisation
on the cotangent bundle over Riem(X), coordinatised by (h, ), is

N« — Hglh, 7 ::J- o(x) H[h, 7t (x)
bx

Tg + Dglh,7d ::L B%(x) hap (x) D [h, 7 (x)
where

Hih, 7 = e(2k)Gap cam®Pnt? — (2k)7T VR (R —2A)
DPlh, 7] = —2V n*P

with (5+1) Lorentzian Wheeler - De Witt metric on momenta:

Gabca = (hachva +haahve —A haphea)/2vVh

and A =1 (hence required by 4-d " path independence”).
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Com mutators Matter from Space

A Zz]
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A Intro
C))
GR
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. [S3 2 -2BHs
\dv’L - Wheeler
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- X without X
/q«] 3-manifolds
4 /J’]) Z] - connected sums
V - prime manifolds
\ - two RP3s
REIN 5 Superspace
2/ 12

BH Cosmology

Successive hypersurface deformations parametrised by (o, 31) and
N, = (02, B2) do not commute; rather

[X(oq,B1), X(x2,B2)] =X(et, B'),

where

o = Bi(og) —Palea),
(B1,B2] 4 o grady, (o) — & grady, (o) .

@
I



Need for constraints

> Since o’ depends on h, we get the following condition for the Hamiltonians
to act (via Poisson Bracket) as derivations on phase-space functions:
{{FH(e1,B1)},Hloz, B2)} —{{F Hlez, B2)}, Hlear, 1)}
= {F{H(x1,B1),H(ex2,B2)}} = {FH(, B}
= {FH}(,B") + H({F, &'}, {F,B"})

L {FH}(«,B)

» The last equality must hold for all Fand all (1, 1) (02, B2). This implies
the constraints:

Hh,7tl(x) =0 D%h,n(x) =0

> Constraints correspond to Ll and L || components of Einstein's equa-
tion. A spacetime in which constraints are satisfied for each £ must obey
Einstein's equation.

» The constraints do not cause topological obstructions to Cauchy surface.
Only special requirements do, like e.g. time-symmetry.
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Mass without mass Vs (e Sz

Intro

» The mass-energy of an asymptotically flat end is

GR
-rp3
-2 BHs
moc lim do(dahap — Op haa )P - Wheeler
R— 00 SZ cx -3+1
R - space moves
- Hamiltonian GMD
- X without X
L . - 3-manifold
> This is > 0 and = 0 for Minkowski slices only. anicc
- - connected sums
- prime manifolds
, T L . 3
» Gannon's theorem implies causal geodesic incompleteness if 711 (£) # 1 - two RP='s
(replacing 3 trapped surfaces in the hypotheses). Superspace
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v

Stationary regular vacuum solutions (gravitational solitons) do not exist
(Einstein & Pauli, Lichnerowicz).

Proof: Positive-mass theorem and ADM = Komar for stationary space-
times:

mo<J *dK:J d* dK
52 y

& i Ric
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Momenta without momenta SEESHIEREEE

Intro
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> The linear and angular momenta of an asymptotically flat end is Wheor
- eeler
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a ab a b d - space moves
P X J domt™’ny , J% o J doegpe X" Ny - Hamiltonian GMD
s3 s, ~ X without X
3-manifolds
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» Axisymmetric vacuum configurations with ] # O and one end do not exist, ~two RP3s
even for non-orientable X:

Superspace

BH Cosmolo,
]K:J *dK:J dx dK =0 N
52 P

o0 ik Ric

» But for Killing fields K up to sign they do (Friedman & Mayer 1981).
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Charge without charge

» Electrovac solutions with non-zero overall electric charge

e :J *F
3

only exist if S3, # 0L, i.e. if [S5] € H?(X) is non-trivial, like e.g. in
Reissner-Nordstrom.

» If £ has only one end and is non-orientable, Stokes' theorem obstructs
existence of electric but not of magnetic charge (Sorkin 1977):

Q. :Jsgo i

» This is because for non-orientable X, Stokes’ theorem holds for twisted
(densitised) but not for ordinary forms.
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Non orientable Wormehole W o e
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> Stokes' theorem applied to V- B =0in Z;: ) Cemelezy

®(B,9%;,0) + ®(B,S;,0) + ®(B,S,,0) =0

> Stokes’ theorem applied to V-B=0in X

®(B,S7,0') + ®(B,S,,0) =0

» Hence . .
®(B,9x%;,0) =—-2®(B,51,0) #£0
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Spin without spin Matter from Space
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undo twist
if possible

identity here

There exist many 3-manifolds for which a full (i.e. 27t) relative rotation is not in the
id-component.

In this case the asymptotic symmetry group at spacelike infinity contains SU(2)
rather than SO(3).

> Mechanism ‘fermions-from-bosons’ in gravity? (Friedman & Sorkin 1982).

» M spinorial & contains prime # ST x S? and #L(p,q).
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Connected sums Matter from Space
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» Decompose along splitting and essential 2-spheres until only prime-manifolds ~ Stuperspace
remain. Prime factors are unique up to permutation. BH Cosmology

> Except for S x S%, a prime manifold has trivial 7r;. The converse is true
given PC. Given TGC, all finite-7t; primes are spherical space-forms S3 /G,
G C SO(4). Infinite-7r; primes are S' x S2, the flat ones R3 /G, G C Egz,
and the huge family of locally hyperbolic ones.
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Example: The space form 53/D§

¥ = S3/Dj is spinorial

D; =(a,b| a? =b? = (ab)?)
MCGwo (Z) = Aut(D}) = O
MCGE (2) = Autz, (Dg) = O*
This manifold is also chiral,
i.e. it admits no orientation-

reversing self-diffeomorphism (like
many other 3-manifolds)
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Matter from Space

Its fundamental group
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(a,bla?> =1=1b%) = (a,c|la? =1, aca™' =c '), c:=ab

Lo *Z3 ZyxZ

N
N
)
3



MCG and its u.i. representations

» The group of mapping classes is given by
MCGF =Aut(Zy xZy) =72 + Zs = (E, S| E%,S?)
E:(a,b) > (b,a), S:(a,b)— (a, aba™! )

= ES 4 SE C centre of group algebra. Hence {1,E,S, ES} generate algebra
of irreducible representing operators.

= Linear irreducible representations are at most 2-dimensional. They are:
E— £1, S+— £1and, for 0 <0 <,

1 0

Er— ( 0 —1 )

S cos 0 sin O
sin® —cos© ’

= There are two 'statistics sectors’, which get ‘mixed’ by S; the ‘mixing angle’
is ©.
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Matter from Space

Primell HC S C N Hi (1) wo(Dp(M)  m(Dp()  m(Dp(ID)
S3/Dg + o+ + - Z2 % Z2 0
S%/Dg, + o+ o+ - Zy % 7y Dign 0
%/ Dj5n 1) + o+ o+ o+ Zs Dianin) 0 Intro
5%/T* T+ o+ - Zs 0" 0
s3/0° w o o+ + 4+ Zs o* 0 7 (S%) (EIR 3
53 /1% 7+ o+ - 0 I 0 e(83) - RP
S3/D; % 2y + o+ o+ - Za X Zap Zs x O z m(5%) % m(5%) s 2Bhs
N - Wheeler
S3/Dg, x Zy + + 23 % Zap 22 x Dig,, z (%) x m(S) S341
S8/ D; 540y X Zp + + + o+ Zap Z3 % D511, z T(5%) x 7 (SP) - space moves
ST % 7, T+ o+ - Zsp Zyx O z T3 (S%) x 7, (S%) — Hamiltonian GMD.
$3/0° x 7, wo o+ o+ o+ Zap Zy x O z m(S?) x 7k (S?) - X without X
S¥I* % Z, 7+ o+ - Zy Zy x I* z T (S%) x m(S?) B
S Dy X%+ + + Zp X Zyk 23 X D1y Z me(S%) x (5% 3-manifolds
ST gm % Zp 7o+ 4 Zy % Zan o z Th(S%) x mi(S%) : co.nnected sums
Lip,ar) w b Zy Z z (%) ~PrTE m;nlfolds
K ) - two RP”s
L(p.qz2) wt -+ (=) Zy Z2 x Za ZxZ T (S3) x m(S3)
L(p.as) wo - = ()P Zp Z2 ZxZ (%) x 7 (S7) Superspace
Lip.as) wo— 4 () 7, Z ZxZ (%) x m(S%) BH Cosmology
RP® + - - + Zy 1 o o
53 + 1 1 0 0
52 x St / - - + z 72 % Za z T(5%) x 7 (S2)
R%/Gy / + - + ZxZxZ St(3,2) o
R3/G2 / 4+ - + ZxZaxZa Aut?2(Ga) 0
R3/Gy / o+ o+ o+ Zx 7 Aut?2(Ga) 0
R3/Gy4 / o+ 4+ - Zx 2 Aut?2(Ga) 0
/G / o+ + o+ z Aut??(Gs) 0
RY/G / o+ o+ - Zyx Zy Aut?2(Gs) 0
S x Ry / o+ - - Z X Zay Aut?? (2 x Fy) 0
K(m1)g /oo s An Aut?? () 0

taken from D.G. 1996
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T =MCGEg(X)
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Final Remark:

BH cosmology
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