Matter from Space

Domenico Giulini
ZARM Bremen
Riemann Center for Geometry and Physics
Leibniz University Hannover
\section*{A Century of General Relativity} Berlin, December 5th 2015

- 3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology
"People slowly accustomed themselves to the idea that the physical states of space itself were the final physical reality."
-Profrsoor Alaert Enstrin

The New Yourker

William Kingdon Clifford 1870

Intro

"I wish here to indicate a manner in which these speculations may be applied to the investigation of physical phenomena. I hold in fact:

1. That small portions of space are in fact of a nature analogous to little hills on a surface which is on the average flat; namely, that the ordinary laws of geometry are not valid in them.
2. That this property of being curved or distorted is continually being passed from one portion of space to another after the manner of a wave.
3. That this variation of the curvature of space is what really happens in that phenomenon which we call the motion of matter, whether ponderable or etherial.
4. That in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity."

GR

$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

The $\mathbb{R P}^{3}$ geon

IntroGR

$-\mathbb{R P}^{3}$

- 2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X
3-manifolds
- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s
Superspace
BH Cosmology

$$
(\mathrm{T}, \mathrm{X}, \theta, \varphi) \mapsto(\mathrm{T},-\mathrm{X}, \pi-\theta, \varphi+\pi)
$$

Topologies for two BHs

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
-3+1
- space moves

Hamiltonian GMD

- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

What is a "Body" ?

"In conclusion, the geons make only this contribution to science:

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s
J.A. Wheeler in "Geons" (Phys. Rev. 97, 1955)

Spacetime as space's history

- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

Spacetime, M, is foliated by a one-parameter family of embeddings \mathcal{E}_{t} of the 3 -manifold Σ into M. Σ_{t} is the image in M of Σ under \mathcal{E}_{t}.

A four-function worth of arbitrariness

- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

For $\mathrm{q} \in \Sigma$ the image points $\mathrm{p}=\mathcal{E}_{\mathrm{t}}(\mathrm{q})$ and $\mathrm{p}^{\prime}=\mathcal{E}_{\mathrm{t}+\mathrm{dt}}(\mathrm{q})$ are connected by the vector $\partial /\left.\partial \mathrm{t}\right|_{\mathrm{p}}$ whose components tangential and normal to Σ_{t} are β (three functions) and αn (one function) respectively.

Kinematics of hypersurface deformations

- In local coordinates y^{μ} of M and x^{m} of Σ the generators of normal and tangential deformations of the embedded hypersurface are

$$
\begin{aligned}
& N_{\alpha}=\int_{\Sigma} d^{3} x \alpha(x) n^{\mu}[y(x)] \frac{\delta}{\delta y^{\mu}(x)} \\
& T_{\beta}=\int_{\Sigma} d^{3} x \beta^{m}(x) \partial_{m} y^{\mu}(x) \frac{\delta}{\delta y^{\mu}(x)}
\end{aligned}
$$

- This is merely the foliation-dependent decomposition of the tangent vector $X(V)$ at $y \in \operatorname{Emb}(\Sigma, M)$, induced by the spacetime vector field $V=$ $\alpha n+\beta^{a} \partial_{a}:$

$$
X(V)=\int_{\Sigma} d^{3} x V^{\mu}(y(x)) \frac{\delta}{\delta y^{\mu}(x)}
$$

Intro

$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
-3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

- The vector fields $X(V)$ on $\operatorname{Emb}(\Sigma, M)$ obey

$$
[\mathrm{X}(\mathrm{~V}), \mathrm{X}(\mathrm{~W})]=\mathrm{X}([\mathrm{~V}, \mathrm{~W}])
$$

i.e. $V \mapsto X(V)$ is a Lie homomorphism from the tangent-vector fields on M to the tangent-vector fields on $\operatorname{Emb}(\Sigma, M)$.

- In terms of the normal-tangential decomposition:

$$
\begin{aligned}
{\left[T_{\beta}, T_{\beta^{\prime}}\right] } & =-T_{\left[\beta, \beta^{\prime}\right]}, \\
{\left[T_{\beta}, N_{\alpha}\right] } & =-N_{\beta(\alpha)}, \\
{\left[N_{\alpha}, N_{\alpha^{\prime}}\right] } & =-\epsilon T_{\alpha \operatorname{grad}_{h}\left(\alpha^{\prime}\right)-\alpha^{\prime} \operatorname{grad}_{h}(\alpha)}
\end{aligned}
$$

Intro

- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

- Here $\epsilon=1$ for Lorentzian and $=-1$ for Euclidean spacetimes, just to keep track of signature dependence.

Hamiltonian Geometrodynamics

- The idea is to let Hamiltonian represent hypersurface deformations (Poisson action)
- Theorem (Teitelboim, Kuchař 1973-4): The most general local realisation on the cotangent bundle over Riem (Σ), coordinatised by (h, π), is

$$
\begin{aligned}
& \mathrm{N}_{\alpha} \mapsto \mathrm{H}_{\alpha}[\mathrm{h}, \pi]:=\int_{\Sigma} \alpha(x) \mathcal{H}[\mathrm{h}, \pi](\mathrm{x}) \\
& \mathrm{T}_{\beta} \mapsto \mathrm{D}_{\beta}[\mathrm{h}, \pi]:=\int_{\Sigma} \beta^{\mathrm{a}}(\mathrm{x}) \mathrm{h}_{\mathrm{ab}}(\mathrm{x}) \mathcal{D}^{\mathrm{b}}[\mathrm{~h}, \pi](\mathrm{x})
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{H}[h, \pi]:=\epsilon(2 \kappa) G_{a b c d} \pi^{a b} \pi^{c d}-(2 \kappa)^{-1} \sqrt{h}(\mathrm{R}-2 \Lambda) \\
& \mathcal{D}^{b}[h, \pi]:=-2 \nabla_{a} \pi^{a b}
\end{aligned}
$$

with (5+1) Lorentzian Wheeler - De Witt metric on momenta:

$$
G_{a b c d}=\left(h_{a c} h_{b d}+h_{a d} h_{b c}-\lambda h_{a b} h_{c d}\right) / 2 \sqrt{h}
$$

and $\lambda=1$ (hence required by 4-d "path independence").

Intro

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

Commutators


```
Intro
GR
- \mathbb{RP}
-2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X
3-manifolds
- connected sums
- prime manifolds
- two \mathbb{RP}}\mp@subsup{}{3}{s
Superspace
BH Cosmology
```

Successive hypersurface deformations parametrised by (α_{1}, β_{1}) and $N_{2}=\left(\alpha_{2}, \beta_{2}\right)$ do not commute; rather

$$
\left[X\left(\alpha_{1}, \beta_{1}\right), X\left(\alpha_{2}, \beta_{2}\right)\right]=X\left(\alpha^{\prime}, \beta^{\prime}\right),
$$

where

$$
\begin{aligned}
& \alpha^{\prime}=\beta_{1}\left(\alpha_{2}\right)-\beta_{2}\left(\alpha_{1}\right) \\
& \beta^{\prime}=\left[\beta_{1}, \beta_{2}\right]+\alpha_{1} \operatorname{grad}_{h}\left(\alpha_{2}\right)-\alpha_{2} \operatorname{grad}_{h}\left(\alpha_{1}\right)
\end{aligned}
$$

Need for constraints

- Since α^{\prime} depends on h, we get the following condition for the Hamiltonians to act (via Poisson Bracket) as derivations on phase-space functions:

$$
\begin{aligned}
& \left\{\left\{F, H\left(\alpha_{1}, \beta_{1}\right)\right\}, H\left(\alpha_{2}, \beta_{2}\right)\right\}-\left\{\left\{F, H\left(\alpha_{2}, \beta_{2}\right)\right\}, H\left(\alpha_{1}, \beta_{1}\right)\right\} \\
& =\left\{F,\left\{H\left(\alpha_{1}, \beta_{1}\right), H\left(\alpha_{2}, \beta_{2}\right)\right\}\right\}=\left\{F, H\left(\alpha^{\prime}, \beta^{\prime}\right)\right\} \\
& =\{F, H\}\left(\alpha^{\prime}, \beta^{\prime}\right)+H\left(\left\{F, \alpha^{\prime}\right\},\left\{F, \beta^{\prime}\right\}\right) \\
& \stackrel{!}{=}\{F, H\}\left(\alpha^{\prime}, \beta^{\prime}\right)
\end{aligned}
$$

- The last equality must hold for all F and all $\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2}, \beta_{2}\right)$. This implies the constraints:

$$
\mathcal{H}[\mathrm{h}, \pi](\mathrm{x})=0 \quad \mathcal{D}^{\mathrm{a}}[\mathrm{~h}, \pi](\mathrm{x})=0
$$

- Constraints correspond to $\perp \perp$ and $\perp \|$ components of Einstein's equation. A spacetime in which constraints are satisfied for each Σ must obey Einstein's equation.
- The constraints do not cause topological obstructions to Cauchy surface. Only special requirements do, like e.g. time-symmetry.

Mass without mass

- The mass-energy of an asymptotically flat end is

$$
m \propto \lim _{R \rightarrow \infty}\left\{\int_{S_{R}^{2} \subset \Sigma} d \sigma\left(\partial_{a} h_{a b}-\partial_{b} h_{a a}\right) n^{b}\right\}
$$

- This is ≥ 0 and $=0$ for Minkowski slices only.
- Gannon's theorem implies causal geodesic incompleteness if $\pi_{1}(\Sigma) \neq 1$ (replacing \exists trapped surfaces in the hypotheses).
- Stationary regular vacuum solutions (gravitational solitons) do not exist (Einstein \& Pauli, Lichnerowicz).

Proof: Positive-mass theorem and ADM = Komar for stationary spacetimes:

$$
m \propto \int_{S_{\infty}^{2}} \star d K=\int_{\Sigma} \underbrace{d \star d K}_{\propto i_{K} \operatorname{Ric}}
$$

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

Momenta without momenta

- The linear and angular momenta of an asymptotically flat end is

$$
p^{a} \propto \int_{S_{\infty}^{2}} d \sigma \pi^{a b} n_{b}, \quad J^{a} \propto \int_{S_{\infty}^{2}} d \sigma \varepsilon_{a b c} x^{b} \pi^{c d} n_{d}
$$

- Axisymmetric vacuum configurations with $\mathrm{J} \neq 0$ and one end do not exist, even for non-orientable Σ :

$$
\mathrm{J}_{K}=\int_{\mathrm{S}_{\infty}^{2}} \star \mathrm{dK}=\int_{\Sigma} \underbrace{\mathrm{d} \star \mathrm{dK}}_{\propto i_{K} \text { Ric }}=0
$$

$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
-3+1
- space moves
- Hamiltonian GMD X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

- But for Killing fields K up to sign they do (Friedman \& Mayer 1981).

Charge without charge

- Electrovac solutions with non-zero overall electric charge

$$
\mathrm{Q}_{e}=\int_{\mathrm{S}_{\infty}^{2}} \star \mathrm{~F}
$$

only exist if $S_{\infty}^{2} \neq \partial \Sigma$, i.e. if $\left[S_{\infty}^{2}\right] \in H^{2}(\Sigma)$ is non-trivial, like e.g. in Reissner-Nordström.

- If Σ has only one end and is non-orientable, Stokes' theorem obstructs existence of electric but not of magnetic charge (Sorkin 1977):

$$
\mathrm{Qm}_{\mathrm{m}}=\int_{\mathrm{S}_{\infty}^{2}} \mathrm{~F}
$$

- This is because for non-orientable Σ, Stokes' theorem holds for twisted (densitised) but not for ordinary forms.

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
-3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

Non orientable Wormehole

- Stokes' theorem applied to $\vec{\nabla} \cdot \overrightarrow{\mathrm{B}}=0$ in Σ_{1} :

$$
\Phi\left(\overrightarrow{\mathrm{B}}, \partial \Sigma_{1}, \mathrm{O}\right)+\Phi\left(\overrightarrow{\mathrm{B}}, \mathrm{~S}_{1}, \mathrm{O}\right)+\Phi\left(\overrightarrow{\mathrm{B}}, \mathrm{~S}_{2}, \mathrm{O}\right)=0
$$

- Stokes' theorem applied to $\vec{\nabla} \cdot \overrightarrow{\mathrm{B}}=0$ in Σ_{2} :

$$
\Phi\left(\overrightarrow{\mathrm{B}}, \mathrm{~S}_{1}, \mathrm{O}^{\prime}\right)+\Phi\left(\overrightarrow{\mathrm{B}}, \mathrm{~S}_{2}, \mathrm{O}\right)=0
$$

- Hence

$$
\Phi\left(\vec{B}, \partial \Sigma_{1}, O\right)=-2 \Phi\left(\vec{B}, S_{1}, O\right) \neq 0
$$

Spin without spin

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

- There exist many 3-manifolds for which a full (i.e. 2π) relative rotation is not in the id-component.
- In this case the asymptotic symmetry group at spacelike infinity contains $\mathrm{SU}(2)$ rather than $\mathrm{SO}(3)$.
- Mechanism 'fermions-from-bosons' in gravity? (Friedman \& Sorkin 1982).
- M spinorial \Leftrightarrow contains prime $\neq S^{1} \times S^{2}$ and $\neq \mathrm{L}(p, q)$.

Connected sums

- Decompose along splitting and essential 2-spheres until only prime-manifolds remain. Prime factors are unique up to permutation.
- Except for $S^{1} \times S^{2}$, a prime manifold has trivial π_{2}. The converse is true given PC. Given TGC, all finite- π_{1} primes are spherical space-forms S^{3} / G, $\mathrm{G} \subset \mathrm{SO}(4)$. Infinite- π_{1} primes are $S^{1} \times S^{2}$, the flat ones $\mathbb{R}^{3} / \mathrm{G}, \mathrm{G} \subset \mathrm{E}_{3}$, and the huge family of locally hyperbolic ones.
$-\mathbb{R} P^{3}$
- 2 BHs
- Wheeler
-3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Superspace
BH Cosmology

Example: The space form S^{3} / D_{8}^{*}

- $\Sigma=S^{3} / D_{8}^{*}$ is spinorial
- $\mathrm{D}_{8}^{*}=\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{a}^{2}=\mathrm{b}^{2}=(\mathrm{ab})^{2}\right\rangle$
$-\operatorname{MCG}_{\infty}(\Sigma) \cong \operatorname{Aut}\left(\mathrm{D}_{8}^{*}\right) \cong \mathrm{O}$
$-\operatorname{MCG}_{\mathrm{F}}(\Sigma) \cong \operatorname{Aut}_{\mathbb{Z}_{2}}\left(\mathrm{D}_{8}^{*}\right) \cong \mathrm{O}^{*}$
- This manifold is also chiral, i.e. it admits no orientationreversing self-diffeomorphism (like many other 3-manifolds)

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

$\mathbb{R} P^{3} \# \mathbb{R} P^{3}$

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD
- X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

Its fundamental group

$$
\underbrace{\left\langle\mathrm{a}, \mathrm{~b} \mid \mathrm{a}^{2}=1=\mathrm{b}^{2}\right\rangle}_{\mathbb{Z}_{2} * \mathbb{Z}_{2}}=\underbrace{\left\langle\mathrm{a}, \mathrm{c} \mid \mathrm{a}^{2}=1, \mathrm{aca}^{-1}=\mathrm{c}^{-1}\right\rangle}_{\mathbb{Z}_{2} \ltimes \mathbb{Z}}, \quad \mathrm{c}:=\mathrm{ab}
$$

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BH
- Wheeler
- 3+1
- space moves
- Hamiltonian GMD - X without X

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

MCG and its u.i. representations

- The group of mapping classes is given by

$$
\begin{aligned}
M C G_{F} \cong & \operatorname{Aut}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2} * \mathbb{Z}_{2}=\left\langle E, S \mid E^{2}, S^{2}\right\rangle \\
& E:(a, b) \rightarrow(b, a), \quad S:(a, b) \rightarrow\left(a, a b a^{-1}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{ES}+\mathrm{SE} \subset$ centre of group algebra. Hence $\{1, \mathrm{E}, \mathrm{S}, \mathrm{ES}\}$ generate algebra of irreducible representing operators.
\Rightarrow Linear irreducible representations are at most 2-dimensional. They are: $E \mapsto \pm 1, S \mapsto \pm 1$ and, for $0<\theta<\pi$,

$$
\begin{aligned}
& E \mapsto\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& S \mapsto\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right),
\end{aligned}
$$

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
-3+1
- space moves
- Hamiltonian GMD

X without X
3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology
\Rightarrow There are two 'statistics sectors', which get 'mixed' by S ; the 'mixing angle' is θ.

Prime П	HC	S	C	N	$H_{1}(\mathrm{II})$	$\pi \mathrm{o}\left(D_{F}(\Pi)\right)$	$\pi_{1}\left(D_{F}(\Pi)\right)$	$\pi_{k}\left(D_{F}(\Pi)\right)$
S^{3} / D_{8}^{*}	$+$	$+$	+	-	$Z_{2} \times Z_{2}$	O^{*}	0	$\pi_{k}\left(S^{3}\right)$
$S^{3} / D_{8 n}^{*}$	+	$+$	$+$	-	$Z_{2} \times Z_{2}$	$D_{16 \mathrm{n}}^{*}$	0	$\pi_{k}\left(S^{3}\right)$
$S^{3} / D_{4(2 n+1)}^{*}$	+	$+$	+	$+$	Z_{4}	$D_{8(2 n+1)}^{*}$	0	$\pi_{k}\left(S^{3}\right)$
S^{3} / T^{*}	?	+	$+$	-	Z_{3}	O^{*}	0	$\pi_{k}\left(S^{3}\right)$
S^{3} / O^{*}	w	+	+	+	Z_{2}	O^{*}	0	$\pi_{k}\left(S^{3}\right)$
S^{3} / I^{*}	?	+	$+$	-	0	I^{*}	0	$\pi_{k}\left(S^{3}\right)$
$S^{3} / D_{8}^{*} \times Z_{p}$	+	$+$	+	-	$Z_{2} \times Z_{2 p}$	$Z_{2} \times O^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / D_{8 n}^{*} \times Z_{p}$	$+$	$+$	$+$	-	$Z_{2} \times Z_{2 p}$	$Z_{2} \times D_{16 n}^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / D_{4(2 n+1)}^{*} \times Z_{p}$	$+$	$+$	$+$	+	$Z_{4 p}$	$Z_{2} \times D_{8(2 n+1)}^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / T^{*} \times Z_{p}$?	$+$	+	-	$Z_{3 p}$	$Z_{2} \times O^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / O^{*} \times Z_{p}$	w	$+$	$+$	$+$	$Z_{2 p}$	$Z_{2} \times O^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / I^{*} \times Z_{p}$?	$+$	$+$	-	Z_{p}	$Z_{2} \times I^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / D_{2^{k}(2 n+1)}^{\prime} \times Z_{p}$	+	$+$	$+$	$+$	$Z_{p} \times Z_{2^{k}}$	$Z_{2} \times D_{8(2 n+1)}^{*}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$S^{3} / T_{8.3}^{\prime}{ }^{m} \times Z_{p}$?	$+$	+	-	$Z_{p} \times Z_{3}{ }^{m}$	O^{*}	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$L\left(p, q_{1}\right)$	w	-	+	$(-)^{p}$	Z_{p}	Z_{2}	Z	$\pi_{k}\left(S^{3}\right)$
$L\left(p, q_{2}\right)$	$w+$	-	+	$(-)^{p}$	Z_{p}	$Z_{2} \times Z_{2}$	$Z \times Z$	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$L\left(p, q_{3}\right)$	w	-	-	$(-)^{p}$	Z_{p}	Z_{2}	$Z \times Z$	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$L\left(p, q_{4}\right)$	w	-	+	$(-)^{p}$	Z_{p}	Z_{2}	$Z \times Z$	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{3}\right)$
$R P^{3}$	+	-	-	+	Z_{2}	1	0	0
S^{3}	+	-	-	-	1	1	0	0
$S^{2} \times S^{1}$	/	-	-	$+$	Z	$Z_{2} \times Z_{2}$	Z	$\pi_{k}\left(S^{3}\right) \times \pi_{k}\left(S^{2}\right)$
R^{3} / G_{1}	/	+	-	+	$Z \times Z \times Z$	St (3, Z)	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{2}	/	+	-	$+$	$Z \times Z_{2} \times Z_{2}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{2}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{3}	/	$+$	+	$+$	$Z \times Z_{3}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{3}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{4}	/	$+$	$+$	-	$Z \times Z_{2}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{4}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{5}	1	+	$+$	$+$	Z	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{5}\right)$	0	$\pi_{k}\left(S^{3}\right)$
R^{3} / G_{6}	$/$	+	+	-	$Z_{4} \times Z_{4}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(G_{5}\right)$	0	$\pi_{k}\left(S^{3}\right)$
$S^{1} \times R_{g}$	/	+	-	-	$Z \times Z_{2 g}$	$\mathrm{Aut}_{+}^{Z_{2}}\left(Z \times F_{g}\right)$	0	$\pi_{k}\left(S^{3}\right)$
$K(\pi, 1)_{\mathrm{sl}}$	/	$+$	*	*	$A \pi$	Aut $_{+}^{Z_{2}(\pi)}$	0	$\pi_{k}\left(S^{3}\right)$

taken from D.G. 1996

Matter from Space

Intro
GR
$\mathbb{R P}^{3}$

- 2 BHs

Wheeler
3+1

- space moves

Hamiltonian GMD
X without X
3-manifolds
connected sums
prime manifolds
two $\mathbb{R P}^{3} \mathrm{~s}$
Superspace
BH Cosmology

Superspace (Wheeler De Witt)

Intro

GR
$-\mathbb{R} P^{3}$

- 2 BHs
- Wheeler
- 3+1
space moves
Hamiltonian GMD
X without X
3-manifolds
- connected sums
- prime manifolds
- two $\mathbb{R} P^{3}$ s

Final Remark: BH cosmology

Intro

3-manifolds

- connected sums
- prime manifolds
- two $\mathbb{R P}^{3}$ s

Superspace
BH Cosmology

