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Preface

The present volume contains a selection of papers presented at the HQ-1 Conference on
the History of Quantum Physics. This conference, held at the Max Planck Institute for
the History of Science (July 2–6, 2007), has been sponsored by the Max Planck Society
in honor of Max Planck on the occasion of the sixtieth anniversary of his passing. It
is the first in a new series of conferences devoted to the history of quantum physics, to
be organized by member institutions of the recently established International Project
on the History and Foundations of Quantum Physics (Quantum History Project). The
second meeting, HQ-2, takes place in Utrecht (July 14–17, 2008).

The Quantum History Project is an international cooperation of researchers interested
in the history and foundations of quantum physics. It has been initiated jointly by the
Fritz Haber Institute of the Max Planck Society (FHI) and the Max Planck Institute for
the History of Science (MPIWG) and is being funded from the Strategic Innovation Fund
of the President of the Max Planck Society. In addition to the FHI and the MPIWG, the
primary institutions of the project are the Johns Hopkins University, the University of
Notre Dame, the University of Minnesota, the University of Pittsburgh, the University
of Rostock, and the Universidade Federal de Bahia, Brazil.

The aim of the Quantum History Project is to arrive at a deeper understanding of the
genesis and development of quantum physics. While the main focus is on the birth of
quantum mechanics in the period around 1925, the project also addresses further devel-
opments up to the present time, including the theoretical and experimental practices of
quantum physics as well as debates about its foundations. The project is conceived as
a close collaboration of a large and varied international group of historians and philoso-
phers of science as well as working physicists.

Few scientific revolutions have drawn as much attention as the quantum revolution.
We are fortunate that efforts in several places have built extensive archival records for
historians to draw upon; and that some of the extant historical writings are models of
scholarship. Parts of the existing literature, however, fail to meet the particular chal-
lenges of writing the history of quantum physics. Unlike the relativity revolution, the
development of quantum physics was a communal effort whose nature cannot be easily
captured by a biographical approach that focuses on a few central figures. Careful at-
tention must be paid to the broader community of researchers and to how they could
achieve together what no single researcher could do alone. Another problem is that not
much of the existing literature is reliable when it comes to explaining crucial mathe-
matical arguments in the primary source material. Finally, a sound understanding of
the advent of quantum physics cannot be achieved without a subtle appreciation of the
radical conceptual changes that it brought. Much of the conceptual analysis in histor-
ical writing on the quantum revolution uncritically presumes an unhistorical view of a
unified Copenhagen interpretation. In fact, the history of the interpretation of quantum
mechanics is, itself, a topic in need of more thorough and dispassionate historical inves-
tigation, all the more so because debates about interpretation played and continue to
play an unusually prominent role in the development of quantum physics.

In view of these challenges, the Quantum History Project is conceived as a close col-
laboration of a large and varied international group of historians and philosophers of
science and working physicists, reflected by the contributors to the present preprint vol-
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ume. Thus, the project takes advantage of the scientific expertise of the physicists and at
the same time intends to reflect modern historiographical and philosophical approaches.
It is based on the careful analysis of sources (published papers as well as correspondence,
research manuscripts, and laboratory notebooks) and, where possible, instruments. At-
tention is also paid to the institutional and socio-cultural dimensions of the development
of quantum physics.

The Quantum History Project aims at creating and fostering a collaborative climate
and an infrastructure for scholarly research into the birth and development of quantum
physics. We are actively establishing a network of scholars exchanging ideas and view-
points through frequent and regular meetings (symposia, workshops, summer schools).
In particular, we want to facilitate exchanges between physicists, historians, and philoso-
phers interested in the history or the foundations of quantum physics. In addition, we
make a special effort to draw young scholars into the project through graduate fellow-
ships and postdoc positions. In support of these activities, we develop and maintain
an easily accessible electronic resource base of both primary source material, published
books and articles as well as archival material, and results of ongoing research by mem-
bers of the network. We will likewise create an electronic educational resource for the
dissemination of the history of quantum physics, creating and collecting materials ac-
cessible to a wide range of audiences, from the general public to graduate students in
(history of) physics.

The aim of HQ-1 was to bring together scholars from different disciplines and countries
who are experts in the conceptual and theoretical development of quantum physics, its
experimental practice, and its institutional, philosophical and cultural context. Three
areas were the main focus of the HQ-1 conference

• The old quantum theory: Its emergence of an array of seemingly unrelated prob-
lems in diverse areas such as statistical physics, radiation theory, and spectroscopy;
how it was applied to an increasing number of problems; and how the physics com-
munity came to recognize its limitations.

• The genesis of modern quantum mechanics in the period around 1925, its con-
ceptual development, the interplay with experiment, its socio-cultural and institu-
tional context, as well as the debates about the different mathematical formula-
tions of the theory (matrix and wave mechanics, transformation theory) and their
physical interpretation (statistical interpretation, uncertainty principle).

• The acceptance of quantum mechanics as a new basis for physics (atomic, mo-
lecular, nuclear, and solid-state) and parts of chemistry; the elaboration of its
mathematical formalism; the establishment of the dominant Copenhagen interpre-
tation and the emergence of critical responses; and subsequent developments up
to the present, including the ability to produce and control phenomena that until
recently existed only as theoretical speculation.

Not all contributions to the HQ-1 conference are included in this two-volume preprint.
The selection has not been based on a peer-review process but it rather was left open to
each participant individually whether to submit a paper. The editors wish to stress the
fact that the aim of the present preprint is not to assemble former or future publications
of the participants but instead to provide a glimpse on recent developments in the
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field via papers of preprint nature that reflect the status of research at the time of the
conference. The copyright for the papers remains with the original authors who have to
be contacted for permission of reproduction or any further use.

All papers have been carefully edited to conform a common LATEXstyle. The editors
aplogize for any mistakes generated during this process and wish to thank Carmen
Hammer, Nina Ruge, Judith Levy and Alexander Riemer for the considerable amount
of time they invested into the completion of this two-volume preprint. We also wish
to thank the other members of the Program Committee (Don Howard, Michel Janssen,
John Norton, Robert Rynasiewicz) and all participants of HQ-1 for a fruitful conference.

The editors would like to dedicate this volume to the memory of Jürgen Ehlers (1929–
2008). We felt very lucky and honored that a physicist of his importance took such an
enthusiastic interest in our project. Jürgen Ehlers participated from the beginning of the
project regularly in our meetings. He contributed not only with his scientific acumen,
but also with his thoughtful sense of history and his wonderful personality to our group.
We will miss him sorely.

Berlin, in June 2008,

Christian Joas
Christoph Lehner

Jürgen Renn
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1 Einstein’s Revolutionary Light-Quantum
Hypothesis

Roger H. Stuewer

I sketch Albert Einstein’s revolutionary conception of light quanta in 1905 and his in-
troduction of the wave-particle duality into physics in 1909 and then offer reasons why
physicists generally had rejected his light-quantum hypothesis by around 1913. These
physicists included Robert A. Millikan, who confirmed Einstein’s equation of the photo-
electric effect in 1915 but rejected Einstein’s interpretation of it. Only after Arthur H.
Compton, as a result of six years of experimental and theoretical work, discovered the
Compton effect in 1922, which Peter Debye also discovered independently and virtually
simultaneously, did physicists generally accept light quanta. That acceptance, however,
was delayed when George L. Clark and William Duane failed to confirm Compton’s exper-
imental results until the end of 1924, and by the publication of the Bohr-Kramers-Slater
theory in 1924, which proposed that energy and momentum were conserved only statisti-
cally in the interaction between a light quantum and an electron, a theory that was not
disproved experimentally until 1925, first by Walter Bothe and Hans Geiger and then by
Compton and Alfred W. Simon.

Light Quanta

Albert Einstein signed his paper, “Concerning a Heuristic Point of View about the
Creation and Transformation of Light,”1 in Bern, Switzerland, on March 17, 1905, three
days after his twenty-sixth birthday. It was the only one of Einstein’s great papers of
1905 that he himself called “very revolutionary.”2 As we shall see, Einstein was correct:
His light-quantum hypothesis was not generally accepted by physicists for another two
decades.

Einstein gave two arguments for light quanta, a negative and a positive one. His
negative argument was the failure of the classical equipartition theorem, what Paul
Ehrenfest later called the “ultraviolet catastrope.”3 His positive argument proceeded in
two stages. First, Einstein calculated the change in entropy when a volume V0 filled
with blackbody radiation of total energy U in the Wien’s law (high-frequency) region
of the spectrum was reduced to a subvolume V . Second, Einstein used Boltzmann’s
statistical version of the entropy to calculate the probability of finding n independent,
distinguishable gas molecules moving in a volume V0 at a given instant of time in a

1Einstein (1905).
2Einstein to Conrad Habicht, May 18 or 25, 1905. In Klein, Kox, and Schulmann (1993), p. 31; Beck
(1995), p. 20.

3Quoted in Klein (1970), pp. 249–250.
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subvolume V . He found that these two results were formally identical, providing that

U = n

(
Rβ

n

)
ν,

where R is the ideal gas constant, β is the constant in the exponent in Wien’s law, N is
Avogadro’s number, and ν is the frequency of the radiation. Einstein concluded:

“Monochromatic radiation of low density (within the range of validity of
Wien’s radiation formula) behaves thermodynamically as if it consisted of
mutually independent energy quanta of magnitude Rβν/N .”4

Einstein cited three experimental supports for his light-quantum hypothesis, the most
famous one being the photoelectric effect, which was discovered by Heinrich Hertz at the
end of 18865 and explored in detail experimentally by Philipp Lenard in 1902.6 Einstein
wrote down his famous equation of the photoelectric effect,

Πe =
(
R

N

)
βν − P,

where Π is the potential required to stop electrons (charge e) from being emitted from
a photosensitive surface after their energy had been reduced by its work function P .
It would take a decade to confirm this equation experimentally. Einstein also noted,
however, that if the incident light quantum did not transfer all of its energy to the
electron, then the above equation would become an inequality:

Πe <
(
R

N

)
βν − P.

It would take almost two decades to confirm this equation experimentally.
We see, in sum, that Einstein’s arguments for light quanta were based upon Boltz-

mann’s statistical interpretation of the entropy. He did not propose his light-quantum
hypothesis “to explain the photoelectric effect,” as physicists today are fond of saying.
As noted above, the photoelectric effect was only one of three experimental supports that
Einstein cited for his light-quantum hypothesis, so to call his paper his “photoelectric-
effect paper” is completely false historically and utterly trivializes his achievement.

In January 1909 Einstein went further by analyzing the energy and momentum fluc-
tuations in black-body radiation.7 He now assumed the validity of Planck’s law and
showed that the expressions for the mean-square energy and momentum fluctuations
split naturally into a sum of two terms, a wave term that dominated in the Rayleigh-
Jeans (low-frequency) region of the spectrum and a particle term that dominated in
the Wien’s law (high-frequency) region. This constituted Einstein’s introduction of the
wave-particle duality into physics.8

Einstein presented these ideas again that September in a talk he gave at a meeting
of the Gesellschaft Deutscher Naturforscher und Ärzte in Salzburg, Austria.9 During
4Einstein (1905), p. 143. In Stachel (1989), p. 161; Beck (1989), p. 97.
5For discussions, see Stuewer (1971); Buchwald (1994), pp. 243–244.
6Lenard (1902).
7Einstein (1909a).
8Klein (1964). For the wave-particle duality placed in a new context, see Duncan and Janssen (2007).
9Einstein (1909b).
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Einstein’s Revolutionary Light-Quantum Hypothesis

the discussion, Max Planck took the acceptance of Einstein’s light quanta to imply the
rejection of Maxwell’s electromagnetic waves which, he said, “seems to me to be a step
which in my opinion is not yet necessary.”10 Johannes Stark was the only physicist at
the meeting who supported Einstein’s light-quantum hypothesis.11

In general, by around 1913 most physicists rejected Einstein’s light-quantum hypoth-
esis, and they had good reasons for doing so. First, they believed that Maxwell’s electro-
magnetic theory had to be universally valid to account for interference and diffraction
phenomena. Second, Einstein’s statistical arguments for light quanta were unfamiliar
to most physicists and were difficult to grasp. Third, between 1910 and 1913 three
prominent physicists, J.J. Thomson, Arnold Sommerfeld, and O.W. Richardson, showed
that Einstein’s equation of the photoelectric effect could be derived on classical, non-
Einsteinian grounds, thereby obviating the need to accept Einstein’s light-quantum hy-
pothesis as an interpretation of it.12 Fourth, in 1912 Max Laue, Walter Friedrich, and
Paul Knipping showed that X rays can be diffracted by a crystal,13 which all physicists
took to be clear proof that they were electromagnetic waves of short wavelength. Finally,
in 1913 Niels Bohr insisted that when an electron underwent a transition in a hydrogen
atom, an electromagnetic wave, not a light quantum, was emitted—a point to which I
shall return later.

Millikan’s Photoelectric-Effect Experiments

Robert Andrews Millikan began working intermittently on the photoelectric effect in
1905 but not in earnest until October 1912, which, he said, then “occupied practically
all of my individual research time for the next three years.”14 Earlier that spring he had
attended Planck’s lectures in Berlin, who he recalled, “very definitely rejected the notion
that light travels through space in the form of bunches of localized energy.” Millikan
therefore “scarcely expected” that his experiments would yield a “positive” result, but
“the question was very vital and an answer of some sort had to be found.”

Millikan recalled that by “great good fortune” he eventually found “the key to the
whole problem,” namely, that radiation over a wide range of frequencies ejected photo-
electrons from the highly electropositive alkali metals, lithium, sodium, and potassium.
He then modified and improved his experimental apparatus until it became “a machine
shop in vacuo.” He reported his results at a meeting of the American Physical Society in
Washington, D.C., in April 1915; they were published in The Physical Review in March
1916.15 His data points fell on a perfectly straight line of slope h/e (Fig. 1.1), leaving no
doubt whatsoever about the validity of Einstein’s equation of the photoelectric effect.

That left the theoretical interpretation of his experimental results. In his Autobiog-
raphy, which he published in 1950 at the age of 82, Millikan included a chapter entitled
“The Experimental Proof of the Existence of the Photon,” in which he wrote:

“This seemed to me, as it did to many others, a matter of very great im-
10Planck, “Discussion.” In Einstein (1909b), p. 825; Stachel (1989), p. 585; Beck (1989), p. 395.
11Stark, ‘Discussion.” In Einstein (1909b), p. 826; Stachel (1989), p. 586; Beck (1989), p. 397.
12Stuewer (1975), pp. 48–68.
13Friedrich, Knipping, and Laue (1912); Laue (1912). In Laue (1961), pp. 183–207, 208–218.
14Millikan (1950), p. 100.
15Millikan (1916).
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Figure 1.1: Millikan’s plot of the potential V required to stop photoelectrons from being ejected
from sodium by radiation of frequency h/e. The plot is a straight line of slope h/e, in agreement
with Einstein’s equation. Source: Millikan (1916), p. 373.

portance, for it . . . proved simply and irrefutably I thought, that the emitted
electron that escapes with the energy hν gets that energy by the direct trans-
fer of hν units of energy from the light to the electron and hence scarcely
permits of any other interpretation than that which Einstein had originally
suggested, namely that of the semi-corpuscular or photon theory of light
itself [Millikan’s italics].”16

In Millikan’s paper of 1916, however, which he published at the age of 48, we find a
very different interpretation. There Millikan declares that Einstein’s “bold, not to say
reckless” light-quantum hypothesis “flies in the face of the thoroughly established facts
of interference,”17 so that we must search for “a substitute for Einstein’s theory.”18 Mil-
likan’s “substitute” theory was that the photosensitive surface must contain “oscillators
of all frequencies” that “are at all times . . . loading up to the value hν.” A few of them
will be “in tune” with the frequency of the incident light and thus will absorb energy un-
til they reach that “critical value,” at which time an “explosion” will occur and electrons
will be “shot out” from the atom.

Millikan therefore fell completely in line with J.J. Thomson, Sommerfeld, and Richard-
son in proposing a classical, non-Einsteinian theory of the photoelectric effect in his paper
of 1916. No one, in fact, made Millikan’s views on Einstein’s light-quantum hypothesis
clearer than Millikan himself did in his book, The Electron, which he published in 1917,
where he wrote:
16Millikan (1950), pp. 101–102.
17Millikan (1916), p. 355.
18Ibid., p. 385.
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Despite . . . the apparently complete success of the Einstein equation, the
physical theory of which it was designed to be the symbolic expression is
found so untenable that Einstein himself, I believe, no longer holds to it,
and we are in the position of having built a very perfect structure and then
knocked out entirely the underpinning without causing the building to fall. It
[Einstein’s equation] stands complete and apparently well tested, but without
any visible means of support. These supports must obviously exist, and the
most fascinating problem of modern physics is to find them. Experiment
has outrun theory, or, better, guided by erroneous theory, it has discovered
relationships which seem to be of the greatest interest and importance, but
the reasons for them are as yet not at all understood [my italics].19

This, note, is the same man who thirty-four years later, in 1950, wrote that his exper-
iments “proved simply and irrefutably I thought,” that they scarcely permitted “any
other interpretation than that which Einstein had originally suggested, namely that of
the semi-corpuscular or photon theory of light.”

Historians have a name for this, namely, “revisionist history.” But this was by no
means the first time that Millikan revised history as it suited him. The earliest instance
I have found was his reproduction of a picture of J.J. Thomson in his study at home
in Cambridge, England, sitting in a chair once owned by James Clerk Maxwell. Let us
compare the original picture of 1899 with Millikan’s reproduction of it in 1906 (Fig. 1.2).
Note how Millikan has carefully etched out the cigarette in J.J.’s left hand. He presum-
ably did not want to corrupt young physics students at the University of Chicago and
elsewhere. In any case, this reflects what I like to call Millikan’s philosophy of history:
“If the facts don’t fit your theory, change the facts.”

Compton’s Scattering Experiments20

Millikan’s rejection of Einstein’s light-quantum hypothesis characterized the general at-
titude of physicists toward it around 1916, when Arthur Holly Compton entered the
field. Born in Wooster, Ohio, in 1892, Compton received his B.A. degree from the Col-
lege of Wooster in 1913 and his Ph.D. degree from Princeton University in 1916. He
then was an Instructor in Physics at the University of Minnesota in Minneapolis for one
year (1916–1917), a Research Engineer at the Westinghouse Electric and Manufacturing
Company in Pittsburgh for two years (1917–1919), and a National Research Council
Fellow at the Cavendish Laboratory in Cambridge, England, for one year (1919–1920)
before accepting an appointment as Wayman Crow Professor and Head of the Depart-
ment of Physics at Washington University in St. Louis in the summer of 1920, where he
remained until moving to the University of Chicago three years later.

While at Westinghouse in Pittsburgh, Compton came across a puzzling observation
that Charles Grover Barka made in 1917,21 namely, that the mass-absorption coeffi-
cient of 0.145-Angstrom X rays in aluminum was markedly smaller than the Thomson
mass-scattering coefficient whereas it should have been larger. To explain this, Compton

19Millikan (1917), p. 230.
20For a full discussion, see Stuewer (1975).
21Barkla and White (1917); Stuewer (1975), pp. 96–103.
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Figure 1.2: Left panel: J.J. Thomson (1856–1940) seated in a chair once owned by James Clerk
Maxwell (1831–1879) as seen in a photograph of 1899. Source: Thomson, George Paget (1964),
facing p. 53. Right panel: The same photograph as reproduced by Robert A. Millikan (1868–
1953) in 1906. Note how carefully Millikan has etched out the cigarette in J.J.’s left hand. Source:
Millikan and Gale (1906), facing p. 482.

eventually concluded that the X rays were being diffracted by electrons in the aluminum
atoms, which demanded that the diameter of the electron be on the order of the wave-
length of the incident X rays, say 0.1 Å—in other words, nearly as large as the Bohr
radius of the hydrogen atom, which was an exceedingly large electron. That was too
much for Ernest Rutherford, who after Compton moved to the Cavendish Laboratory
and gave a talk at a meeting of the Cambridge Philosophical Society, introduced Comp-
ton with the words: “This is Dr. Compton who is here to talk to us about the Size of the
Electron. Please listen to him attentively, but you don’t have to believe him.”22 Charles
D. Ellis recalled that at one point in Compton’s talk Rutherford burst out saying, “I
will not have an electron in my laboratory as big as a balloon!”23

Compton, in fact, eventually abandoned his large-electron scattering theory to a con-
siderable degree as a consequence of gamma-ray experiments that he carried out at
the Cavendish Laboratory.24 He found that (1) the intensity of the scattered γ rays was
greater in the forward than in the reverse direction; (2) the scattered γ rays were “softer”
or of greater wavelength than the primary γ-rays; (3) the “hardness” or wavelength of
the scattered γ rays was independent of the nature of the scatterer; and (4) the scattered
γ rays became “softer” or of greater wavelength as the scattering angle increased.

We recognize these as exactly the characteristics of the Compton effect, but the ques-

22Quoted in Compton (1967), p. 29.
23Quoted in Eve (1939), p. 285.
24Stuewer (1975), pp. 135–158.
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Figure 1.3: Author’s plot of Compton’s spectra of December 1921 for Molybdenum Kα X rays
scattered by Pyrex through an angle of about 90◦. Source: Stuewer (1975), p. 187.

tion is: How did Compton explain these striking experimental results in 1919? The
answer is that Compton, like virtually every other physicist at this time, also was com-
pletely convinced that γ rays and X rays were electromagnetic radiations of short wave-
length. And after much thought, he hit on the idea that the electrons in the scatterer
were tiny oscillators that the incident γ rays were propelling forward at high velocities,
causing the electrons to emit a new type of secondary “fluorescent” radiation. The in-
tensity of this secondary radiation would be peaked in the forward direction, and its
increased wavelength was due to the Doppler effect.

Compton left the Cavendish Laboratory in the summer of 1920, taking a Bragg spec-
trometer along with him, because he knew that he wanted to carry out similar X-ray
experiments at Washington University in St. Louis.25 He obtained his first X-ray spectra
in December 1921 by sending Molybdenum Kα X rays (wavelength λ = 0.708 Å) onto
a Pyrex scatterer and observing the scattered X rays at a scattering angle of about 90◦

(Fig. 1.3). I emphasize that these are my plots of Compton’s data as recorded in his
laboratory notebooks, because I knew what I was looking for, namely, the small change
in wavelength between the primary and secondary peaks, while Compton did not know
what he was looking for, and—as his published paper makes absolutely clear—saw these
two high peaks as the single primary peak, and the low peak at a wavelength of λ’ =
0.95 Å as the secondary peak, whose wavelength thus was about 35% greater than that
of the primary peak. Compton therefore concluded that the ratio of the wavelength λ of
the primary peak to the wavelength λ’ of the secondary peak was λ/λ’ = (0.708 Å)/(0.95
Å) = 0.75.
25Stuewer (1975), pp. 158–215.
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Figure 1.4: Compton’s spectra of October 1922 for Molybdenum Kα X rays scattered by graphite
(carbon) through an angle of 90◦. Source: Compton (1922), p. 16; Shankland (1973), p. 336.

The question is: How did Compton interpret this experimental result theoretically?
Answer: By invoking the Doppler effect, which at 90◦ is expressed as λ/λ’ = 1 - v/c,
where v is the velocity of the electron and c is the velocity of light. To eliminate the
velocity v of the electron, Compton then invoked what he regarded as “conservation
of energy,” namely, that 1

2mv
2 = hν , where m is the rest mass of the electron, so

that λ/λ’ = 1− v/c = 1 − [(2hν)/(mv2)]1/2, or substituting numbers, λ/λ’ = 1 −
[(2(0.17 MeV)/(0.51 MeV)]1/2 = 1 − 0.26 = 0.74. Who could ask for better agreement
between theory and experiment? I think this is a wonderful historical example of a false
theory being confirmed by spurious experimental data.

By October 1922, however, Compton knew that the change in wavelength was not
35% but only a few percent.26 By then he had sent Molybdenum Kα X rays onto a
graphite (carbon) scatterer and observed the scattered X rays at a scattering angle of
90◦ (Fig. 1.4), finding that the wavelength λ’ of the secondary peak was λ′ = 0.730 Å,
so that now λ/λ′ = (0.708 Å)/(0.730 Å) = 0.969.

The question again is: How did Compton interpret this experimental result theoreti-
cally? Answer: By again invoking the Doppler effect, namely, that at 90◦ λ/λ′ = 1−v/c,
where now to eliminate the velocity v of the electron, Compton invoked what he re-
garded as “conservation of momentum,” namely, that mv = h/λ , so that λ/λ′ =
1 − v/c = 1 − h/mc2, which is exactly the equation he placed to the right of his spec-
tra. Rewriting it as λ/λ′ = 1 − hν/mv2 and substituting numbers, he found that

26Compton (1922).
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Einstein’s Revolutionary Light-Quantum Hypothesis

Figure 1.5: Compton’s quantum theory of scattering of 1922. A primary X-ray quantum of
momentum hν0/c strikes an electron and scatters through an angle θ, producing a secondary X-
ray quantum of momentum hνθ/c and propelling the electron away with a relativistic momentum
of mv/

√
1− β2, where m is the rest mass of the electron and β = v/c. Source: Compton (1923),

486; Shankland (1975), p. 385.

λ/λ′ = 1 − (0.17 MeV)/(0.51 MeV) = 1 − 0.034 = 0.966. Again, who could ask for
better agreement between theory and experiment? I think this is a wonderful historical
example of a false theory being confirmed by good experimental data.

Compton put everything together one month later, in November 1922, aided materially
by discussions he had had with his departmental colleague G.E.M. Jauncey.27 He now
assumed that an X-ray quantum strikes an electron in a billiard-ball collision process in
which both energy and momentum are conserved.28 He drew his famous vector diagram
(Fig. 1.5) and calculated the change in wavelength

∆λ = λθ − λ0 =
h

mc
(1− cos θ) =

h

mc

between the incident and scattered light quantum for a scattering angle of θ = 90◦. What
experimental support did Compton now cite for his new quantum theory of scattering?
Note that the spectra he published in his paper of May 1923 (Fig. 1.6) were identical to
those he had published in October 1922. Only his theoretical calculation to their right
had changed. As every physicist knows, theories come and go, but good experimental
data never dies!

We see that Compton’s discovery of the Compton effect was the culmination of six
years of experimental and theoretical research, between 1916 and 1922. His thought, in
other words, evolved along with his own experimental and theoretical work, in a largely
autonomous fashion. There is no indication, in particular, that Compton ever read
Einstein’s light-quantum paper of 1905. In fact, Compton neither cited Einstein’s paper
in his own paper of 1923, nor even mentioned Einstein’s name in it.

This is in striking contrast to Peter Debye , who proposed the identical billiard-ball

27Jenkin (2002), pp. 328–330.
28Compton (1923a).
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Figure 1.6: Compton’s spectra of 1923 for Molybdenum Kα X rays scattered by graphite (carbon)
through an angle of 90◦. Note that they are identical to those he published in October 1922
(Fig. 1.4), but that he now calculated the change in wavelength λθ − λ0 = h/mc between the
secondary and primary light quantum on the basis of his new quantum theory of scattering.
Source: Compton (1923), p. 495; Shankland (1975), p. 394.

quantum theory of scattering independently and virtually simultaneously,29 and who
explicitly stated in his paper that his point of departure was Einstein’s concept of “needle
radiation.” The chronology of Compton’s and Debye’s work is instructive, as follows:

• November 1922 : Compton reported his discovery to his class at Washington Uni-
versity.

• December 1 or 2, 1922 : Compton reported his discovery at a meeting of the
American Physical Society in Chicago.

• December 6, 1922 : Compton submitted another paper, on the total-internal re-
flection of X rays, to the Philosophical Magazine.30

• December 10, 1922 : Compton submitted his paper on his quantum theory of
scattering to The Physical Review.

29Debye (1923).
30Compton (1923b).
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• March 15, 1923 : Debye submitted his paper on the quantum theory of scattering
to the Physikalische Zeitschrift.

• April 15, 1923 : Debye’s paper was published in the Physikalische Zeitschrift.

• May 1923 : Compton’s paper was published in The Physical Review.

Now, there is nothing more wave-like than total-internal reflection, and there is nothing
more particle-like than the Compton effect. We thus see that within the space of one
week, between December 6 and December 10, 1922, Compton submitted for publication
conclusive experimental evidence for both the wave and the particle nature of X rays. I
take this to be symbolic of the profound dilemma that physicists faced at this time over
the nature of radiation.

Further, as seen in the above chronology, Debye’s paper actually appeared in print
one month before Compton’s, which led some physicists, especially European physicists,
to refer to the discovery as the Debye effect or the Debye-Compton effect. Fortunately
for Compton, Arnold Sommerfeld was in the United States at this time as a visiting
professor at the University of Wisconsin in Madison, and because he knew that Compton
had priority in both the experiment and the theory, after he returned home to Munich,
Germany, he was instrumental in persuading European physicists that it should be called
the Compton effect. Debye himself later insisted that it should be called the Compton
effect, saying that the physicist who did most of the work should get the name.31

Aftermath

Compton’s experimental results, however, did not go unchallenged.32 In October 1923
George L. Clark, a National Research Council Fellow working in William Duane’s lab-
oratory at Harvard University, announced—with Duane’s full support—that he could
not obtain the change in wavelength that Compton had reported. This was a serious
experimental challenge to Compton’s work, which was not resolved until December 1924
when Duane forthrightly admitted at a meeting of the American Physical Society that
their experiments were faulty.33

That resolved the experimental question, but the theoretical question still remained
open. Niels Bohr challenged Compton’s quantum theory of scattering directly in early
1924. Bohr, in fact, had never accepted Einstein’s light quanta. Most recently, in his
Nobel Lecture in December 1922, Bohr had declared:

In spite of its heuristic value, . . . the hypothesis of light-quanta, which is
quite irreconcilable with so-called interference phenomena, is not able to
throw light on the nature of radiation.34

Two years later, in 1924, Bohr and his assistant Hendrik A. Kramers adopted John C.
Slater’s concept of virtual radiation and published, entirely without Slater’s cooperation,

31Quoted in Kuhn and Uhlenbeck (1962), p. 12.
32Stuewer (1975), pp. 249–273.
33Bridgman (1936), p. 32.
34Bohr (1923 [1922]), p. 4; 14; 470.
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the Bohr-Kramers-Slater paper35 whose essential feature was that energy and momentum
were conserved only statistically in the interaction between an incident light quantum
and an electron in the Compton effect. As C.D. Ellis remarked, “it must be held greatly
to the credit of this theory that it was sufficiently precise in its statements to be disproved
definitely by experiment.”36

Hans Geiger and Walter Bothe in Berlin were the first to disprove the BKS theory, in
coincidence experiments that they reported on April 18 and 25, 1925.37 Then Compton
(now at Chicago) and his student Alfred W. Simon disproved the BKS theory in even
more conclusive coincident experiments that they reported on June 23, 1925. Even before
that, however, on April 21, 1925, just after Bohr learned about the Bothe-Geiger results,
he added a postscript to a letter to Ralph H. Fowler in Cambidge: “It seems therefore
that there is nothing else to do than to give our revolutionary efforts as honourable a
funeral as possible.”38 Of course, as Einstein said in a letter of August 18, 1925, to his
friend Paul Ehrenfest: “We both had no doubts about it.”39

References

Barkla, C.G. and White, M.P. (1917). “Notes on the Absorption and Scattering of
X-rays and the Characteristic Radiation of J-series.” Philosophical Magazine 34,
270–285.

Beck, Anna, transl. (1989). The Collected Papers of Albert Einstein. Vol. 2. The Swiss
Years: Writings, 1900–1909. Princeton: Princeton University Press.

Beck, Anna, transl. (1995). The Collected Papers of Albert Einstein. Vol. 5. The Swiss
Years: Correspondence, 1902–1914. Princeton: Princeton University Press.

Bohr, Niels. (1923 [1922]). “The structure of the atom.” Nature 112, 1–16 [Nobel
Lecture, December 11, 1922]. In Nobel Foundation (1965), pp. 7–43. In Nielsen
(1977), pp. 467–482.

Bohr, N., Kramers, H.A., and Slater, J.C. (1924). “The Quantum Theory of Radia-
tion.” Philosophical Magazine 97, 785–802. In Stolzenburg (1984), pp. 101–118.

Bothe, W. and Geiger, H. (1925a). “Experimentelles zur Theorie von Bohr, Kramers
und Slater.” Die Naturwissenschaften 13, 440–441.
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2 The Odd Couple: Boltzmann, Planck and
the Application of Statistics to Physics
(1900–1913)

Massimiliano Badino

In the last forty years a vast scholarship has been dedicated to the reconstruction of
Planck’s theory of black-body radiation and to the historical meaning of the quantiza-
tion. Since the introduction of quanta took place for combinatorial reasons, Planck’s
understanding of statistics must have played an important role. In the first part of this
paper, I sum up the main theses concerning the status of the quantum and compare the
arguments supporting them. In the second part, I investigate Planck’s usage of statistical
methods and the relation to Boltzmann’s analogous procedure. I will argue that this way
of attacking the problem is able to give us some interesting insights both on the theses
stated by the historians and on the general meaning of Planck’s theory.

A Vexed Problem

In his epoch-making paper of December 1900 on the black-body radiation,1 for the first
time Max Planck made use of combinatorial arguments. Although it was a difficult step
to take, a real “act of desperation” as he would call it later, Planck pondered it deeply
and never regretted it. As he wrote to Laue on 22 March 1934: “My maxim is always
this: consider every step carefully in advance, but then, if you believe you can take
responsibility for it, let nothing stop you.”2

The difficulty involved in this step was the adoption of a way of reasoning Planck had
been opposing for a long time: Ludwig Boltzmann’s statistical approach. But, even after
accepting the necessity of introducing statistical considerations into radiation theory, the
application of Boltzmann’s theory of complexions to the particular problem of finding the
spectral distribution of the cavity radiation was not a straightforward one. In fact, the
final result seems to bear only a partial resemblance to Boltzmann’s original arguments
and the opinions of the scholars are split about the correct interpretation of the relation
between Planck’s and Boltzmann’s statistical procedure. The importance of the issue
is enhanced by the fact that, in the secondary literature, close relations can be found
with the problem of continuity or discontinuity of energy, i.e. whether Planck conceived
the quantization of energy as something real or merely as a computational device. With
unavoidable simplifications, we can divide the positions about the historical problem of
quantization into three main categories: discontinuity thesis, continuity thesis and weak

1(Planck, 1900b); (Planck, 1958), 698–706.
2Quoted in (Heilbron, 1986, p. 5).
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thesis. First, we have the discontinuity thesis according to which Planck worked with
discrete elements of energy. As early as 1962, Martin Klein, in a series of seminal papers
on this historical period,3 argued along this direction claiming more or less explicitly
that in December 1900 Planck introduced the quantization of energy even though he
might have not been perfectly aware of the consequences of this step. Furthermore, in
recent years, Res Jost has polemically endorsed Klein’s classical thesis against the most
distinguished upholder of the continuity thesis, namely Thomas Kuhn.4

Indeed, in 1978, Thomas Kuhn5 claimed that in December 1900, and at least until
1908, Planck was thinking in terms of continuous energy and that his energy elements
were merely a shortcut to talk of a continuous distribution over energy cells. The dis-
continuity entered physics as late as 1905–1906 through the work of Paul Ehrenfest and
Albert Einstein. I will call this claim the continuity thesis. Both the discontinuity and
the continuity thesis argue for a definite commitment of Planck’s on the issue of quanti-
zation. In a sense also Olivier Darrigol6 can be numbered among the upholders of this
thesis, even though his position points less straighforwardly towards a clear commitment
and it is halfway between continuity and the third option, the weak thesis.7

As a matter of fact, the advocates of the weak thesis claim that we cannot single out
any clear-cut position of Planck’s on the issue of the reality or the physical significance of
quantization. The reasons and the meaning of this absence of decision might be different.
Allan Needell, for instance, has convincingly argued that this issue was simply out of the
range of Planck’s interests.8 The exact behaviour of the resonator belongs to a domain
of phenomena, namely the micro-phenomena, Planck was unwilling to tackle from the
very beginning of his research program. Hence, the question whether the resonator really
absorbs and emits quanta of energy was irrelevant in Planck’s general approach. Much
more important to understand his theory, Needell suggests, is to look at the role played
by the absolute interpretation of the second law of thermodynamics.

A similar contention was shared by Peter Galison who maintains that, in general, it
is not wise to ascribe strong commitments to scientists working in a period of scientific
crisis.9 Recently, Clayton Gearhart10 has suggested another option for the supporters
of the weak thesis, holding that even if Planck might have been interested in the issue
of the quantization of energy, for various reasons he was unable or unwilling to take a
plain position on the status of the energy elements in his printed writings while “he was
often more open in discussing their implication in his correspondence.”11 His papers in
the crucial period 1900–1913 show an incessant shift and change of emphasis between
continuity and discontinuity so that both a literal interpretation (the starting point
of Klein’s thesis) and a re-interpretation (the main tool of Kuhn’s approach) of these
papers wind up to be misleading. For Gearhart what Planck lacked was not the interest

3(Klein, 1962); (Klein, 1963a); (Klein, 1963b); (Klein, 1964); (Klein, 1966). The original source of the
discontinuity thesis is (Rosenfeld, 1936).

4(Jost, 1995); see also (Koch, 1991).
5(Kuhn, 1978) and (Kuhn, 1984). See also (Klein, Shimony, & Pinch, 1979).
6(Darrigol, 1988) and (Darrigol, 1991).
7Darrigol’s position is wholly presented in his recent papers (Darrigol, 2000) and (Darrigol, 2001).
8(Needell, 1980).
9(Galison, 1981).
10(Gearhart, 2002). (Kangro, 1970) holds a weak thesis on Planck’s commitment as well.
11(Gearhart, 2002, p. 192).
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in the issue of quantization (which is testified by his letters and by his trying different
approaches), but rather a concluding argument to make up his mind in a way or in
another. Also Elisabeth Garber argued in the direction of a certain ambiguity in Planck’s
work when she claimed that his theory was perceived as escaping the pivotal point: the
mechanism of interaction between matter and radiation.12

In this debate, a central role is played by the statistical arguments and, notably, by the
comparison between Planck’s usage of them and Boltzmann’s original doctrine because,
in effect, the statistical procedure is the first and the main step in Planck’s theory where
any discontinuity is demanded. Literally interpreted, Planck’s statements in December
1900 and in many of the following papers seem to suggest a counting procedure and a
general argument that strongly differ from Boltzmann’s, pointing to the direction of real
and discontinuous energy elements. In fact, one of Klein’s main arguments consists in
showing how remarkably Planck’s use of combinatorials diverges from Boltzmann’s and
this makes sensible to think that the physical interpretations behind them must diverge
as well.13

On the contrary, both Kuhn and Darrigol endeavoured to show that the dissimilarities
are only superficial or irrelevant. In particular, Kuhn argued that Planck’s counting
procedure with energy elements is perfectly consistent with Boltzmann’s interpretation
based on energy cells and that all we need is not to take Planck’s statements too literally,
but to see them in the historical context of his research program. A discontinuous view
of the energy was too drastic a step to be justified by a statistical argument only.

Therefore, both the advocates of the continuity and those of the discontinuity thesis
see an intimate connection between Planck’s usage of statistical arguments and the
issue of the quantization of energy. Nevertheless, Kuhn started from the ambiguity of
Planck’s combinatorics to claim a commitment on the issue of quantization and this
seemed incorrect to the eyes of the advocates of the weak thesis. If it is true that
Planck’s statistical arguments can be interpreted as not differing from Boltzmann’s as
much as they seem to do at first sight, then this duality might rather support the thesis
of an absence of commitment in the problem of the reality of the quantum. Thus, even
after having ascertained whether or not Planck’s statistics differ from Boltzmann’s, we
have to look at the problem from a broader perspective and establish the role that the
alleged similarity or dissimilarity might have played in Planck’s theory.

As we have seen, Needell suggested that this broader perspective should encompass
Planck’s view of the laws of thermodynamics, while Gearhart claims that it should take
into account the endless shift of emphasis in the printed writings. However, this approach
is not decisive as well, because the analysis of the long-term development of Planck’s
program was among the most original contributions of the advocates of the continuity
strong thesis and one the their most effective source of arguments.14 In this paper, I
will attempt to investigate the way in which Planck tries to justify the introduction of
statistical considerations into physics and to compare it with the analogous attempt pur-
sued by Boltzmann. I think that this strategy is able to retrieve a historical perspective
on a crucial problem somehow implicit in the previous discussion: what was Planck’s
attitude towards the relation between statistics and physical knowledge? Put in other

12(Garber, 1976).
13See in particular (Klein, 1962).
14For a recent contribution in this direction see (Büttner, Renn, & Schemmel, 2003).
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terms: Did Planck think that the statistical approach is another equally correct way of
studying macro- and micro-phenomena as the usual dynamic approach? Of course, an
answer to this question requires not only an assessment of the similarities or dissimi-
larities between Planck’s and Boltzmann’s statistical formalism, but also a clarification
of the general status of this formalism in Planck and Boltzmann and the way in which
it was related with the rest of the physical knowledge of electromagnetism (in the first
case) and mechanics (in the second case).

In the next sections I will attempt to answer to these questions. My main point is
that a close investigation of the role of statistics offers a new and original perspective
on the debate mentioned above. In particular, I will claim a sort of intermediate po-
sition between continuity and weak thesis. My argument to arrive at this conclusion
is twofold. I first will analyze Boltzmann’s and Planck’s combinatorics focussing espe-
cially on the counting procedure, on the issue of the maximization and on the problem
of the non-vanishing magnitute of the phase space cell. I will argue that, in all these
instances, Planck tries to build up his statistical model remaining as close as possible
to Boltzmann’s original papers, but that the incompleteness of his analogy brings about
some formal ambiguities that are (part of) the cause of his wavering and uncommitted
position. At any rate, the deviations from Boltzmann’s procedure were generally due
(or understood as due) to the particularities of the physical problem Planck was dealing
with. Next, I will present a sketchy comparison of Planck’s and Boltzmann’s justification
of the introduction of statistical considerations in physics and I will claim that, in this
particular aspect, the opinions of the two physicists differ remarkably. This will suggest
us an unexpected twist which will bring us to the final conclusion.

How the Story Began

There are two different statistical arguments in Boltzmann’s works. The first is pre-
sented in the second part of his 1868 paper entitled “Studien über das Gleichgewicht der
lebendigen Kraft zwischen bewegten materiellen Punkten” and devoted to the derivation
of Maxwell’s distribution law.15 This argument, as we will see soon, is extremely inter-
esting both for its intrinsic features and for the investigation of Planck’s combinatorics
that follows.16

In this argument, Boltzmann presupposes that the system is in thermal equilibrium
and arrives at an explicit form of Maxwell’s equilibrium distribution through the cal-
culation of the marginal probability that a molecule is allocated into a certain energy
cell. Let us suppose a system of n molecules whose total energy E is divided in p equal
elements ε, so that E = pε. This allows us to define p possible energy cells [0,ε], [ε,
2ε], . . ., [(p − 1)ε, pε], so that if a molecule is allocated in the i-th cell, then its energy
lies between (i − 1)ε and iε. The marginal probability that the energy of a molecule
is allocated in the i-th cell is given by the ratio between the total number of ways of
distributing the remaining n − 1 molecules over the cells defined by the total energy
(p− i)ε and the total number of ways of distributing all the molecules. In other words,
the marginal probability is proportional to the total number of what in 1877 would be

15(Boltzmann, 1868); (Boltzmann, 1909, pp. I, 49–96).
16An excellent discussion of this section of Boltzmann’s paper—that, however, does not include an

analysis of the combinatorial part of the argument—can be found in (Uffink, 2007, pp. 955–958).
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called “complexions” calculated on an opportunely defined new subsystem of molecules
and total energy.17 This is tantamount to saying that the exact distribution of the
remaining molecules is marginalised.

To clarify his procedure, Boltzmann presents some simple cases with a small number
of molecules. Let us consider, for instance, the case n = 3. Boltzmann estimates the
total number of ways of distributing 3 molecules over the p cells by noticing that if a
molecule is in the cell with energy pε, there is only one way of distributing the remaining
molecules, namely in the cell with energy 0ε, if a molecule has energy (p− 1)ε there are
two different ways and so on.18 Therefore, the total number of ways of distributing the
molecules is:

1 + 2 + . . .+ p =
p(p+ 1)

2
.

Now, let us focus on a specific molecule. If that molecule has energy iε, then there is
(p−i)ε = qε energy available for the remaining molecules and this means q possible energy
cells. There are, of course, q equiprobable ways of distributing 2 molecules over these
q cells because once a molecule is allocated, the allocation of the other is immediately
fixed by the energy conservation constraint. Hence, the marginal probability that the
energy of a molecule lies in the i-th cell is:

Pi = 2
q

p(p+ 1)
.

With a completely analogous reasoning one can easily find the result for n = 4:

Pi = 3
q(q + 1)

p(p+ 1)(p+ 2)
.

Thus, it is clear that, by iterating the argument, in the general case of n molecules this
probability becomes:19

Pi = (n− 1)
q(q + 1) . . . (q + n− 3)
p(p+ 1) . . . (p+ n− 2)

.

Letting the numbers of elements and of molecules grow to infinite, Boltzmann obtains
the Maxwell distribution.

Some quick remarks regarding this statistical argument. First, the marginalization
procedure leads Boltzmann to express the probability that a certain energy is ascribed
to a given molecule in terms of the total number of complexions (for a suitable sub-
system) and this procedure is closely related to Boltzmann’s physical task: finding the
equilibrium distribution. I will return on this point later on. Second, Boltzmann defines
the energy cells using a lower and upper limit, but in his combinatorial calculation he
considers one value of the energy only. This is doubtless due to the arbitrary small

17A complexion is a distribution of distinguishable statistical objects over distinguishable statistical
predicates, namely it is an individual configuration vector describing the exact state of the statistical
model.

18Note that, since Boltzmann is working with energy cells, the order of the molecules within the cell is
immaterial.

19The dependence on i is contained in q through the relation p− i = q.
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magnitude of ε, but it also entails an ambiguity in the passage from the physical case to
its combinatorial representation and vice-versa. Third, a simple calculation shows that:

(n− 1)
q(q + 1) . . . (q + n− 3)
p(p+ 1) . . . (p+ n− 2)

=
(n− 1)!
(n− 2)!

× 1 · 2 · . . . · (q − 1)q(q + 1) . . . (q + n− 3)
1 · 2 · . . . · (q − 1)

× 1 · 2 · . . . · (p− 1)
1 · 2 · . . . · (p− 1)p(p+ 1) . . . (p+ n− 2)

=

(
q+n−3
q−1

)(
p+n−2
p−1

) . (1)

It is worthwhile noticing that the distribution (1) is a particular case of the so-called
Polya bivariate distribution at that time still unknown.20 Moreover, the normalization
factor in equation (1), i.e. the binomial coefficient at the denominator on the right-
hand side, is of course the total number of complexions given the energy conservation
constraint as Boltzmann’s statistical model suggests. In fact, let us suppose that there
are n distinguishable statistical objects and p distinguishable statistical predicates, and
suppose that to each predicate a multiplicity i (i = 0, . . ., p−1) is ascribed. An individual
description that allocates individual objects over individual predicates is valid if and only
if: ∑

i

ini = p− 1,

where ni is the number of objects associated with the predicate of multiplicity i. Under
these conditions, the number W of valid individual descriptions is:

W =
(
p+ n− 2
p− 1

)
=

(p+ n− 2)!
(p− 1)!(n− 1)!

, (2)

namely the normalization factor written by Boltzmann. We will meet this formula
again in Boltzmann’s 1877 paper and, more importantly, this particular form of the
normalization factor will play a major role in explaining some ambiguities of Planck’s
own statistics.

In 1877 Boltzmann devoted a whole paper to a brand new combinatorial argument
which presumably constituted Planck’s main source of statistical insights.21 There are
notable differences between this argument and its 1868 predecessor, starting with the
physical problem: in 1877 Boltzmann is facing the issue of irreversibility and his task is
not simply to derive the equilibrium distribution, but to show the relation between this
distribution and that of an arbitrary state. Thus Boltzmann replaces the marginalization
with a maximization procedure to fit his statistical analysis to the particular physical
problem he is tackling.

To substantiate his new procedure, Boltzmann puts forward the famous urn model.
Let us suppose, as before, a system of n molecules and that the total energy is divided
into elements E = pε and imagine a urn with very many tickets. On each ticket a number
20See (Costantini, Garibaldi, & Penco, 1996) and (Costantini & Garibaldi, 1997).
21(Boltzmann, 1877); (Boltzmann, 1909, pp. II, 164–223).

22



The Odd Couple: Boltzmann and Planck

between 0 and p is written, so that a possible complexion describing an arbitrary state
of the system is a sequence of n drawings where the i-th drawn ticket carries the number
of elements to be ascribed to the i-th molecule. Of course, a complexion resulting from
such a process could not possibly satisfy the energy conservation, therefore Boltzmann
demands an enormous number of drawings and then eliminates all the complexions that
violate the constraint. The number of acceptable complexions obtained by this procedure
still is very large. Since a state distribution depends on how many molecules (and not
which ones) are to be found in each cell, many different complexions might be equivalent
to a single state and Boltzmann’s crucial step is to ascribe a probability to each state
in term of the number of complexions corresponding to it. By maximizing the state
probability so defined, Boltzmann succeeds in showing that the equilibrium state has a
probability overwhelmingly larger than any other possible distribution or that there are
far more complexions matching the equilibrium state.

Besides the differences in the general structure of the argument, it is worthwhile
noting that in this new statistical model Boltzmann must count again the total number
of complexions that are consistent with the energy conservation constraint. To do so he
uses the formula (2), but in this particular case the possible allocations of energy are
p + 1 because the energy cell is defined by a single number of elements rather than by
lower and upper limits. This means that the normalization factor (2) becomes:(

p+ n− 1
p

)
=

(p+ n− 1)!
p!(n− 1)!

. (3)

This is the total number of complexions for a statistical model where distinguishable
objects are distributed over distinguishable predicates precisely as in 1868. Boltzmann
actually writes the formula (3) in passing as an expression of the total number of such
complexions.22 However, it can also be interpreted in a completely different way. It
can equally well express the total number of occupation vectors for a statistical model
of p indistinguishable objects and n distinguishable predicates. To put it differently,
if one wants to calculate the total number of ways of distributing p objects over n
predicates counting only how many objects, and not which ones, are ascribed to each
predicate, then the formula (3) gives the total number of such distributions. An ingenious
and particularly simple way of proving this statement was proposed by Ehrenfest and
Kamerlingh Onnes in 1915.23 Let us suppose that, instead of n distinguishable cells, one
has n− 1 indistinguishable bars defining the cells.24 If both the p objects and the n− 1
bars were distinguishable, the total number of individual descriptions would be given by
(p + n − 1)!. But the indistinguishability forces us to cancel out from this number the
p! permutations of the indistinguishable objects and the (n − 1)! permutations of the
indistinguishable bars. By doing so, one arrives at the total number Wov of occupation
vectors:

Wov =
(p+ n− 1)!
p!(n− 1)!

.

This purely formal similarity, as we will see in the next section, is one of the keys to
understand the ambiguities of Planck’s statistical arguments.
22(Boltzmann, 1877, pp. II, 181).
23(Ehrenfest & Kamerlingh Onnes, 1915).
24Note that this switch between cells and limits is similar to Boltzmann’s with the not negligible difference

that Boltzmann’s cell limits in 1868 are distinguishable.
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A Statistics for All Seasons

Planck’s application of Boltzmann’s statistics to radiation theory has very far-reaching
consequences which puzzled his contemporaries and which took many years to be com-
pletely understood. In this and in the next section I will restrict myself to some problems
that have a special bearing on the historical issue of the quantization, namely the analysis
of Planck’s counting procedure and the general structure of his statistical argument.

In his December 1900 paper, where he first gives a theoretical justification of the
radiation law, Planck is apparently very explicit about his counting procedure:

We must now give the distribution of the energy over the separate resonators
of each [frequency], first of all the distribution of the energy E over the N
resonators of frequency ν. If E is considered to be a continuously divisible
quantity, this distribution is possible in infinitely many ways. We consider,
however—this is the most essential point of the whole calculation—E to
be composed of a well-defined number of equal parts and use thereto the
constant of nature h = 6.55 × 10−27 erg sec. This constant multiplied by
the common frequency ν of the resonators gives us the energy element ε in
erg, and dividing E by ε we get the number P of energy elements which
must be divided over the N resonators. If the ratio thus calculated is not an
integer, we take for P an integer in the neighbourhood. It is clear that the
distribution of P energy elements over N resonators can only take place in
a finite, well-defined number of ways.25

In this passage Planck is unmistakenly speaking of distributing energy elements over
resonators.26 Moreover, in the same paper, Planck writes the total number of ways of
this distribution in the following way:

N(N + 1)(N + 2) . . . (N + P − 1)
1 · 2 · 3 · . . . · P

=
(N + P − 1)
(N − 1)!P !

. (4)

This is the total number of ways of distributing P indistinguishable objects over N
distinguishable predicates as Ladislas Natanson would point out in 1911.27 But, as I
said commenting formula (3), it can also be interpreted as the total number of ways of
distributing N distinguishable objects over P + 1 distinguishable predicates given the
energy conservation constraint, namely exactly the same statistical model Boltzmann
had worked out in his 1877 paper. While in the first interpretation the distribution of
single energy elements over resonators very naturally suggests that the resonators can
absorb and emit energy discontinuously, in the second interpretation of the same formula,
the resonators are distributed over energy cells that have a fixed magnitude, but they
can be placed everywhere within a given cell thus implying that they can absorb or emit
continuously. More importantly, if Planck was faithfully following Boltzmann in framing
his statistical model, and Boltzmann, as we know, assumed a continuous physics behind

25(Planck, 1900b); see (Planck, 1972, p. 40).
26However, the final part of the quotation seems to suggest that he is not considering P to be necessarily

an integrer. On this point see (Darrigol, 2001).
27(Natanson, 1911).
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his model, it is extremely plausible that Planck did not feel himself forced to assume
any discontinuity as a consequence of his counting procedure.28

Therefore, the formal ambiguity in Planck’s way of counting the complexions deprives
of cogency one of the fundamental arguments of the advocates of the discontinuity thesis
which relies on the original statement in December 1900. This point can be strengthened
by appealing to Planck’s awareness of this ambiguity. In the fourth chapter of the first
edition of the Vorlesungen über Wärmestrahlung (1906), his attempt at remaining as
close as possible to Boltzmann’s original argument and phraseology is patent. First,
Planck introduces the concepts of complexion and distribution for a gas and it is clear
that, to him, a complexion is an individual allocation of molecules to energy cells.29 Then
he simply extends this concept to radiation theory, without any, even slight, change of
meaning so that it is plausible that this concept keeps its general features in the new
context as well.

After developing Boltzmann’s procedure for a gas, he deals with the problem of count-
ing complexions in radiation theory:

Here we can proceed in a way quite analogous to the case of gas, if only
we take into account the following difference: a given state of the system
of resonators, instead of determining a unique distribution, allows a great
number of distributions since the number of resonators that carry a given
amount of energy (better: that fall into a given ‘energy domain’) is not given
in advance, it is variable. If we consider now every possible distribution
of energy and calculate for each one of these the corresponding number of
complexions exactly as in the case of gas molecules, through addition of all
the resulting number of complexions we get the desired probability W of a
given physical state.30

The reference to the “energy domain” clearifies that Planck is thinking of distributing
resonators over energy cells and that he considers this way of doing as “a way quite
analogous to the case of gas.”

But immediately after, he stresses that the same goal can be accomplished by the
“faster and easier” (“schneller und bequemer”) way of distributing P energy elements
over N resonators and then he displays again the same formula used in December 1900.
This passage shows two important points. First, in 1906 Planck was well aware that,
from a purely formal viewpoint, both statistical models led to the same result. Second,
he also knew that the distribution of individual energy elements over resonators was a
simpler way of doing because it does not require any energy conservation constraint and,
more importantly, no assumption on the distribution of the resonators within the energy
cells is needed. Unfortunately, this is the first occasion in which Planck explicitly reveals
his knowledge of the subtleties of combinatorics and the objection can be made that this
knowledge was the fruit of the intervening years between 1900 and 1906. However, it
seems unlikely that Planck was not aware of such a trivial equivalence already in De-
cember 1900 because the decision of adopting combinatorial considerations was probably
28This ambiguity was exploited in the other direction by Alexander Bach who in (Bach, 1990) suggested

that in 1877 Boltzmann was anticipating a Bose-Einstein statistics. However, I think that Bach’s
interpretation, though formally correct, cannot be held from a historical point of view.

29(Planck, 1906, pp. 140–143).
30(Planck, 1906, pp. 151–152).
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well pondered by him. Furthermore, the discontinuity thesis looses footing because, as
Kuhn pointed out, it is difficult to figure out why Planck, after committing himself to
discontinuous emission and absorption in 1900, should have availed himself of a formal
equivalence with a combinatorial procedure which presupposes continuous energy cells
in 1906.

Further support to the thesis that Planck interpreted the elements of energy in analogy
with Boltzmann’s procedure is provided by the third lecture delivered by Planck at
Columbia University in 1909. The main claim of that lecture is that “irreversibility leads
of necessity to atomistics,”31 precisely because an atomistic hypothesis is an inescapable
prerequisite of the application of probability. But, and this is the point, the only role
actively played by the atomistic hypothesis consists of allowing us to distinguish the
possible cases that are to be computed. Of course, a combinatorial calculation calls for
a separation of the various possibilities and this is manifestly unattainable in case of a
continuum, hence:

[I]n order to be able to differentiate completely from one another the com-
plexions realizing [a state], and to associate it with a definite reckonable
number, there is obviously no other means than to regard it as made up of
numerous discrete homogeneous elements—for in perfectly continuous sys-
tems there exist no reckonable elements—and hereby the atomistic view is
made a fundamental requirement.32

Thus Planck conceives the discontinuous elements of energy in the same way as Boltz-
mann in 1868 and in 1877, namely as formal devices suitable for labelling and then
combinatorially manipulating the different cases and, of course, this function can be
equally well accomplished by energy cells. Therefore, the formal similarity, Planck’s
awareness of it and his interpretation of the ‘elements’ seem to suggest powerfully that
he did not perceive any fracture between his theory and classical physics.

On the other hand, the continuity thesis is not so compelling as it can appear at
first sight, at least as far as its most ambitious conclusions are concerned. In fact,
Planck’s 1906 awareness of the formal similarity mentioned above does not straightfor-
wardly support Kuhn’s claim that he was committed to a continuous physical model.
This inference is possible only after admitting a close interplay between statistics and
physics in Planck’s theory, otherwise the formal similarity turns out to be nothing but a
formal ambiguity and Planck’s awareness reduces itself to the possibility of maintaining
an uncommitted position, precisely the content of the weak thesis. Such an interplay was
typical of Boltzmann’s style but, I will argue, absolutely absent in Planck’s. Of course,
it might be claimed that continuity in the energy exchange between resonators and field
would have been much more attractive to Planck than a discontinuity which seemed to
entail a contradiction with Maxwell’s equations. However, this appeal to Planck’s theo-
retical background is not conclusive because, as Allan Needell has persuasively shown, a
fundamental ingredient of this background consisted in avoiding any explicit assumption
on the microstructure of the system. Indeed, Planck chose the case of the black-body
radiation because there was no need of specifiying the detailed internal structure of the

31(Planck, 1915, p. 41).
32(Planck, 1915, p. 45).
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resonators. Therefore, Planck’s research program might be utilized to support both the
continuity thesis and the weak thesis.

A problem with Needell’s argument is that Planck’s statements about his program
mainly belongs to a period before the development of his combinatorics, so that a sup-
porter of the continuity thesis might argue that Planck, after his conversion to Boltz-
mann’s combinatorics, abandoned or weakened the neutrality towards the microstructure
that characterized the first phase of his program. This objection would shift the prob-
lem to another question: when did Planck’s conversion actually take place and how deep
was it? There is another way to tackle the issue: as I have said above, the continuity
thesis heavily relies on the status ascribed by Planck to the statistical arguments and,
fortunately enough, there are clear statements about this topic in the first edition of the
Vorlesungen. But before analysing them, I will complete the survey of Planck’s appli-
cation of Boltzmann’s combinatorics discussing the general structure of his statistical
argument.

To Maximize or Not to Maximize?

The first paper on the quantum was published on December 1900 and the second in the
Annalen der Physik on January 1901.33 In spite of such a tiny interval of time, there
are considerable differences between these two papers, particularly with regard to the
structure of the argument.

In the first paper, Planck considers different classes of resonators characterized by
their proper frequency of vibration. Thus we have N1 resonators at frequency ν1, N2

resonators at frequency ν2, and so on. All resonators of a certain class have the same
frequency and they do not mutually interact. Next Planck supposes that the total energy
of the system consisting of resonators and radiation is E, and Er is the fraction of the
total energy belonging to the resonators only. The energy Er must be divided over the
different frequencies, so that a possible energetic state of the system of resonators is
described by the vector:

ωk = {E1, E2, . . . , }, (5)

where Ei is the energy assigned to the frequency νi and each vector ωk must satisfy the
condition:

Er = E1 + E2 + . . . .

There are many different ways of distributing the total energy Er over the possible
frequencies in accordance with the condition above, but not all these ways have the
same ‘probability.’ Planck suggests to measure the probability that a certain energy
Ei is ascribed to the frequency νi by the total numer of ways of distributing the energy
divided in Pi elements of magnitude εi = hνi over the Ni resonators. Since the magnitude
of the elements depends on the frequency, the division of energy is different in each class
of resonators. As we have already seen, this number is:

W (Ei) =
(Ni + Pi − 1)
(Ni − 1)!Pi!

. (6)

33(Planck, 1901).
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Since resonators of different classes do not interact, the distribution described by the vec-
tor (5) is a compound event consisting of many independent events, then its probability
is:

W (ωk) =
∏
i

W (Ei). (7)

At this point, instead of performing the cumbersome maximization of (7), finding
the equilibrium distribution ωeq and the mean energy of a resonator at an arbitrary
frequency, Planck mentions that “[a] more general calculation which is performed very
simply, using exactly the above prescriptions shows much more directly” the final re-
sult. There is no description at all of what this “general calculation” should look like
and Thomas Kuhn has suggested that here Planck has in mind the argument he would
present in his Annalen paper in January 1901. Kuhn’s hypothesis is perfectly reason-
able because the only problem with the calculation above is the maximization procedure
which actually does not appear in the 1901 paper. Indeed, in the January article Planck
starts by reckoning only a class of resonator and does not consider a set of arbitrary dis-
tributions ωk among which a particular equilibrium distribution ωeq is to be selected by
means of a maximization procedure, but he directly presupposes the equilibrium state.
After this step, the procedure is similar to the December paper with the calculation of
(6) for a single class of resonators and without equation (7). Both arguments present
deviations from Boltzmann’s original procedure which have been deeply studied by his-
torians34 but I think that some confusion still remains as regarding to the justification
of such deviations in the context of Planck’s theory.

First, it has been stressed that Planck uses the total number of ‘complexions’ (ways of
distributing the energy over the resonators of a certain class) instead of the number of
complexions consistent with a certain distribution. It is doubtless true that, whichever
statistics Planck is using, his calculation involves the total number of ways of distribution,
but before deeming it a relevant deviation from Boltzmann’s procedure we must first
examine the physical problem Planck is dealing with.

In Boltzmann’s theory a macrostate is given by the number of molecules that are placed
in a certain energy interval, a situation that in equilibrium is described by Maxwell’s
distribution for a gas. On the contrary, in the case of radiation theory what is physically
meaningful is a relation between the energy allocated to a certain frequency and the
absolute temperature and this relation presupposes a calculation of the total energy
at each frequency. This distribution of energy over frequencies, condensed in (5), is
a macrostate in Planck’s theory while the distribution of the energy over a class of
resonators (how many resonators lie in a certain energy cell) is still a microstate.35

The difference between Boltzmann’s and Planck’s physical situation is outlined by the
following scheme:

34See especially (Klein, 1962), (Kuhn, 1978), (Darrigol, 1988), and (Gearhart, 2002).
35On this important difference see also (Darrigol, 2000) and (Darrigol, 2001).
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In Boltzmann’s case a microstate is an individual arrangement of molecules over differ-
ent energy cells, while a macrostate is given by the number of molecules allocated in each
cell. Instead, in Planck’s, energy is allocated over each frequency and then divided in
elements which are distributed over the resonators (R) that vibrate at that frequency. A
microstate is an individual arrangement of resonators in energy cells, while a macrostate
is how much energy is allocated to each frequency.

To make this delicate point as clear as possible we can consider where the disanalogy
between Planck and Boltzmann stems from. To transform Boltzmann’s case in Planck’s
one we can proceed as follows. Let us suppose to have N molecules, so that a state
distribution is a vector:

ok = {n0, n1, . . . , },

quite analogous to vector (5). This vector tells us that ni molecules are in the cell
with energy i. Let us now suppose that no permutations are possible among the dif-
ferent energy cells, precisely like no exchange of energy is possible among resonators
of different frequency. This also means that one should suppose the molecules as dis-
tributed in bunches of dimension ni over each cell—as described by the vector ok—but
not singularly, because otherwise one could obtain the same result as a permutation by
distributing individual molecules on different cells alternatively. This is also due to the
fact that the elements of energy only make physical sense when they are associated with
a certain frequency, hence we can only ascribe energy as a whole to a frequency and then
divide it in P elements, if necessary by taking “for P an integer in the neighbourhood.”
Furthermore, since in Planck’s model there are many resonators at each frequency, we
must suppose that each energy cell is divided in a number of sub-levels, so that the
molecules can be allocated in diffent ways within each cell. It is clear that, in this mod-
ification of Boltzmann’s model of distributing molecules over energy cells, a macrostate
is defined by the vector ok, but a microstate is no longer an allocation of individual
molecules within the cells (because we cannot speak of individual molecules allocated
in the cells), but an allocation of individual molecules over the sub-levels of each cell.
In this case, the natural way of defining the probability of a distribution described by
the vector ok is to make it proportional to the total number of ways of distributing the
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molecules over the sub-levels. It is exactly what Planck did and it is actually nothing
more than an application of Boltzmann’s general rule according to which the probabil-
ity of a macrostate is proportional to the total number of microstates that leave the
macrostate unchanged or that are consistent with that macrostate.

Two comments follow from this model. First, it clearly shows what was really tricky
in Planck’s usage of statistics. If the molecules have to be distributed in bunches, then
it does not make sense to talk of the distribution of a single molecule because there is
a sort of statistical correlation between molecules located in the same energy cell. This
is exactly the main characteristic of Bose-Einstein statistics. But this crucial point is
concealed by the fact that Planck is speaking of energy and his microstate concerns the
distribution of resonators.36 As soon as a corpuscular conception of energy gained a
sound footing and the resonators were left aside, the troublesome features of Planck’s
daring analogy would emerge, because what was a macrostate in Planck immediately
became one of many equiprobable microstates and the bunches of energy became groups
of indistinguishable particles. Not surprisingly, the first step Albert Einstein took in his
1924 paper on quantum statistics was to reduce Planck’s macrostate to the rank of a
microstate and to define a new sort of macrostate.37

Secondly, however, as long as one keeps assuming the energy as a continuous quan-
tity and using the resonators as a further level of description, the oddities in Planck’s
model remain hidden. From this point of view, Planck could have considered his usage
of statistics as a straightforward application of Boltzmann’s doctrine because he ulti-
mately evaluated the probability of a certain macrostate (7) through the total number
of microstates consistent with that macrostate. The difference from Boltzmann rested
mainly on the definition of macrostate, but, in turn, it depended more on the particular
physical problem, than on the statistical argument used.38 Planck is very clear on this
topic in the first edition of the Vorlesungen:

In this point lies the essential difference between the [radiation theory] case
and that of a gas. Since in the latter the state was defined by the space and
velocity distribution among the molecules [. . .]. Only when the distribution
law is given, the state can be considered as known. On the contrary, in the
former case for the definition of the state suffices the calculation of the total
energy E of the N resonators; the specific distribution of the energy over the
single resonator is not controllable, it is completely left [anheimgegeben] to
chance, to elementary disorder.39

More subtle is the issue concerning the maximization because it involves Planck’s
particular concept of disorder. As early as December 1900, Planck notices that the
36The model also shows that it is statistically irrelevant whether the resonators are distributed over the

energy cells or the energy elements are distributed over the resonators. Planck’s statistical leap lies
elsewhere, and to make it come to light the resonators have to be abandoned.

37(Einstein, 1924, p. 262).
38It should be noticed in passing that, even in 1877, Boltzmann marginalized the complexions in the

position space. In fact, Maxwell’s distribution holds for the velocities only, hence a Boltzmann’s
macrostate is characterized by the product of the number of the favourable complexions in the velocity
space and the total number of complexions in the position space. Of course Boltzmann does not
consider this number explicitely because it is an unimportant constant. On this point see (Hoyer,
1980).

39(Planck, 1906, p. 151); an akin statement can be found in (Planck, 1915, p. 89).
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notion of entropy is closely connected to the chaotic feature of the system but, at the
same time, the way in which the disorder enters a system of resonators is radically
different from the way in which the same concept is applied in gas theory. In the former
case, the disorder takes the form of “natural radiation,” a particular assumption on
the incoherent variation of the Fourier components of the waves exciting a resonator.
This means that, while in a gas the disorder concerns the mutual interaction of very
many molecules at a given instant, in radiation theory the disorder is a feature of the
interacting field and affects the evolution of a single resonator during a long interval of
time. In other words, in a gas the disorder is a characteristic of a set of molecules at a
given instant, while in cavity radiation, it is a characteristic of the temporal evolution of
individual resonators. It is precisely this shift of meaning that allows Planck to introduce
the entropy for a single resonator, a concept that would not make sense in gas theory.

Planck was probably aware of this fundamental difference from the outset because he
mentions it in the introduction of his paper in March 1900.40 However, it is only in the
first edition of the Vorlesungen that an explicit statement on the influence of this aspect
on the combinatorics of the resonators can be found:

Briefly said: in the thermal oscillations of a resonator the disorder is tem-
poral, while in the molecular motion of a gas it is spatial. However, this
difference is not so important for the calculation of the entropy of a resonator
as it might appear at first sight; because through a simple consideration can
be stressed what is essential for a uniform treatment.41

The “simple consideration” comes immediately after:

The temporal mean value U of the energy of a single resonator in an irradi-
ating vacuum is evidently equal to the mean value of the energies calculated
for a particular instant over a large number N of identical resonators that
find themselves in the same radiation field but so far away from each other
that their oscillations do not influence one another.

These statements clarify an analogous—but more obscure—passage in the December
1900 paper where Planck suddenly leaps from the temporal disorder of a single resonator
to the calculation of the distribution of energy over a set of identical resonators without
any apparent justification. Obviously Planck was aware of the connection mentioned
above already in December 1900. Most probably, Planck’s confidence in the ‘evidence’
of the equivalence—that at first sight is not evident at all!—stems from Boltzmann’s
Gastheorie. In Section 35 of the second volume, Boltzmann comes up with a qualitative
argument to extend the validity of the equipartition theorem proved for a gas to a thermal
system in an arbitrary state of aggregation. The presupposition of the argument is a
fact of experience: warm bodies reach a stable state of equilibrium. In this state kinetic
energy does not differ appreciably from the mean in the course of time. Moreover, this
state is independent of the initial conditions, so that Boltzmann can state:

... we can also obtain the same mean values if we imagine that instead of
a single warm body an infinite number are present, which are completely

40(Planck, 1900a); see (Planck, 1958, pp. 668–686).
41(Planck, 1906, p. 150).
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independent of each other and, each having the same heat content and the
same external conditions, have started from all possible initial states. We
thus obtain the correct averages values if we consider, instead of a single
mechanical system, an infinite number of equivalent systems, which started
from arbitrary different initial conditions.42

This argument must have pleased Planck very much because it only relies on the thermal
equilibrium as an empirical fact and, as a consequence, on the elementary disorder.

In fact, in the December 1900 paper, we find an important hint in this direction that
is missing in the Vorlesungen. Planck states that a key requirement for adopting his
combinatorial derivation is “to extend somewhat the interpretation of the hypothesis of
natural ‘radiation’ which has been introduced by me into electromagnetic theory.”43 The
generalization of the hypothesis of natural radiation Planck is talking about is exactly the
broader concept of elementary disorder that he considers the foundation of the statistical
description of the system. One can represent the temporal evolution of a single resonator
by means of the combinatorics over a set of many identical resonators precisely because
both models are disordered in the same sense and this concept of disorder is shared
with gas theory as well. Therefore, one can apply in radiation theory the combinatorial
methods that naturally follow from the notion of disorder in gas theory, because, viewed
from a general perspective, there is an analogous notion in radiation theory as well. In
other words, the elementary disorder is supposed to bridge the gap between the physical
description of a resonator interacting with a field and its combinatorial description as a
set of identical copies and to make this leap ‘evident.’ One can replace the former with
the latter only if the temporal evolution of the system is disordered in the same sense
as a distribution over the copies is.

Indeed, to accomplish his final goal, Planck had to find a relation between the energy
Eν allocated on the frequency ν and the absolute temperature T . The entropy S is a
concept connecting both quantities by means of the well-known definition of absolute
temperature:

∂S

∂E
=

1
T
.

Adopting Boltzmann’s definition of entropy:

S = k logW,

one only needs a relation between the probability W and the energy E. In December
1900, Planck writes:

Entropy means disorder, and I thought that one should find this disorder in
the irregularity with which even in a completely stationary radiation field
the vibrations of the resonator change their amplitude and phase, as long as
one considers time intervals long compared to the period of one vibration,
but short compared to the duration of a measurement.44

42(Boltzmann, 1898, p. 310).
43(Planck, 1900b); see (Planck, 1972, p. 39).
44(Planck, 1900b); see (Planck, 1972, p. 38).
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Thus, elementary disorder in terms of natural radiation warrants a disordered temporal
evolution of the resonator. But Planck still needs, in December 1900, a measure of this
disorder, a quantitative expression of the disorder involved in the fact that the energy E
is allocated on the (resonator of) frequency ν.45 This measure, namely the probability
W , is provided by the combinatorics on the system of N identical resonators, but the
foundation of this bold leap is the general notion of elementary disorder.

In the meantime, another ambiguity jumps out of the hat. On the one hand, Planck’s
analysis of the statistical model fits Boltzmann’s procedure in seeking for an equilibrium
distribution among the possible ways of allocating energy over the frequencies. On the
other hand, if the single resonator is in equilibrium with the field during the long time
considered, then the statistical model of N resonators must represent a state of equilib-
rium as well. If the temporal behaviour of a single resonator in equilibrium is equal to
the combinatorial behaviour of a set of resonators as regards the average values, then
all the configurations calculated in the set must represent equilibrium configurations.46

From this point of view, a maximization procedure is conceptually unnecessary because
all the ways of distributing the energy elements over the resonators are consistent with
the equilibrium state. By using the fact that his physical problem (the derivation of
the black-body radiation law) is defined for the equilibrium state only and by a daring
application of the elementary disorder, Planck can escape the formal necessity of max-
imization. In fact, such a procedure is relevant only if one is interested in the problem
of irreversibility but, as we will see more clearly below, Planck considers this issue com-
pletely solved by the notion of elementary disorder and, from 1900 on, it disappears
from his research program. With the riddle of irreversibility put aside, the only problem
remaining was the derivation of the radiation law.

For these reasons, Planck was free to use the maximization or not without affecting the
consistency of his reasoning or the analogy with Boltzmann’s statistical arguments and he
seems to be aware of this since December 1900. Furthermore, as we have seen, Boltzmann
himself, in 1868, elaborated a statistical argument dealing with the equilibrium state
only, which did not make use of the maximization procedure, a technique that would
make its appearance only in 1877, in close connection with the problem of irreversibility.
Unsurprisingly, given the chance, Planck chose the “faster and easier” way of avoiding
maximization.

Size Does Matter

A further departure of Planck’s statistics from Boltzmann’s is the fixed magnitude of the
energy element. Boltzmann divided the energy space into cells, but the magnitude of
these cells was completely arbitrary and disappeared from the final result. By contrast,
the magnitude of Planck’s elementary cells (Elementargebiete) was determined by a
universal constant that played a crucial role in the final formula. Once again, Planck
45As pointed out by Needell, Planck considered probability merely (or mainly) as a measure of disorder

and, indirectly, as a way for calculating entropy. This is clear, for instance, in (Planck, 1901) where he
says that the combinatorial definition of probability is “the condition [. . .] which permits the calculation
of S,” see (Planck, 1958, p. 719)).

46Note that the temporal evolution of a resonator is analogous to a system in thermal contact with a
heat reservoir. In both cases the exact energy of the system can fluctuate around a mean even though
the equilibrium is maintained. On this point see also (Gearhart, 2002).
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was conscious of this fact that, in the Vorlesungen, he considers “an essential difference”
with the case of gas.47 He also knew that if the magnitude of the elementary cell goes
to zero, one retrieves the incorrect Rayleigh-Jeans formula.48

But even if it was an essential difference in the procedure, Planck tried to assign to the
unvanishing size of the cell a place in the framework of the combinatorial approach. In
December 1900, the division of the energy in elements of fixed magnitude was performed
to allow the combinatorial calculation and the choice of the constant h was probably
due to the law Planck had found in October.49 However, in the first edition of the
Vorlesungen, Planck discovers an important meaning of the universal constant. He
shows that h can be interpreted as the elementary area, i.e. area of equal probability, in
the phase space of the resonator.

This interpretation actually strenghtens the link with Boltzmann for two reasons.
First, one of the main steps in Boltzmann’s argument was the partition of the phase
space of a gas in regions of equal volume. Olivier Darrigol and Ulrich Hoyer have pointed
out that, even if these volumes can be vanishingly small, they cannot really disappear,
otherwise Boltzmann’s integrals are doomed to diverge.50 By shifting the quantization
from energy cells to regions of the phase space, Planck was therefore reinforcing the
analogy between his procedure and Boltzmann’s. At the same time, the non-vanishing
magnitude of the cell could be understood as an aftermath of the physical problem, an
inconvenience of the incomplete analogy, not a flaw in the statistical formalism.

Second, both in December 1900 and in January 1901, Planck had stated that one
fundamental assumption of his theory was the equiprobability of the complexions, but
he had not clarified the status of this contention that, in his opinion, had to be decided
empirically. As we will see more clearly in the next section, Boltzmann justified the
equiprobability of his complexions by appealing to the Liouville theorem and a particu-
lar definition of probability. With his special partition of the phase space in 1906, Planck
was able to introduce a justification of the equiprobability which relied on general elec-
trodynamics and a universal constant only. He could validly feel that an important gap
in his approach had been filled.

In the second edition of the Vorlesungen (1913), Planck further improves the position
of the constant h in his theory by showing that it is closely related with a general
thermodynamical result: Nernst’s theorem. The third law of thermodynamics discovered
by Walther Nernst in 1905 entails the existence of an absolute definition of the entropy
and, from Planck’s point of view, this implies an absolute definition of probability.51

But probability hinges upon the partition of the phase space that, of course, must be
also possible in an absolute way. Commenting the necessity of fixing a finite magnitude
for the phase cell as a consequence of Nernst’s theorem, Planck says:

That such a definite finite quantity really exists is a characteristic feature of
the theory we are developing, as contrasted with that due to Boltzmann, and
forms the content of the so-called hypothesis of quanta. As readily seen, this

47(Planck, 1906, p. 153).
48(Planck, 1906, p. 156).
49The role played by the universal constants in Planck’s derivation has been stressed in (Badino &

Robotti, 2001) and in (Gearhart, 2002).
50(Darrigol, 1988), (Hoyer, 1980).
51For an overview of the problems connected with Nernst’s theorem see (Kox, 2006).

34



The Odd Couple: Boltzmann and Planck

is an immediate consequence of the proposition [. . .] that the entropy S has
an absolute, not merely relative, value; for this, according to [S = k logW ],
necessitates also an absolute value for the magnitude of the thermodynamical
probability W , which, in turn [. . .], is dependent on the number of complex-
ions, and hence also on the number and size of the region elements which are
used.52

Thus, by exploiting Nernst’s thermodynamical result, that he had enthusiastically ac-
cepted from the outset, Planck is able to give to the finite magnitude of the cell in the
phase space a meaning that is probabilistic and thermodynamic at the same time.

The previous discussion sheds some light on the relation between Planck’s and Boltz-
mann’s statistical formalism and on the more general issue of the internal consistency
of Planck’s theory. One of the main tenets of Kuhn’s interpretation is that Planck
developed a continuistic understanding of the combinatorial arguments in order to be
consistent with the electromagnetic part of his theory that proceeded from the tradition
of classical physics. However, Darrigol has pointed out that Planck’s departures from
Boltzmann’s original procedure seem to imply that he was consistent with a part of the
tradition he was appealing to and inconsistent with another part.53 This selectivity in
consistency looks rather arbitrary and difficult to justify. Martin Klein has proposed to
characterize Planck’s research program as “uniformly consistent,” namely Planck was
ready to tolerate some contradictions if only they allowed him to arrive at his final goal,
a theoretical justification of the black-body radiation law.

However, I do not think that Planck’s usage of the statistical formalism differs from
Boltzmann’s so remarkably or decisively as it was often assumed by the scholars. Or, at
least, I do not think that Planck perceived a real fracture. The previous discussion has
shown that Planck tried to apply Boltzmann’s formalism through an analogy between a
system of resonator and a system of molecules, but, since these two systems are physically
different, he was forced to take account of the imperfections of the analogy. I would say
that Planck was analogically consistent in his usage of Boltzmann’s statistical doctrine:
he was aware of the differences and that they mainly derived from the particular physical
problem he was coping with. For instance, the counting procedure is a plain application
of Boltzmann’s idea of calculating the microstates consistent with a certain macrostate.
What is different is the definition of a macrostate, because the spectral distribution
Planck has to arrive at, is dissimilar from the velocity distribution of gas theory. In the
former case, the distributions over the set of resonators are irrelevant, and they must
be marginalized. Likewise, the maximization procedure was dispensable both because
only the equilibrium has an empirical meaning for heat radiation and because of the
particular concept of elementary disorder Planck had fostered. Lastly, Planck tried to
embody the more marked difference—the finite magnitude of the energy element—in his
statistical procedure through an intepretation of elementary region of the phase space
and, eventually, through Nernst’s theorem.

To be sure, the imperfections in the analogy also give rise to a number of ambiguities—
especially of formal nature—that Planck exploited to keep an uncommitted position. As
we have seen, it was statistically irrelevant, in his theory, if energy elements were dis-
tributed over resonators or resonators were distributed over energy cells. Similarly, he
52(Planck, 1913, p. 125).
53(Darrigol, 2001).
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had the choice of using a maximization procedure or not. In his writings, Planck keeps
shifting from one approach to the other without solving the dilemma: there is hardly
more that some modest changes of emphasis. For instance, in the first edition of the
Vorlesungen, Planck mentions the distribution of resonators over cells, but immediately
thereafter he switches to the “faster and easier” original way. By contrast, in the second
edition of the same book, published in 1913, Planck follows Boltzmann’s doctrine al-
most literally, introducing a distribution density function and maximizing it to find the
equilibrium case. The original distribution of energy elements has only a marginal role.
Once again, this change in emphasis is due to a modification of the physical perspective:
in 1911, Planck had brought about his famous ‘second theory’ which relied on the quan-
tum emission hypothesis and on the distribution of resonators over continuous energy
cells, and the second edition of the Vorlesungen relies heavily on this new method. I
will explain this point in the next section.

To sum up, it seems that the weak thesis is correct in suggesting that, as a matter of
fact, Planck, for various reasons, adopted an uncommitted attitude towards most of the
physical issues emerging from his combinatorial procedure, but the point is that Planck
was also justified in doing so by the ambiguities and the differences that his analogical
adaptation of Boltzmann’s statistics evoked. However, to complete the picture, we still
need an answer to a fundamental question: why was Planck unwilling to draw physical
inferences from his combinatorial procedure? This question concerns the main differ-
ence between Planck and Boltzmann and demands an analysis of their justifications of
the introduction of statistics in physics. This analysis will add a further twist to our
discussion.

Organized Disorder

During his scientific life Boltzmann exposed his philosophical position in various essays
and was involved in many scientific disputes especially concerning the necessity of the
atomistic hypothesis and the so-called Energetic, but, unexpectedly enough, he rarely
discusses the role of statistics in his theory. Some hints about his general opinion on this
issue can be drawn from the final section of his 1868 paper.54 In the first part of the
paper, he undertakes the task of deriving Maxwell’s distribution by a classical analysis of
the mechanical collisions and, in the second part, as we have seen above, he accomplishes
the same goal employing a statistical argument. In the final section, Boltzmann justifies
this two-pronged approach by indirectly explaining how statistical considerations enter
his treatment of mechanical problems.55

However, his original argument is pretty obscure and I will try to reframe it in a more
modern perspective. There are three ingredients:

(1) Probability as sojourn time: the probability of a certain physical state represented
by a region of the phase space of the system is the ratio between the time the

54(Boltzmann, 1868); see (Boltzmann, 1909, pp. I, 92–96). Another interesting point where Boltzmann
displays his opinion on this topic is (Boltzmann, 1898, pp. 448–449).

55Of course, from a formal point of view, the main goal of the section is a proof of the uniqueness of
Maxwell’s distribution by using the ergodic hypothesis (see for example (Uffink, 2007)), but I think
that the particular view of the relation between statistics and mechanics implicit in this argument
should not be underestimated.
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system spends in that region and the total time considered (supposed to be very
long).

(2) Liouville’s theorem: a well known result of general dynamics stating that if a
system evolves according to the Hamiltonian equations of motion, then all the
phase regions it passes through have the same volumes.

(3) Ergodic hypothesis: a system will pass through all the phase regions consistent
with its general constraints (e.g. the conservation of energy) provided that its
evolution lasts long enough.

Boltzmann’s argument goes as follows. Let us divide the trajectory time of the system
into intervals of magnitude ∆t, so that a phase trajectory for the system is a sequence
of states:

Σt,Σt+∆t, . . . ,Σt+n∆t.

From Liouville’s theorem, it follows immediately that all these phase volumes are equal.
But, since the system spends the same quantity of time ∆t in each state, they are also
equiprobable by definition (1). Therefore, the probability assigned to a certain state
is proportional to the phase space volume of that state. If one now assumes that the
ergodic hypothesis holds, then the system will pass through all the phase space regions
consistent with its general conditions, and this means that, due to the deterministic
evolution, there is only one trajectory filling up all the allowed phase space. Hence, one
can describe the long run behaviour of the system by simply dividing the phase space
into regions of equal volume (namely of equal probability) and calculating the number
of regions corresponding to a certain macrostate. In other words, one can replace the
temporal description of the long-run evolution of the system with a combinatorics on
the phase space because all the space is filled up by a system trajectory.

Of course, this cannot be considered a formally satisfactory argument because of the
problems connected to the ergodic hypothesis, but the general idea is clear enough:
Boltzmann tries to introduce the usage of statistics in mechanics as an account of the
behaviour of the mechanical system that is as rightful as the temporal description that
the mechanics itself can provide, as long as some conditions hold on the system itself,
notably the ergodic hypothesis. More importantly, the application of statistics does not
rely on our ignorance of the detailed state of the system, namely on our epistemic status,
but on a certain kind of behaviour of the mechanical system. The key point is that this
justification amounts to an attempt of deeply integrating statistics and mechanics, of
seeking for the mechanical conditions of an application of statistical arguments. He
stresses this aspect also in the introduction of his 1872 paper:

It would be an error to believe that there is an inherent indetermination
in the theory of heat because of the usage of the laws of the calculus of
probability. One should not mistake a law only incompletely proved, whose
soundness is hence problematic, for a completely demonstrated law of the
calculus of probability; the latter represents, like the result of any other
calculus, a necessary consequence of given premises, and, if they are true, it
is borne out in experience, as soon as many enough cases are observed what
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is always the case in the theory of heat because of the enormous number of
molecules.56

Planck’s justification goes exactly in the opposite direction. The relation between statis-
tics and electrodynamics is explained at the beginning of the fourth chapter of the first
edition of the Vorlesungen and the starting point is the following dilemma:

Since with the introduction of probabilistic considerations into the electrody-
namic theory of heat radiation, a completely new element, entirely unrelated
to the fundamental principles of electrodynamics enters into the range of
investigations, the question immediately arises, on the legitimacy and the
necessity of such considerations. At first sight we might be inclined to think
that in a purely electrodynamical theory there would be no room at all
for probability calculations. Since, as everybody knows, the electrodynamic
field equations together with the initial and boundary conditions determine
uniquely the temporal evolution of an electrodynamic process, any consid-
eration external to the field equations would be, in principle, unauthorized,
and, in any case, dispensable. In fact, either they lead to the same results as
the fundamental equations of electrodynamics and then they are superfluous,
or they lead to different results and in this case they are wrong.57

However, Planck adds, the dilemma crops up from an incorrect understanding of the
relation between the microlevel and the macrolevel. For the sake of convenience this
relation can be summarized by another suitable scheme:

A certain macrostate is combinatorially related with many different microstates which
evolve according to dynamical laws, in this case the laws of electrodynamics. However,
Planck states, we cannot directly apply a dynamical analysis to the system because we
do not know which of the many theoretically possible microstates actually holds. Our

56(Boltzmann, 1872); see (Boltzmann, 1909, pp. I, 317).
57(Planck, 1906, p. 129).
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empirical measurements on the macrostate are able to supply only mean values, which
are consistent with very many different combinations of exact values and then with many
different microstates, consequently we do not have an unambiguous initial condition to
start from. For this reason, the application of dynamical laws to the microstates is
ambiguous.

Moreover, even if we actually know that the result of the dynamical evolution of the
microstates is a set of new microstates whose overwhelming majority is combinatorially
related to the equilibrium state, the plain application of combinatorial arguments is am-
biguous as well, because there are some, very few indeed, microstates that might lead to
an anti-thermodynamical evolution in which the entropy decreases. Thus, to replace the
dynamical arguments with the combinatorial ones, and to retrieve an unambiguous (and
deterministic, in Planck’s view) picture, one has to hinder the anti-thermodynamical
microstates. This result is achieved by the hypothesis of the elementary disorder which
“states nothing more than that exceptional cases, corresponding to special conditions
which exist between the separate quantities determining the state and which cannot be
tested directly, do not occur in nature.”

In the second edition, Planck verbalizes the difference between microstates and macro-
states in an even more colorful way:

The microscopic state is the state as described by a mechanical or electrody-
namical observer; it contains the separate values of all coordinates, velocities,
and field strengths. The microscopic processes, according to the laws of me-
chanics and electrodynamics, take place in a perfectly unambiguous way;
for them entropy and the second principle of thermodynamics have no sig-
nificance. The macroscopic state, however, is the state as observed by a
thermodynamic observer; any macroscopic state contains a large number of
microscopic ones, which it unites in a mean value. Macroscopic processes
take place in an unambiguous way in the sense of the second principle, when,
and only when, the hypothesis of the elementary disorder is satisfied.58

It is worthwhile noticing how deeply Planck’s condition of disorder differ from Boltz-
mann’s. Firstly there is a different relation to the statistical formalism: for Boltzmann,
disorder is the prerequisite to introduce combinatorial arguments that can completely
replace the dynamical ones because disorder permits all the theoretically allowed states,
even the most improbable ones, to occur. By contrast, for Planck disorder is able to
block the improbable states in order to pave the way to the triumph of the mean val-
ues. Secondly, while for Boltzmann disorder is a constitutive feature of the system,
something that, in a sense, belongs to both the microlevel and the macrolevel (and al-
lows the integration of both), for Planck it belongs exclusively to the microlevel, to a
realm populated of hypothetical mechanical and electrodynamical observers which see
a completely different world utterly concealed to us. As it was already pointed out by
Allan Needell and Olivier Darrigol, Planck’s elementary disorder concerns the mysteri-
ous interaction of matter and radiation and hence it is part of the uncontrollable and
inaccessible microworld.

Therefore, the statistical arguments are not another, equally rightful, viewpoint of
looking at mechanical problems, but the only way at our disposal of figuring out what
58(Planck, 1913, p. 121).
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is going on in the complicated and unreachable realm of the constituents of matter
and radiation. Consequently, Planck merely considers the statistical arguments as a
conceptual device to represent a chaotic situation and to perform useful calculations,
but he does not deem them as a basis for understanding the physical world. This
point clearly emerges in the second edition of the Vorlesungen. The general architecture
of the book is remarably dissimilar from the first edition. In particular, while in the
first edition the statistical arguments were a means to overcome the issues left open
by the dynamical approach, in the second edition the dynamical part of the theory is
constrained to satisfy the general results obtained from the statistical analysis because
“the only type of dynamical law admissible is one that will give for the stationary state
of the oscillators exactly the distribution densities [. . .] calculated previously.”59

The new dynamical law is the famous quantum emission hypothesis that Planck in-
troduces with the following words:

... we shall assume that the emission does not take place continuously, as does
the absorption, but that it occurs only at certain definite times, suddenly, in
pulse, and in particular we assume that an oscillator can emit energy only
at the moment when its energy of vibration, U , is an integral multiple n of
the quantum of energy ε = hν. Whether it then really emits or whether
its energy of vibration increases further by absorption will be regarded as
a matter of chance. This will not be regarded as implying that there is no
causality for emission; but the processes which cause the emission will be
assumed to be of such a concealed nature that for the present their laws
cannot be obtained by any but statistical methods.60

Even though the statistical part takes the leading role in the second edition of the
Vorlesungen, the dynamical assumptions it provides are not to be meant as realistic ones.
In fact, statistical considerations remain nothing but a convenient mean to paraphrase
a hidden reality.

Who Cares for the Microworld?

The discussion in the previous sections seems to suggest that we should be very cautious
in attributing any commitment to Planck on the grounds of his usage of the statistical
formalism. Admittedly, Planck tried to follows Boltzmann’s formalism as faithfully as
possible and the deviations are to be ascribed to the imperfections of the analogy, i.e.
to the differences in the physical problems, but his attitude towards the statistical ar-
guments was quite the opposite of Boltzmann’s. The Austrian physicist had tried to
integrate mechanics and statistics by showing that the conditions for applying statistical
argument are to be sought in some particular mechanical behaviour. On the contrary,
Planck is quite clear in confining the statistical arguments into the impenetrable pro-
cesses taking place at the microlevel: in Planck’s view, electromagnetism and statistics
are completely dis-integrated. This general attitude and the formal ambiguities of the
statistical procedures formed the ground for his contention that there were no conclusions
to be drawn from the combinatorial fact that discrete energy elements were distributed
59(Planck, 1913, p. 152).
60(Planck, 1913, p. 153).
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over resonators or, alternatively, that resonators were distributed over continuous energy
cells. In this concluding section, I would like to discuss in more detail the concept of
virtual observer, the disorder and the resulting relation between the dis-integration of
electrodynamics and statistics and the construction of the microworld.

Boltzmann’s microworld is assembled by conceptual elements coming from the macro-
world, e.g. molecules as mechanical points or centers of force, elastic collisions and
so on, and it is also characterized by the emergence of the statistical formalism as a
mean of investigating physical reality. By integrating the statistical formalism with the
mechanical one, typical of the macrolevel, Boltzmann establishes a new direction for
the conceptual flow that eventually leads him to reinterpret the macroscopic laws in
terms of the statistical viewpoint. The statistical interpretation of the second law is
the most remarkable result of this bi-directional conceptual interaction between micro-
and macroworld. The conceptual interaction between micro- and macroworld is bi-
directional because Boltzmann integrates the formal ways of describing them and, in
particular, integrates statistics with the rest of physical knowledge. On the contrary,
by dis-integrating dynamical and statistical formalism and by reducing the latter to a
computational device, Planck ends up with a microworld that is completely shaped by
the macroscopic conceptual structure and it is unable to support any reinterpretation
of the macrophenomena. In fact, what makes up Planck’s microworld is only conceived
as a way of representing, by means of macroscopic concepts, the mysterious and unob-
servable business of the interaction between matter and radiation. Furthermore, since
statistics is completely separated from the rest of the physical knowledge, the statistical
formalism has little to say both on the macroworld and on the microworld: statistics is
not supposed to give us a description of how the world is, it is only supposed to give us
a way of handling chaotic situations.

The particular relation between macro- and microworld is clearly presented in the
Columbia lectures of 1909. As we have seen, in the second edition of the Vorlesungen,
Planck uses the concept of “virtual” (micro- or macro-) observer, to figure out a more
intuitive definition of the micro- and macrostate. Actually, this concept had made its
first appearance in the third lecture of the series mentioned above as an important
element of his general argument for the justification of the usage of statistics.

Again, Planck points out that the contradiction between the reversibility of the micro-
phenomena and the irreversibility of the thermodynamical laws stems from different
definitions of state. The physical state envisioned by a micro-observer, that is “a physicist
[. . .] whose senses are so sharpened that he is able to recognize each individual atom and
to follow it in its motion,”61 is fundamentally different from the state of a usual macro-
observer, because the former observes exact values and the latter only means. However,
since the virtual micro-observer is nothing but a projection of a macroscopic one, Planck
is shaping the issue of the contradictory relation between micro- and macroworld in terms
of the macroworld itself. Thus, it is not surprising that the answer as well embodies the
primacy of the macrolevel as can be verified by further comparing Boltzmann’s and
Planck’s notion of disorder.

For Boltzmann the elementary disorder is a feature concerning the individual con-
figurations of molecules and, more importantly, is the ultimate justification of the in-
troduction of statistical arguments and the final warrant of their equivalence with the

61(Planck, 1915, p. 47).
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mechanical ones. In his Gastheorie, Boltzmann distinguishes the concepts of molar and
molecular disorder. The former concerns the fact that the mean values of the mechanical
quantities, e.g. the molecular velocity, do not vary from a spatial region to another occu-
pied by the gas. The latter is, significantly enough, introduced by means of its opposite,
the molecular order:

If the arrangement of the molecules also exhibits no regularities that vary
from one finite region to another—if it is thus molar-disordered—then nev-
ertheless groups of two or a small number of molecules can exhibit definite
regularities. A distribution that exhibits regularities of this kind can be
called molecular-ordered. We have a molecular-ordered distribution if—to
select only two example from the infinite manifold of possible cases—each
molecule is moving towards its nearest neighbor, or again if each molecule
whose velocity lies between certain limits has ten much slower molecules as
nearest neighbors.62

While Boltzmann’s concept of disorder directly dives into the details of the molecular ar-
rangements, and realizes the possibility of a statistical interpretation of thermodynamics,
Planck’s analogous notion only deals with the coherence of the Fourier components of ra-
diation (a macroscopic concept) and, even more remarkably, it is supposed to block any
anti-thermodynamical evolution. The difference is extremely important and scarcely
stressed in the secondary literature. If a system is molecular-ordered in Boltzmann’s
sense, then only a subset of the theoretically possible states will actually be realized,
whereas, if the system is molecular-disordered, there is nothing, in the initial configura-
tion, that prevents all possible states from occurring and this is precisely the condition
for applying statistical methods. In other words, Boltzmann’s disorder does not block a
particular kind of evolution, but simply rules out the occurring of ‘conspiratory’ config-
urations where only a subset of evolutions is possible.63

By contrast, Planck conceives the elementary disorder as a limitation on the statistical
formalism itself because some of the theoretically possible configurations cannot take
place. As a result, one obtains a new definition of microstate:

The micro-observer needs only to assimilate in his theory the physical hy-
pothesis that all those special cases in which special exceptional conditions
exist among the neighboring configurations of interacting atoms do not occur
in nature, or, in other words, that the micro-states are in elementary disor-
der. Then the uniqueness of the macroscopic process is assured and with it,
also, the fulfillment of the principle of increase of entropy in all direction.64

Planck’s change of meaning and function of the elementary disorder has far-reaching
consequences.65 By means of the virtual micro-observer and of the elementary disor-
der, Planck foists upon the constitution and the formalism of the microworld a series of
62(Boltzmann, 1898, p. 40).
63Cf. for example (Boltzmann, 1898, p. 451): “only singular states that continually deviate from probable

states must be excluded” (italics added).
64(Planck, 1915, p. 50).
65A further support of the thesis that Planck’s notion of elementary disorder differs from Boltzmann’s

comes again from the third lecture. In a note, he claims that Poincare’s recurrence theorem calls for
a careful formulation of the hypothesis of the elementary disorder in order to avoid the, even only
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constraints coming from the macroworld. Since Planck’s parasitic microworld is com-
pletely shaped by means of conceptual material and formal requirement relying on the
macro-level, and since its characteristic formalism is conceived to be nothing but a set
of computational devices, the only conceptual feedback it can warrant are those leading
to derivations of the macro-laws, like the black-body radiation law.66

Analogously, Planck’s conversion to Boltzmann’s point of view seems to concern rather
the notion of irreversibility as an ‘emerging’ phenomenon than the statistical interpre-
tation of the macroworld:

[I]rreversibility does not depend upon an elementary property of a physi-
cal process, but rather depends upon the ensemble of numerous disordered
elementary processes of the same kind, each one of which individually is com-
pletely reversible, and upon the introduction of the macroscopic method of
treatment.67

Of course, the emerging notion of irreversibility is only the premise of Boltzmann’s
conception, but Planck is not in the position of accepting the consequence. Ultimately,
his way of justifying the usage of statistics in physics is a justification of his ambiguous—
or prudent—use of the statistical formalism as well.

Thus, we arrive at a similar conclusion to the weak thesis we have discussed above,
but on a different ground. Actually, Planck was not interested in committing himself on
the issue of continuity (also) because he did not need to. By breaking the Boltzmannian
conceptual links between statistics and dynamics, between micro- and macrolevel that
would have forced him to take a clear position, by constructing a microworld completely
shaped by the macroworld, and by denying an autonomous status to the statistical
formalism, he could peacefully stay away from dangerous connections between apparently
incompatible formalisms.

Our analysis provides a possible explanation why Planck could maintain the reticent
position he actually maintained about the quantum in his published writings. But, at
the same time, it also provides an unexpected new argument for the continuity view. The
monodirectionality of the conceptual exchange by which Planck builds up his microworld
suggests that he was unwilling to ascribe to the microphenomena any feature that we
do not observe at the macrolevel. Of course, he was not explicit on this point and
this cannot be called a clear commitment, because it concerns the relation between
micro- and macroworld from a broad methodological viewpoint. Therefore, a slightly
different position emerges, a position one can name a ‘weak version of the continuity
thesis:’ Planck did not manifest any commitment on the reality of the quantum and, as

theoretical, possibility of a low-entropy evolution. In particular, Planck’s way out is the statement
that “absolutely smooth walls do not exist in nature” (Planck, 1915, p. 51). On the contrary Boltz-
mann reckoned the recurrence theorem in its original formulation perfectly consistent with his notion
of disorder: “[t]he fact that a closed system of a finite number of molecules [. . .] finally after an in-
conceivably long time must again return to the ordered state, is therefore not a refutation, but rather
indeed a confirmation of our theory” ((Boltzmann, 1898, p. 443)).

66Incidentally, the monodirectionality of this relation between micro- and macroworld is part of the reason
why Planck, even acknowledging the generality of Boltzmann’s approach, did not develop a statistical
mechanics. Instead a decisive move in this direction was performed by Einstein who restored the
bidirectional conception of micro- and macroworld and the autonomy of the statistical formalism. See
for example (Renn, 1997) and (Uffink, 2005).

67(Planck, 1915, p. 97).
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a matter of fact, exploited all the ambiguities of his statistical formalism to associate
his theory as little as possible to any clear statement on this issue, but this strategy
demands a separation between statistics and dynamics, micro- and macroworld, and
Planck’s choice for the macroworld suggests that his preference went to a view of energy
as a continuous quantity.

The thrust of this argument is that even if Planck had adopted the same statistical
arguments as Boltzmann, he understood the role of statistics in a completely different
way and, more importantly, he was unwilling to integrate the statistical considerations
with the physical knowledge his theory relied on. Thus, though Planck’s and Boltz-
mann’s name are often associated in the history of quantum theory, they seem to be an
“odd couple,” because, like the characters of the famous movie, their attitudes on the
fundamental problems could not have been more diverging.

This perspective also gives us some clues to understand the relations between Planck
and his contemporaries. In fact, Planck’s attitude was not a completely idiosyncratic
one. On the contrary, he was placing himself within an illustrious thermodynamic tra-
dition including Clausius and Helmholtz. According to this tradition, the hypotheses
concerning the uncontrollable microlevel have to be avoided as long as they are not
absolutely necessary and, if this is the case, only minimally and cautiously introduced.
Famously, Clausius, who was Planck’s guiding spirit in thermodynamics, refused to use
the distribution function until his late years and when he was forced to bring up some
statistical assumptions on the behaviour of the constituents he always limited himself to
what was strictly necessary to arrive at his final result. Helmholtz, Planck’s predecessor
in Berlin, endorsed a pure thermodynamics even when mechanical concepts were used,
like in his papers on the monocycle.68

On the other side of the river stood Boltzmann, who was not afraid of introducing
bold assumptions on the behaviour of the molecules and of coping with them using the
conceptual tools of statistics. Paul Ehrenfest as well as Albert Einstein belonged to the
same tradition and, not unsurprisingly, they did not understand and sharply critized
Planck’s usage of statistical arguments. Einstein, for instance, showed his legacy to
Boltzmann’s train of thought in his light quantum paper where he derives the existence
of energy elements of free radiation from their statistical behaviour. That was exactly
the kind of inference Planck could not consent. This fundamental fracture affected a
large part of the relations between statistical mechanics and the early quantum theory.
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3 Poincaré’s Electromagnetic Quantum
Mechanics

Enrico R. A. Giannetto

The rise of quantum physics is considered by outlining the historical context in which
different conceptions of Nature (mechanistic, thermodynamic and electromagnetic ones)
were in competition to give a foundation to physics. In particular, the roots of quan-
tum physics within the electromagnetic conception of Nature and Poincaré’s quantum
electromagnetic mechanics are analysed.

Introduction

Conceptions of Nature

As well known, in the late XIXth century physics was no more mechanics only, but
also thermodynamics and electrodynamics. This new situation implied the problem of
the very foundations of physics, and the correlated issue of the hierarchical relations
among these different physical disciplines.1 There were at least four different “fighting”
conceptions of Nature. The so-called Energetic conception of Nature, which was looking
at energy as the fundamental unifying concept of physics and had its most important
proponents in Georg Helm (1851–1923) and Wilhelm Ostwald (1853–1932).

The Thermodynamic conception of Nature, which had energy, entropy and system
as fundamental concepts and was looking at thermodynamics as the real foundation
block of physics. Its major exponents were Pierre Duhem (1861–1916) and Max Planck
(1858–1947).

The Mechanical conception of Nature, which was the most conservative one as search-
ing for a mechanical reduction of the other physical disciplines and of all the physical
concepts in terms of mass, space and time by means of the models of material point
and action at-a-distance forces. Hermann von Helmholtz (1821–1894), Heinrich Hertz
(1857–1894) and Ludwig Boltzmann (1844–1906) were the most representative scientists
of this perspective.

The Electromagnetic conception of Nature, based on the concepts of field, energy and
charge was looking at electromagnetism theory as the foundation level of the other phys-
ical disciplines. Among the physicists who gave the most relevant contributions to this
perspective there are: Hendrik Antoon Lorentz (1853–1928), Joseph Larmor (1857–
1942), Wilhelm Wien (1864–1928), Max Abraham (1875–1922) and Henry Poincaré
(1854–1912). The electromagnetic conception of Nature has deep roots in the history of

1R. McCormmach, C. Jungnickel, Intellectual Mastery of Nature: Theoretical Physics from Ohm to
Einstein, I–II, The University of Chicago Press, Chicago 1986, II vol., pp. 211–253; E. Giannetto, Saggi
di storie del pensiero scientifico, Sestante for Bergamo University Press, Bergamo 2005, pp. 299–321.
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mankind and certainly has been developed by the elaboration of the Brunian-Leibnizian
physics and tradition. On one side, it has been developed within the German physics or
Naturphilosophie, on the other side mainly within English physics.

William Gilbert (1540–1603) and then the same Johannes Kepler (1571–1630) were
thinking about magnetism as the force which rules the order of our cosmos, of our Coper-
nican world, and Athanasius Kircher (1602–1680) developed a theology of magnetism
and of the magnetic Divine Universal Love.

Indeed, after the process by which Newtonian gravitation was reduced from a divine
active force to a passive property of inertial matter and Newton’s theology of gravitation
was given up and mechanistic conception of Nature came to dominate, electricity came
back to be considered the way to a new vitalistic conception of Nature. Electricity was
considered an active force which could have been the origin of animated life, that is
an active vital force, the Leibniz’ internal vis viva, as well as the same psyché within
things—a sort of electric unconscious—or the same Anima Mundi. Many theologians and
physicists, like Prokop Divisch (1698–1765), Friedrich Christoph Oetinger (1702–1782),
Johan Ludwig Fricker (1729–1766), Gottlieb Friedrich Rösler (1740–1790), developed a
very theology and psychology of electricity. The controversy on animal electricity at the
end of XVIII and at the beginning of XIX century between Luigi Galvani (1737–1798)
and Alessandro Volta (1745–1827), gave another turn to the consideration of the prob-
lem and its resolution with the dominance Volta’s perspective and his presentation, in
1800, of the first ‘electric machine’, the battery, pointed out the victory of the mecha-
nistic view and the reduction of life to mechanisms to which even electricity could have
been assimilated. It was the romantic physicist Johan Wilhelm Ritter (1776–1810) who
turned Volta’s interpretation upside down, stating that, because there was not a specific
animal electricity, the whole Nature was a living and animated being just for the pres-
ence of electricity. Electric fluid was the psyché of everything. Romanticism continued
to develop these ideas and Franz Anton Mesmer (1734–1815) spoke about animal mag-
netism, about a magnetic fluid as a universal soul, about psyché as a magnetic nervous
fluid, about psychical sickness as magnetic diseases which could be healed by magnetic
hypnotism.

Maxwell electromagnetism had shown that physical reality was not only inertial and
passive matter, but also dynamical, active electromagnetic field, irreducible to a me-
chanical matter model. Furthermore, Maxwell equations present vacuum solutions, that
is in absence of charged matter: electromagnetic field exists even when there is no mat-
ter. Thus, the possibility of a new non-dualistic view of physical reality was considered:
if matter cannot exist without electromagnetic field and electromagnetic field can exist
without matter, electromagnetic field could be the only physical reality and matter could
be derived from the field.

Electromagnetic Conception of Nature and Relativity

Usually, the electromagnetic conception of Nature has been considered as superseded by
the developments of XXth century physics. However, a deep historical inquiry shows
that the electromagnetic conception of Nature is at the roots of both the relativistic and
quantum transformations of physics.

Concerning relativity, the 1900, 1902, 1904 and (5 June) 1905 papers written by
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Poincaré2 show as special relativity dynamics derived from, and was a first realization
of, the electromagnetic conception of nature. Einstein’s (30 June) 1905 paper was only
an incomplete mechanistic version of this new dynamics. This historical recognition is
also fundamental to understand the first reception of special relativistic dynamics in all
countries, and in particular in Italy.

A first complete presentation of this new dynamics appeared in the July 1905 paper
written by Poincaré and published in 1906.3 In this paper the new dynamics was pre-
sented as an invariant one by the Lorentz-Poincaré transformation group, and it was
derived by Maxwell’s theory of electromagnetism and contained also a theory of gravi-
tation (absent in Einstein’s 1905 paper).

The starting point was electromagnetic self-induction phenomenon related to the so-
called radiation reaction. When a charged particle is submitted to the action of an
electromagnetic field, it is accelerated and it irradiates. This radiation modifies the field
and the new field modifies the acceleration of the particle, which again irradiates and so
on. In this way, the electromagnetic field depends on all the time derivatives of position
up to the infinite one. This means that there is also a contribution to the field force
proportional to the acceleration, the coefficient of which involves an electromagnetic
mass, that is an electromagnetic contribution to the particle inertia.

At this point, the question was: is it possible that mechanical (inertial and gravita-
tional) mass was not a primitive concept and indeed is wholly due to this electromagnetic
effect? Poincaré, among other scientists, realized that this was the case also for non-
charged matter as long as is constituted by charged particles: that is mechanical mass
was nothing else than electromagnetic mass, and electromagnetic mass is not a static
fixed quantity but depends on velocity. Mass is so related to the electromagnetic field
energy by the today well-known (now considered from a mechanistic and not electro-
magnetic perspective) equation: m = Ee.m.field/c

2.
If mass is nothing else than electromagnetic field energy and charge can be defined, via

Gauss’ theorem, to the electric field flux through a certain space surface, matter can be
completely understood in terms of the electromagnetic field, and it has also active and
dynamical features beyond the passive and inertial ones. If mass must be understood
in terms of the electromagnetic field, mechanics must be derived by electromagnetism
theory which becomes the fundamental theory of physics. If mass changes with velocity,
Newtonian mechanics is no more valid and must be modified. The new mechanics must
have the same invariance group of electromagnetic theory, that is the Lorentz-Poincaré
transformation group, to which a new relativity principle and a new gravitation theory
(even gravitational mass changes with velocity) must also be conformed.

From Poincaré’s perspective even gravitation is of electromagnetic origin. However,
the new gravitational theory developed by Einstein’s general relativity theory did not
take count of this idea.4 David Hilbert, simultaneously with Einstein, developed the

2H. Poincaré, La mesure de temps, in Revue de Métaphysique et Morale 6, 1 (1898); H. Poincaré,
La théorie de Lorentz et le principe de réaction, Arch. Néerl. 5, 252 (1900); H. Poincaré, La Sci-
ence et l’Hypothèse, Flammarion, Paris 1902; H. Poincaré, L’état actuel et l’avenir de la Physique
mathématique, in Bulletin des Sciences Mathématiques 28, 302 (1904); H. Poincaré, Sur la dynamique
de l’électron, in Comptes Rendus de l’Académie des Sciences 140, 1504 (1905).

3H. Poincaré, Sur la dynamique de l’électron, in Rendiconti del Circolo Matematico di Palermo 21, 129
(1906).

4A. Einstein, Die Feldgleichungen der Gravitation, in Königlich Preußische Akademie der Wissenschaften
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same gravitational field equations.5

The problem of the priority of Einstein or Hilbert, even if historically important, is not
the relevant point. Indeed, the fundamental point is that in Hilbert’s perspective matter
(Tµν) is considered as of electromagnetic origin: Hilbert and Einstein equations are
mathematically equivalent, but they do not have the same physical meaning. Hilbert’s
point of view is related to a synthesis of the electromagnetic theory of Gustav Mie
(1868–1957)6 and Einstein theory of gravitation: Hilbert equations give automatically
also Maxwell generalized electromagnetic field equations, which follow from the space-
time structure induced by “electromagnetic matter.”7

Thus, it can be traced an evolution line, within the electromagnetic conception of
Nature, which started from Poincaré’s special-relativistic dynamics and through Mie’s
theory lead to Hilbert’s general-relativistic dynamics. And indeed, by the Hilbert elec-
tromagnetic general relativity, that is by the Hilbert electromagnetic theory of matter
and gravitation, the cosmic and universal order came back to be related to magnetism
as in the first proposals by Gilbert, Kepler and Kircher.

Electromagnetic Conception of Nature and Quantum Physics

The rising of quantum physics is conventionally related to the works of Planck during
the years 1899–1900.8 However, Joseph Larmor, within an electromagnetic conception
of Nature, was working to understand the atomic structure of matter in terms of the
electromagnetic field at least since 1893.9 After leaving the idea of a “vortex atom”, he
considered the electrons as vortices into the sea of the electromagnetic field: this idea
lead him to what, many years later, was called a “quantum atom”. Electrons as rotations
into the electromagnetic field constitute stable, stationary non-radiant configurations of
atoms: these configurations correspond to given discrete values of the conserved angular
momentum. Radiation is emitted or absorbed by atoms by impulses only when these

(Berlin), Sitzungsberichte, 1915, pp. 844–847.
5D. Hilbert, Die Grundlagen der Physik (Erste Mitteilung), in Nachrichten von der Königlich Gesellschaft
der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, Berlin 1916, pp. 395–407.

6G. Mie, Grundlagen einer Theorie der Materie, Erste Mitteilung, in Annalen der Physik 37 (1912) pp.
511–534; Zweite Mitteilung, in Annalen der Physik 39 (1912) pp. 1–40; Dritte Mitteilung, in Annalen
der Physik 40 (1913) pp. 1–66.

7E. R. A. Giannetto, Einstein, Hilbert and the Origins of the General Relativity Theory, in press.
8M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw-Hill, New York 1966, pp.
1–61; M. Planck, Über irreversible Strahlungsvorgänge, in Berliner Berichte, 18 May 1899, 440 (1899);
M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, in Verhandlungen der
Deutschen Pysikalischen Gesellschaft 2 (14 December), 237 (1900), engl. tr., On the Theory of the
Energy Distribution Law of the Normal Spectrum, in D. ter Haar, The Old Quantum Theory, Pergamon
Press, Oxford 1967, pp. 82–90.

9J. Larmor, A Dynamical Theory of the Electric and Luminiferous Medium, abstract, in Proc. Roy. Soc.
54, 438 (1893); part I, in Phil. Trans. Roy. Soc. 185, 719 (1894); part II abstract, in Proc. Roy. Soc.
58, 222 (1895); part II, in Phil. Trans. Roy. Soc. 186, 695 (1895); part III abstract, in Proc. Roy.
Soc. 61, 272 (1897); part III, in Phil. Trans. Roy. Soc. A190, 205 (1897); J. Larmor, On the theory
of the magnetic influence on spectra; and on the radiation of moving ions, in Phil. Mag. (5) 44, 503
(1897); J. Larmor, Aether and Matter, Cambridge University Press, Cambridge 1900; B. Giusti Doran,
Origins and Consolidation of Field Theory in Nineteenth-Century Britain: From the Mechanical to the
Electromagnetic View of Nature, in Historical Studies in the Physical Sciences 6, (1975), Princeton
University Press, Princeton.

52
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configurations change in respect to the minimal total energy. Thus, emission of radiation
and loss of energy were not related to the absolute translations of the electron as an
accelerated, charged material particle, but to the relative changes (within the atoms) of
the inertial rotational motions constituting electrons (in any stable state the change of
velocity in a period is zero). This idea furnished an explanation of atomic spectra and
even a prediction of the Zeeman effect. This electromagnetic conception of the atomic
matter structure, that is the recognition of these atomic matter structures within the
electromagnetic field, Larmor understood, would be also the key to the calculus of specific
heats in terms of internal energy and equal partition of energy within the kinetic theory
of gases.

Planck wanted to show the universality of thermodynamics and its second principle
showing that it holds also for electromagnetic phenomena. Planck was forced to use
Boltzmann’s statistical thermodynamics concept of entropy, but showed that thermo-
dynamics cannot be reduced to mechanics because heat is not only disordered matter
motion but also electromagnetic radiation and that thermodynamics could be deduced
by electromagnetism theory too. In 1900 Planck introduced discrete values of energy
as heuristic tool within statistical thermodynamics of radiation to fit black-body radi-
ation distribution experimental data. That is, energy was treated by Planck not as a
continuous mathematical variable, but discrete:

E = nhν

where n is an integral number and so energy is given by an integral multiple of the
product of a universal constant h = 6.5510−27erg/sec with the physical dimension of an
action and the radiation frequency. Planck’s words made reference to “energy elements”
(Energieelemente), but Planck did not want to introduce an essential discontinuity within
Nature but only to solve by the mathematical artifact of discreteness the problem to fit
experimental data: he did not want to modify classical physics or to make a revolution.
In 1899 Planck had already introduced this constant naming it “b” and not “h”, it did
not denote an action and it was a constant in the different theoretical context of finding
an absolute system of natural units of measure.

The first actual physical meaning to this constant was given not by Einstein, but by
Larmor in 1902 within his electromagnetic conception of Nature.10 Following Larmor,
Planck’s constant was not related to a mathematical artifact but had to be interpreted
in terms of the relationship between matter and (ether) electromagnetic field, that is as
the ratio between matter energy (given by electromagnetic field energy) and radiation
frequency. Planck’s constant, for Larmor, was a quantum of the conserved angular mo-
mentum to be related to atomic electrons considered as vortices within electromagnetic
field.

Larmor proposed also to leave the abstract oscillator model of matter used by Planck
and to take count of the actual electromagnetic nature and origin of matter. This implied

10J. Larmor, Theory of Radiation, in Encyclopedia Britannica 8 (vol. XXXII of the complete work), 120
(1902), Black, London. J. Larmor, On the application of the method of entropy to radiant energy, in
Reports Brit. Assoc. Adv. Sci. 1902, 546 (1903) (abstract of a paper presented at the Belfast meeting);
J. Larmor, On the statistical and thermodynamical relations of radiant energy, in Proc. Roy. Soc.
(London) A83, 82 (1909); J. Larmor, Preface (1911) to The Scientific Papers of S. B. McLaren,
Cambridge University Press, Cambridge 1925.
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to use the simple idea of ‘elementary receptacles of energy’, that is of cells in the phase
space of physical systems. This idea was deduced from the consideration of the nature of
radiation, constituted by discrete elements given by short trains of simple undulations.
The phase space reformulation of Planck’s problem lead to the discreteness of the atomic
conserved angular momentum from which was deduced the discreteness of energy. J. W.
Nicholson in 191211 explored this explanation of the atomic structure and his work was
the starting point of Niels Bohr’s model.

From Larmor’s perspective, from the electromagnetic conception of Nature, the dis-
crete, discontinuous, quantum nature of matter and radiation is easily understood be-
cause matter is derived from the fundamental physical reality given by the electromag-
netic field. Thus, electromagnetic field must present wave but also corpuscular aspects
to explain the origin of matter, and matter particles must present corpuscular but also
wave aspects as long as they derive from the electromagnetic field.

Bohr12 reconsidered Nicholson’s model but completely changing its meaning: atom was
no more understood in terms of the electromagnetic conception of Nature but in terms
of an axiomatic approach in which the meaning of Planck’s constant is no more given by
the electromagnetic nature of the atomic matter structure but by an abstract quantum of
mechanical action. Bohr followed Arnold Sommerfeld’s perspective13 which presumed to
understand all the things in terms of an a priori assumed and unexplained constant, that
is Planck’s constant: electromagnetic as well as thermodynamic and mechanical models
were considered to be no more suitable because electromagnetic field theory as well as
thermodynamics and mechanics must be reformulated in order to fit experiments and to
overcome the problem of their incompatibility. However, Sommerfeld and Bohr seem to
not understand that their interpretation of Planck’s constant was mechanical and this put
mechanics at the fundamental level of physics, restating a new mechanistic perspective.
It happened something like to the procedure of axiomatization which lead to the loss of
electromagnetic meaning to the light velocity constant c in the mechanistic version of
relativity dynamics given by Einstein. The meaning variance of a revolutionary item (c
as well as h), together with the change in its “title” (“Universal Constant”), is a well
known process which leads to a restoration, to a dogma to be understood “mechanically”
and to a myth of the foundations of a new religion as well as a new scientific theory.

From Larmor’s perspective, Planck’s statistical thermodynamics of electromagnetism
implied that classical electromagnetism continuous variables lose meaning and cannot be
precisely determined, but only probabilistically just in order to derive matter corpuscles
from the electromagnetic field.

In 1905–1906 Einstein14, as well as he had done with Poincaré’s new electromagnetic
relativistic dynamics, by criticizing Planck noted the discontinuous and probabilistic
character of radiation but inverted Larmor’s perspective and introduced the quanta of
light to reduce electromagnetism (as a statistical theory) to corpuscular mechanics.

11J. W. Nicholson, in Monthly Notices of the Royal Astronomical Society 72, 49, 139, 677, 693, 729
(1912).

12N. Bohr, in Philosophical Magazine 26, 1, 476, 857 (1913).
13A. Sommerfeld, in Physikalische Zeitschrift 12, 1057 (1911).
14A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesicht-

spunkt, in Annalen der Physik 17, 132 (1905); A. Einstein, Zur Theorie der Lichterzeugung und
Lichtabsorption, in Annalen der Physik 20, 199 (1906).

54
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Poincaré’s New Quantum Electromagnetic Mechanics

In 1911 there was the famous first Solvay Conference on the problems raised by Planck’s
hypothesis and Einstein’s quanta. Poincaré was present and participated actively to the
debate: here, he understood immediately that physics was at the threshold of the deep-
est revolution ever happened. It could imply the renounce to the differential equations
as (means to formulate) physical laws.15 In 1911–1912, Poincaré wrote and published
two important papers:16 the first was presented to the Académie des Sciences on 4
December 1911. Poincaré showed that Planck’s black body law implies necessarily the
quanta hypothesis and these new discontinuous characters of light and electromagnetic
field cannot be understood in terms of the old corpuscular mechanics, and, on the con-
trary, these changes within electromagnetic theory imply a new mechanics. Indeed, if
mechanics has to be built on electromagnetism and electromagnetism must be changed,
then also mechanics must be modified: there must be a new “electromagnetic dynamics”.

Poincaré proceeded in this way:17 let be a system, whose state is defined by n param-
eters x1, x2, x3, . . . xn. Let be the evolution laws of these parameters formulated by the
following differential equations: dxk

dt = uk.
Let be WdJ the probability that the point representing the system state be in the

volume dJ of the xk-space; then W , the probability density, must satisfy the equation

∑
k

∂

(
Wuk
∂xk

)
= 0,

where the uk are the generalized velocities and the equation, as it will be shown, is the
same continuity equation that must be satisfied by the Jacobi last multiplier K.18

When we deal with classical mechanics indeed we can write the Jacobi equations of

15See the Discussion du rapport de M. Einstein, in M. P. Langevin et M. de Broglie (eds.), La théorie du
rayonnement et les quanta. Rapports et discussions de la Réunion tenue à Bruxelles, du 30 Octobre
au 3 Novembre 1911 sous les auspices de M. E. Solvay, Gauthier-Villars, Paris 1912, pp. 436–454, in
particular p. 451 and Abhandlungen der deutschen Bunsengesellschaft 7 , pp. 330–364;

16H. Poincaré, Sur la théorie des quanta, in Comptes Rendus de l’Académie des Sciences, v. 153 (1912),
pp. 1103–1108, reprinted in H. Poincaré, Œuvres de Henri Poincaré, I–XI, Gauthier-Villars, Paris 1934–
1956, v. IX, pp. 620–625; Sur la théorie des quanta, in Journal de Physique théorique et appliquée,
v. 2 (1912), pp. 5–34, reprinted inŒuvres, v. IX, op. cit., pp. 626–653; L’hypothèse des quanta, in
Revue Scientifique, v. 50 (1912), pp. 225–232, reprinted in Œuvres, v. IX, op. cit., pp. 654–668 and
as chapter 6 in H. Poincaré, Dernières pensées, Flammarion, Paris 1913; H. Poincaré, Les rapports
de la matière et l’éther, in Journal de physique théorique et appliquée, ser 5, 2 (1912), pp. 347–360,
reprinted in Œuvres, v. IX, op. cit., pp. 669–682 and as chapter 7 in H. Poincaré, Dernières pensées,
op. cit.. See also: H. Poincaré, L’évolution des lois, conference delivered at the Congresso di Filosofia
di Bologna on 8 April 1911, in Scientia, v. IX (1911), pp. 275–292, reprinted as chapter 1 in Dernières
pensées, op. cit.

17See footnote 16.
18C. G. J. Jacobi, in Crelle’s Journal XXVII (1844) p. 199 and XXIX p. 213, 388; A. R. Forsyth,

A Treatise on Differential Equations, MacMillan, London 1885, sixth edition 1948, pp. 356–366; E.
Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University
Press, Cambridge 1904, fourth edition 1960, pp. 267–287; R. H. Fowler, Statistical Mechanics—The
Theory of the Properties of Matter in Equilibrium, Cambridge University Press, Cambridge 1929,
second edition 1936, reprinted in 1955, pp. 11–15; D. Buoccaletti, G. Pucacco, Theory of Orbits, vol.
I, Integrable Systems and Non-perturbative Methods, Springer Verlag, Berlin 1996, pp. 61–72.
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motion in the canonical form:

dqi
dt

=
∂T

∂pi
and

dpi
dt

= −∂T
∂qi

+Qi

where
Qi =

∑
i

(Xk
∂xk
∂qi

+ Yk
∂yk
∂qi

+ Zk
∂zk
∂qi

)

are generalized forces.
These equations are more general than Hamilton’s ones, because they do not presup-

pose the existence of a potential function.
The Jacobi last multiplier is so defined:

0 =
d (logK)

dt
+
∑
k

∂
( ∂T∂pk )

∂qk
+
∑
k

∂
(∂pk∂dt )
∂qk

From this equation it follows:

1
K

dK

dt
+
∑
k

∂
(dqkdt )
∂qk

+
∑
k

∂
(− ∂T

∂qk
+Qk)

∂pk
= 0

For K different from zero, it yields:

dK

dt
+K

∑
k

∂
(dqkdt )
∂qk

+
∑
k

∂
(− ∂T

∂qk
+Qk)

∂pk
= 0

and so in the other coordinates:

dK

dt
+K

∑
k

∂uk
∂xk

= 0

Then, it can be written:
dK

dt
+K div ~u = 0

and so:
∂K

∂t
+ (div K) ~u+K div ~u = 0

And finally the following continuity equation is obtained:

∂K

∂t
+ div(K~u) = 0

If Hamilton’s equations

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

hold, then ∂Qk
∂pk

= 0 and

dqi
dt

=
∂T

∂pi
and

dpi
dt

= −∂T
∂qi
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Poincaré’s Electromagnetic Quantum Mechanics

Thus, it can be deduced that:

∑
k

∂
uk
∂xk

=
∑
k

∂
( ∂T∂pk )

∂qk
−
∑
k

∂
( ∂T∂qk )

∂pk
= 0

If div(K~u) = 0, that is the current is stationary, then

(div K)~u+K div ~u = 0

and so from
div ~u = 0

it follows
(div K)~u = 0

Therefore, for K different from K = K(t), that is for K independent from time, it yields:

dK

dt
= div(K~u) = 0,

and so
dK

dt
= K div ~u+ (div K)~u = 0,

and finally
dK

dt
= (div K)~u = 0,

so that K is independent even from the xk , that is K is a constant.
Thus, we can choice K = 1 and then it is obtained

div(K~u) = K div ~u = 0

and so
div ~u = 0

with Hamilton’s equations satisfied. Otherwise, if K is not constant and in general it
depends from t and from the xk , it is∑

k

∂

(
Kuk
∂xk

)
= 0

that is the same equation that holds for the probability density W , and so W = K:
probability density is the Jacobi last multiplier. The condition W = K = 1, as Dugas
has remarked19, corresponds to the complete homogeneity of the possibility that the
system state representative point is everywhere in the phase space of the qk and the pk.
19R. Dugas, Histoire de la mécanique, Griffon, Neuchâtel 1955, English tr. by J. R. Maddox, A History

of Mechanics, Dover, New York 1988, pp. 552–553 and 622–626. For other comments to Poincaré’s
papers, see: M. Planck, Henri Poincaré und die Quantentheorie, in Acta Mathematica 1, 38 (1921)
pp. 387–397; H. A. Lorentz, Deux Mémoires de Henri Poincaré sur la Physique mathématique, in
H. Poincaré, Oeuvres de Henri Poincaré, op. cit., 11, pp. 247–261; P. Langevin, L’oeuvre d’Henri
Poincaré. Le physicien, in Revue de Métaphysique et de morale, Supplément au n. 5 (1913), pp.
675–718; R. McCormmach, Henri Poincaré and the quantum theory, in Isis 58 (1967), pp. 37–55.
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Thus, Poincaré proposed to introduce a new Jacobi last multiplier, that is a new proba-
bility density in phase space, different from unity and given by an essential discontinuous
function just to obtain Planck’s law and not Rayleigh-Jeans equation of equipartition.
W must be a function containing factors w = w(ek) which are zero for values of

energy ek different from a multiple of the quantum e. This property is introduced to
give a finite energy electromagnetic radiation: thus, mechanics must be modified to
take count of electromagnetic variables, that is of the modified electrodynamics which
Planck’s law requires. This can be realized trivially by assuming that all the mechanical
forces, and so all the forms of exchange of energy, are of electromagnetic nature. The
new mechanics is a new quantum electromagnetic mechanics.

This new quantum electromagnetic mechanics, as Poincaré conceived it, is a theory for
an isolated system, and rigorously only for the whole universe: the evolution dynamics
of the universe thus results to be discontinuous and the universe would jump discontin-
uously from a state to another one. This implies that it is not possible to distinguish a
continuous range of intermediate states and instants too in which no change is present
in the universe, and so it yields a discontinuous time: atoms of time must be introduced.
This was the first time a quantum time was introduced.

If W is an essentially discontinuous function all the equations involving it must be
modified by replacing integrals with sums and derivatives and differentials with finite
variations, which correspond to quantum discontinuous jumps.

Thus, it yields a finite variation equation for W :

∑
k

∆(W (∆xk
∆t ))

∆xk
= 0

This is an equation for a discontinuous quantum “density matrix” in the phase space
or in the action-angle space. The discontinuity of the W function corresponds to the
impossibility of simultaneously determining the separate probability distributions of co-
ordinates and momenta as continuous variables, in such a way that a minimum size for
phase space cell exists and it is given by

∆q ∆p = h

This is the finite difference relation which must replace the integral equation for an
elementary phase space cell introduced by Planck and quoted by Poincaré: this relation
implies the mutual dependent variability of coordinates and momenta, which furthermore
must vary in jumps.

Poincaré’s new equations of motion are the first form of new quantum mechanical equa-
tions and can be compared to the successive most general form of quantum mechanical
Liouville equations for density matrix20 when it is impossible to define a Schrödinger
wave function: however, Poincaré’s equations represent a more radical shift from classical
mechanics, because are finite variation equations. From Poincaré perspective, continuity
cannot be saved even writing an equation for the probability density, because this must
be an essentially discontinuous function. Poincaré’s equations are more general than

20P. Carruthers and M. M. Nieto, Phase and Angle Variables in Quantum mechanics, in Reviews of
Modern Physics 40 (1968) p. 411.
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Schrödinger’s ones in a further respect: they do not presuppose the possibility to define
a potential function for the interaction, because are derived from Jacobi equations.

Dugas21 has shown (even by neglecting the potential problem) that in Schrödinger’s
quantum mechanics the Jacobi last multiplier is given by ψ∗ψ defined in configuration
space and in Dirac’s spinorial quantum relativistic mechanics by ψ∗kψk as continuous
functions. However, following Poincaré, even probability density functions are discon-
tinuous and physical laws can no more be represented by differential equations.

From this perspective, electromagnetism cannot be reduced to mechanics, but, on the
contrary, mechanics must be modified again and in more radical way than by the rela-
tivistic electromagnetic dynamics: mechanics must be intrinsically probabilistic even for
only one material particle, because the origin of matter is electromagnetic and electro-
magnetic radiation is discontinuous.

Poincaré’s new electromagnetic discontinuous mechanics based on a discontinuous
electromagnetic action was mathematically very difficult for the other physicists (Jacobi
last multiplier technique was used in celestial mechanics) and was not understood at all:
thus, this first form of a new revolutionary electromagnetic quantum mechanics was not
accepted.

Concluding Remarks

Only after many years, in 1925, Heisenberg22 stated the necessity of, and posed the
basis for, a new quantum mechanics: his starting point was not the electromagnetic
conception of Nature, but an operational perspective. Heisenberg showed that at the
atomic or microphysical level the only measurable variables were the electromagnetic
variables of frequency and intensity of electromagnetic radiation absorbed or emitted by
electrons within atoms. From this point of view, mechanical variables, as long as they
are not directly measurable and cannot be objects of absolute experimentation, intuition
or visualization at the atomic microphysical level, must be redefined in terms of such
measurable electromagnetic variables. This implied, as then stated in 1927 by Heisenberg
himself23, a fundamental indeterminacy of mechanical variables. If physical reality is only
what can be experimentally measured, from Heisenberg’s perspective the electromagnetic
conception of Nature can be deduced without any aprioristic assumption. Its deduction
follows merely from the request of an operational definition of physical variables at the
microscopic level.

Unfortunately, this original derivation and foundation of quantum mechanics has been
completely forgotten and removed. It was for ideological reasons that mechanics must
be maintained independent from electromagnetism and at the foundation level of the
physical sciences. This priority of mechanics is related to the mechanistic conception of
Nature. Considering Nature and the other non-human living beings as machines, that is
as inert and passive matter, is the pre-condition to avoid any ethical problem in respect

21See footnote 19
22W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, in

Zeitschrift für Physik 33, 879 (1925); M. Born, W. Heisenberg and P. Jordan, Zur Quantenmechanik
II, in Zeitschrift für Physik 35, 557 (1926).

23W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, in
Zeitschrift für Physik 43, 172 (1927).
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of Nature and the other non-human living beings and to the complete violent dominion
over, and exploitation of, Nature and the other living beings.
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4 Einstein’s Miraculous Argument of 1905:
The Thermodynamic Grounding of Light
Quanta

John D. Norton

A major part of Einstein’s 1905 light quantum paper is devoted to arguing that high
frequency heat radiation bears the characteristic signature of a microscopic energy dis-
tribution of independent, spatially localized components. The content of his light quantum
proposal was precarious in that it contradicted the great achievement of nineteenth cen-
tury physics, the wave theory of light and its accommodation in electrodynamics. However
the methods used to arrive at it were both secure and familiar to Einstein in 1905. A
mainstay of Einstein’s research in statistical physics, extending to his earliest publica-
tions of 1901 and 1902, had been the inferring of the microscopic constitution of systems
from their macroscopic properties. In his statistical work of 1905, Einstein dealt with
several thermal systems consisting of many, independent, spatially localized components.
They were the dilute sugar solutions of his doctoral dissertation and suspended particles
of his Brownian motion paper.1

4.1 Introduction

The year 1905 is now commonly known as Einstein’s “year of miracles.” In it, in a series
of extraordinary papers, the 26-year-old clerk in the Bern patent office redirected the
course of physics. Those five papers were, in order of their dates of submission and
publication:

• Light quantum (“photoelectric effect”) paper (Einstein, 1905a). Einstein inferred
from the thermal properties of high frequency heat radiation that it behaves ther-
modynamically as if constituted of spatially localized, independent quanta of en-
ergy.

• Einstein’s doctoral dissertation (Einstein, 1905b). Einstein used known physical
properties of sugar solutions (viscosity, diffusion) to determine the size of sugar
molecules.

1I am grateful to participants of the conference HQ-1: Conference on the History of Quantum Physics
(July 2–6, 2007, Max Planck Institute for the History of Science) for helpful discussion after presentation
of this paper. The present paper is based on Norton (2006). For an informal version, see also “Atoms
Entropy Quanta: Einstein’s Statistical Physics of 1905” under Goodies on www.pitt.edu/∼jdnorton
I also thank Continental Airlines for Flight CO 0097 from Berlin to Newark, July 7, 2007, on which
portions of this text were written.
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• Brownian motion paper (Einstein, 1905c). Einstein predicted that the thermal
energy of small particles would manifest as a jiggling motion, visible under the
microscope and providing the most direct support then available for the molecular-
kinetic approach to thermal systems.

• Brownian motion paper (Einstein, 1905c). Einstein predicted that the thermal
energy of small particles would manifest as a jiggling motion, visible under the
microscope and providing the most direct support then available for the molecular-
kinetic approach to thermal systems.

• Special relativity (Einstein, 1905d). Einstein urged that maintaining the principle
of relativity in electrodynamics requires a new theory of space and time.

• E = mc2 (Einstein, 1905e). Einstein showed that changing the energy E of a body
changes its inertia m in accord with E = mc2.

In a letter of May 2005, Einstein described the first four of these papers to his friend
Conrad Habicht. It is striking and noteworthy that Einstein singles out the first paper,
the light quantum paper, for an extraordinary description “The [first] paper deals with
radiation and the energy properties of light and is very revolutionary,...” (Papers, Vol. 5,
Doc. 27)

It is not hard to see why Einstein would single out his light quantum paper in this
way—and that remains true if we include consideration of the later E = mc2 paper,
which had not been conceived at the time of Einstein’s May letter. All but the light
quantum paper develop or complete programs of research of nineteenth century physics,
sometimes in quite inspired ways. The two statistical papers, the dissertation and the
Brownian motion paper, advance decisively a program of research in thermal systems
developed by Maxwell, Boltzmann and others in the nineteenth century, the molecular
kinetic theory of heat. The special relativity paper establishes the real significance of
the Lorentz covariance of Maxwell’s electrodynamics, that it betokened a new theory of
space and time. Finally, the E = mc2 paper took a result from electrodynamics, that
light energy has momentum, and used the principle of relativity to extend it to all forms
of energy.

The light quantum paper was different. The signal achievements of nineteenth century
physics were: the wave theory of light and the recognition that Newton’s authoritative
corpuscular theory fails; Maxwell’s electrodynamics and its development and perfection
by Hertz, Lorentz and others; and the synthesis of the two in the single luminous idea
that light waves just are electromagnetic waves. Einstein’s light quantum paper threat-
ened this great synthesis in its fundamentals. Light, Einstein now asserted, did not
always behave as a wave. Sometimes it behaved as if its energy was localized into inde-
pendent points in space. Indeed with this idea of the light quantum, Einstein initiated
a reappraisal of the physical constitution of light that is not entirely resolved over a
hundred years later.

My concern in this paper is to answer the question of how even an Einstein could have
the courage to propose this revolutionary notion of the light quantum. My analysis will
depend on distinguishing the content of the light quantum hypothesis from the methods
Einstein used to arrive at it. The content of Einstein’s discovery was quite unanticipated:
it asserted that high frequency light energy exists in independent, spatially localized
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points. However the method of Einstein’s discovery was familiar and secure. His research
program in statistical physics from his first publication of 1901 returned repeatedly to the
question: How can we infer the microscopic properties of matter from its macroscopic
properties? For example, the dissertation and Brownian motion paper of 1905 were
devoted to analyzing dilute sugar solutions and very small particles suspended in a fluid.
That is, they were devoted to studying thermal systems whose statistical constitution was
similar to the one Einstein attributed to high frequency light energy, in that they consist
of many, independent, spatially localized, points (sugar molecules, small particles). As
a result Einstein was adept at dealing with such systems and, most importantly, quite
sensitive to how such systems appear macroscopically.

My goal here is not to give a fine-grained reconstruction of Einstein’s pathway to the
light quantum. Many pathways are compatible with the analysis I shall give. My goal
is to show that, if we locate Einstein’s light quantum paper against the background of
electrodynamic theory, its claims are so far beyond bold as to be foolhardy. However, if
we locate Einstein’s light quantum paper against the background of his work in statistical
physics, its methods are an inspired variation of ones repeatedly used and proven effective
in other contexts on very similar problems.

The miraculous argument and its similarity to Einstein’s other projects from that time
will be outlined in Section 4.2 and 4.3. In Section 4.4, I will note that the ideal gas law is
a more familiar signature of the microscopic constitution Einstein inferred for radiation;
and in Section 4.5 I will explain why I believe Einstein did not use it in his argument.
Finally, in Section 4.6, I will review a remarkably simple and much repeated argument
that Einstein advanced in his light quantum paper for what he named Boltzmann’s
principle: “S = k logW .” I will argue that the maddening imprecision of the argument
was needed because it was to be applied to systems of light quanta whose full properties
were correspondingly imprecisely known.

4.2 The Miraculous Argument

Einstein’s light quantum paper (1905a) has nine parts. The last three pertain to em-
pirical vindications of the light quantum hypothesis. Einstein’s famous analysis of the
photoelectric effect appears in the eighth part only (“On the generation of cathode rays
by illumination of solid bodies”). It has such a minor role in the paper that it seems
inappropriate to give the paper the moniker, “the photoelectric effect paper.” The bulk
of the paper, from the first to the sixth sections, is largely devoted to setting up and
stating just one argument that comes to fruition in sixth section (“Interpretation of the
expression for the dependence of the entropy of monochromatic radiation on volume
according to Boltzmann’s Principle”). There Einstein infers that the measured thermo-
dynamic properties of high frequency heat radiation carry the distinctive signature of
independent, spatially localized points. This argument is, in my view, the most inspired
of all Einstein’s achievements of 1905 and, for this reason, I have chosen to call it “the
miraculous argument.”

There were two steps in the argument. The first appeared in the fifth section (“Mo-
lecular-theoretical investigation of the dependence of the entropy of gases and dilute
solutions on the volume”). It laid out a simple piece of statistical physics. Einstein
considered a system consisting of n independently moving points in a volume V0 of
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space. It followed immediately from the independence of the points that the probability
W that all n points are located in some subvolume V is just

W =
(
V

V0

)n
(4.1)

In that same section, Einstein had already presented a brief argument for what he called
“Boltzmann’s Principle” (See Section 4.6 below.) That principle

S = k logW (4.2)

used Boltzmann’s constant k to make a connection between the probabilities W of mi-
crostates and their corresponding macroscopic entropies S. Applying (4.2) to (4.1),
Einstein inferred that the entropy change associated with the volume change of (4.1) is

S − S0 = kn log
(
V

V0

)
(4.3)

In a footnote, Einstein then used standard thermodynamic relations to deduce from (4.3)
that the n points would exert a pressure P at temperature T that conforms to the ideal
gas law

PV = nkT (4.4)

The obvious application of these results is to the n molecules of an ideal gas, which
is thereby deduced to conform to the ideal gas law (4.4). The probability W of (4.1)
is the probability that the gas spontaneously fluctuates to a smaller volume V in the
larger volume V0. Unless V coincides almost exactly with V0, the probability of these
fluctuations for macroscopically sized samples of gas is exceedingly small.

Systems governed by the analysis could be quite different from an ideal gas, however.
All that is needed is that the components of the system are independent, spatially
localized points. That would be true of molecules of sugar, say, in a dilute solution; or
a few, widely spaced small particles suspended in a liquid. All that mattered for the
analysis was that these molecules or particles do not interact with each other. That they
are in continuous interaction with the surrounding solvent is irrelevant to the deduction
of (4.3) and (4.4). As a result it follows immediately that the ideal gas law obtains for the
osmotic pressure exerted by a dilute solution. That is true, even though microscopically
the solute molecules do not move according to the familiar picture of the ideal gas of
introductory text books: long periods of free, inertial motion, interrupted briefly by
collisions.

Thus far, the analysis was a simple and vivid illustration of basic ideas in statistical
physics. The second step of the argument was developed in the following section and
was anything but standard. Einstein returned to the measured results concerning heat
radiation that he had reviewed in earlier sections. From these results, he inferred the
volume dependence of the entropy of a quantity of high frequency heat radiation. That
is, if a quantity of heat radiation of fixed energy E and definite frequency ν occupies
volume V or V0, then the corresponding entropies S and S0 are related by2

S − S0 = k

(
E

hν

)
log
(
V

V0

)
(4.5)

2I have modified the expression of Einstein’s formula notationally by replacing a constellation of constants
of Einstein’s formula by the modern h.
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Einstein then used Boltzmann’s principle (4.2) to invert the inference from (4.1) to (4.3).
It now followed that there is a probability W satisfying

W =
(
V

V0

) E
hν

(4.6)

Einstein immediately noted that this probability was just like the probability of the
process of spontaneous volume fluctuations of n independent, spatially localized points,
where

n =
E

hν
(4.7)

That is, it was as if the energy E of the heat radiation had been divided into n indepen-
dently moving, spatially localized points of size hν. Preserving the “as if” qualification,
Einstein then gave the most cautious and complete statement of the light quantum
hypothesis of the paper:

Monochromatic radiation of low density behaves—as long as Wien’s radiation
formula is valid [i.e. at high values of frequency/temperature]—in a thermo-
dynamic sense, as if it consisted of mutually independent energy quanta of
magnitude [hν].

The “as if” qualification was only a temporary caution. It was dropped in other state-
ments of his conclusion elsewhere in the paper, now taken against the full background
of the other experimental results offered as vindicating the light quantum hypothesis.3

While Einstein passed immediately from the formula (4.6) to the light quantum hy-
pothesis, two tacit assumptions were needed for the inference. First, the entropies S and
S0 of expression (4.5) were deduced for systems of radiation in equilibrium. Einstein now
tacitly assumed that that the change of entropy (4.5) would obtain also for transitions
to non-equilbrium states such as when a volume V0 of heat radiation fluctuates to a
non-equilibrium state with a smaller volume V .4

Second, Einstein tacitly assumed that just such a fluctuation process was possible in
which the volume V0 would spontaneously contract to the small V in such a way that
the system’s energy E and high frequency ν would remain unchanged. The constancy of
the energy E was assured by the conservation of energy for an isolated system. However
it is not so clear what justifies the assumption of the constancy of the frequency.

This last assumption can easily pass unnoticed if one already has in mind that the
system of radiation consists of many non-interacting quanta, each with a characteristic
frequency parameter n. But having that in mind is to anticipate the conclusion, whereas
the goal is to infer this conclusion. Minimally one can say that the assumption of
constancy of frequency entails the evidence of the observed entropy change and, by
virtue of that entailment, the constancy is inductively supported by the evidence. What
3For example, in the introduction to the paper Einstein writes that the full constellation of evidence
assembled in the paper “seems to be understood better through the assumption that the energy of light
is distributed discontinuously in space” and that light propagating from a point source “consists of a
finite number of energy quanta, that are localized at points in space, move without dividing and can
only be absorbed or produced as a whole.”

4For further discussion of this assumption, see Norton (2006, p. 87, n. 15), where it is suggested that the
essential condition is that the descriptions of the equilibrium and non-equilibrium macrostates states
delimits the same volume of phase space.
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would be better is if there was independent support for the assumption. That may be
hard to secure. The dynamical laws of the system govern how its frequency will change
over time. The whole point of Einstein’s argument is to establish that these dynamical
laws are not Maxwell’s equations; or perhaps that these equations hold at best for the
averages of quantities.5 The fluctuation process is a deviation from average behavior, so
we do not know what those dynamical laws are. The presumption that these laws involve
quanta that preserve their frequency parameters over time if they are non-interacting is,
once again, to anticipate the conclusion sought.

4.3 A Familiar Project

What Einstein achieved with his miraculous argument was an inference from the macro-
scopic properties (the volume dependence of entropy of high frequency thermal radia-
tion) of a thermal system to it microscopic constitution (independent, spatially localized
energy quanta). This sort of project was quite familiar to Einstein. It has been the re-
peated theme of much of his work in statistical physical of 1905 and earlier. His doctoral
dissertation (Einstein 1905b) was devoted to inferring from the macroscopic properties
of dilute sugar solutions (viscosity, diffusion) to an essential element of their microscopic
constitution (size of sugar molecules). In his Brownian motion paper (Einstein 1905c),
he established that the predicted6, microscopically visible motions of suspended parti-
cles result from collisions with moving water molecules and thus would provide a visible
manifestation of these last motions. The profound importance of this result was that
Einstein had found an effect that could not be treated by equilibrium thermodynamics.
Thermodynamicists could no longer ignore the molecular kinetic program if they were
to account for the visible motions of suspended particles Einstein now predicted.

The overall project was the same in Einstein’s first two publications (Einstein 1901,
1902). These papers now attract little attention in history of science. That conforms
with Einstein’s own judgment that they are “worthless beginner’s works,” as expressed
to Johannes Stark in a letter of December 7, 1907 (Papers, Vol. 5, Doc. 66). A result
of this neglect is that it is easy to overlook the continuity in Einstein’s projects that
extends back to these earliest papers. The goal of these early papers was to develop an
hypothesis on the forces between molecules. Einstein had hypothesized that the force
between two molecules separated by a distance r is generated by a potential P satisfying

P = P∞ − c1c2ϕ(r) (4.8)

where P∞ is the potential when the molecules are infinitely far apart, constants c1 and
c2 are characteristic of the two molecules and ϕ(r) is a universal function. Einstein’s
goal in these papers was to test this hypothesis and to determine values of the constants
c1c2. In the first of these two papers (1901), Einstein sought to infer these microscopic
quantities from macroscopic properties of capillarity. In the second (1902), Einstein

5This possibility is suggested by Einstein’s remark in the introduction to the paper that optical ex-
periments on diffraction, reflection, refraction, dispersion, etc. pertain only to the time averages of
quantities.

6Einstein (1905c) suggested in the introduction to the paper that these motions may be Brownian motion
but lamented that the data available to him on Brownian motion was too imprecise for him to know.
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replaced macroscopic properties of capillarity with electrochemical potentials known
through investigations in electrolysis.

Much of Einstein’s earlier and contemporary work was devoted to the project of infer-
ring microscopic constitutions from macroscopic properties. So he had become familiar
and quite adept at this project. There was a closer similarity to the project of Einstein’s
light quantum proposal, as we shall see in the following section.

4.4 Signatures of Many, Independent, Spatially Localized
Points

The central idea of Einstein’s miraculous argument can be encapsulated in a single,
powerful idea. Sometimes it is possible to see a signature of the microscopic constitu-
tion of a thermal system in its macroscopic thermodynamic properties. Einstein had
identified just such a signature for systems consisting of independent, spatially localized
components. That signature is given as the dependence of entropy on the logarithm
of volume as expressed in equation (4.3). If that dependency can be identified, then
we have a strong indication that the system consists of independent, spatially localized
components; the number of components n can be read directly from the constant of
proportionality of (4.3), which is just kn.

There was, it turns out, a much more familiar (but slightly less powerful) signature of
this same microscopic constitution. It is the ideal gas law itself. If one has a system of
many, independently moving points, microscopically speaking, they will tend to scatter
due to their random thermal motions. This tendency can be redescribed macroscopically
as a pressure exerted by the system. It is the ordinary pressure of an ideal gas or the
osmotic pressure of dilute solutions.

Well before 1905, it was well known that this relationship could be used as a bridge to
pass from the macroscopic observables of a system to its microscopic constitution. To
mention one important example, Arrhenius (1887) had used it as a means of inferring
the degree of dissociation of solutes in solution. Take, for example, a binary solute. If it
is fully dissociated in solution, there will be twice as many components in the solution
as there would be if the solute were completely undissociated. That means the osmotic
pressure of the fully dissociated solute would be twice that of a completely undissoci-
ated solution. As a result, the degree of dissociation of the solute could be determined
simply by measuring the osmotic pressure and determining its location between the two
extremes.

This ideal gas law and its microscopic underpinnings was an essential component of
Einstein’s analysis of the diffusion of sugar in his dissertation and of the scattering
of small particles in the Brownian motion paper. He used it to deduce an equation
important to the analysis of both papers. That equation related the diffusion coefficient
D of systems of sugar molecules or suspended particles, a macroscopic measure of their
tendency to scatter, with microscopic quantities, including the radius S of the molecule
or particle7

D =
(
RT

6πη

)(
1
NS

)
(4.9)

7N is Loschmidt’s (Avogadro’s) number; R is the ideal gas constant; η is the viscosity of the suspending
fluid.

69



John D. Norton

This equation was deduced by considering a solution or system of suspended particles in
a gravitational field. Gravity would lead the solute and small particles to fall at a rate
limited by the viscosity of the fluid and expressed by Stokes law. Osmotic pressure, as
given by the ideal gas law, would scatter the solutes and small particles upward. Since
the system is at equilibrium, the two motions must cancel on average. Setting them
equal yields (4.9).

The deduction of this result depended upon the ideal gas law holding both for the os-
motic pressure of a solute and for the pressure used to model the tendency of suspended
particles to scatter. While the former conformity to the ideal gas law was widely ac-
cepted, the latter was not. For it suggested that the statistical methods of the molecular
kinetic approach should apply to small particles visible under the microscope as well.
So, in the second section of the Brownian motion paper, Einstein gave a long and careful
demonstration of just how little was needed to deduce the ideal gas law. Essentially
one needed only to assume that the components of the relevant system did not interact
with each other.8 Small particles suspended in a fluid satisfied this condition if they are
spaced widely enough. All that remained was to use the formalism of statistical physics
to re-express this fact about the components in macroscopic terms to recover the ideal
gas law.

A simpler version of the inference—not given by Einstein—shows just how direct the
connection was. Consider a thermal system of independent, spatially localized compo-
nents (e.g. solute molecules or small particles suspended in a fluid) in a gravitational
field.9 This system is governed by Boltzmann’s distribution. So the probability P (h)
that a given component is located at height h is

P (h) = constant e
−E(h)
kT (4.10)

The essential fact of the independence of the components is expressed in this formula
through the fact that the energy E(h) of each component is a function of height h
only.10 That is, it is independent of the positions of the other components. It now
follows immediately that the density ρ of components at height h in relation to its
density ρ0 at height h = 0 is

ρ = ρ0e
−E(h)
kT

8This fact is quite remarkable. That sugar molecules in a dilute solution will be in constant interaction
with the molecules of water of the solvent does not affect the recovery of the ideal gas law for the
sugar’s osmotic pressure. All that matters is that the sugar molecules do not interact with each other,
a condition enforced by the diluteness of the solution.

9The standard technique for introducing osmotic pressure in the literature had been through the force
exerted by some species of a solute on a semi-permeably membrane, that is, a membrane permeable
to everything but the molecules of that species of solute. In his (1902), Einstein had expressed doubts
over whether such membranes are realistic. With great care, he proposed that osmotic pressures are
better analyzed by equilibration with conservative fields that would act differentially on the different
species of solute molecules. This technique enables the greatly simplified and generalized derivation of
the ideal gas law presented here. Einstein introduced the technique casually in both his dissertation
and his Brownian motion paper without giving a citation to his earlier, careful analysis of it. This is
another example of Einstein’s laxity in citing his sources, yet in this case it was his own earlier work
that was obscured.

10It is assumed that the total energy is a sum E = E(h) +EKE , where EKE is the component’s kinetic
energy. The kinetic energy will contribute a term to (4.10) that is absorbed into the constant
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The density gradient due to gravitational field can be found by differentiating this ex-
pression with respect to h

dρ
dh

= − 1
kT

dE
dh

ρ

This equilibrium density gradient arises from a balancing of two forces. The first is the
gravitational force density

f = − dE
dh

ρ

acting on the components in the downward direction. It is balanced by the pressure
P that arises from the tendency of the components to scatter. Components will be
accelerated whenever there are neighboring regions of different pressure. The resulting
force f is given by the pressure gradient

f =
dP
dh

Combining, the expression for the density gradient becomes

dρ
dh

= − 1
kT

dE
dh

ρ =
1
kT

f =
1
kT

dP
dh

Rearranging the terms, we recover

d
dh

(P − ρkT ) = 0

Integrating with the boundary condition that P = 0 when ρ = 0 yields a local form of
the ideal gas law

P = ρkT

When the component distribution is sufficiently homogeneous that it can be represented
as n components spread uniformly over a volume V , we have ρ = n/V and the ideal gas
law adopts its extended form

PV = nkT

This demonstration shows clearly that the ideal gas law is little more than a macroscopic
re-expression of the microscopic fact of independence of spatially localized components.
Its simplicity strongly suggests that the inference may be inverted: when we have a
system of components obeying the ideal gas law, we can infer that they are independent,
spatially localized components. The inference can be so inverted, although the details
are a little messy.11 Thus the ideal gas law can function as a signature of the microscopic
constitution of a system, although, as we shall see in the next section, it proves to be a
little less revealing than Einstein’s entropy-volume relation (4.3).

4.5 Why Didn’t Einstein Use the Ideal Gas Law as the
Signature?

The results of the last section raise a question. Why did Einstein need to discover a new
macroscopic signature of the microscopic constitution of independent, spatially localized
11See Norton (2006, Appendix A “The Ideal Gas Law”).

71



John D. Norton

components? The ideal gas law is a long-standing, widely appreciated signature of just
such a constitution; one that would be understood more easily by his readers of 1905; and
one that Einstein was so familiar with, that his other work of 1905 included a thorough
analysis of it.

There is one easy answer to the question that does not bear scrutiny. One might
imagine that the ideal gas law fails for high frequency heat radiation. For the simplest
application of the ideal gas law is to an isothermal expansion of a gas. In such a process
the gas pressure P varies inversely with the volume V ; this specialization of the ideal
gas law is Boyle’s law

PV = constant (4.11)

This result does not obtain for heat radiation, however. It is a familiar property of heat
radiation that the pressure P it exerts is a function solely of the energy density u

P =
u

3
(4.12)

The energy density u is, in turn, a function of the temperature and frequency only; or
it is a function of the temperature only, if we consider full spectrum heat radiation.
So, in an isothermal expansion of full spectrum heat radiation, the pressure P will stay
constant precisely because the process is isothermal and has a fixed temperature.

This constancy of pressure in an isothermal expansion does not establish the failure of
the ideal gas law for heat radiation. The inference to the failure is flawed since it does not
take into account an essential disanalogy between ideal gases and heat radiation. For an
ideal gas, the number of components, that is, the number of molecules, remains constant
during an isothermal expansion. For heat radiation, however, the number of components
does not remain constant during an isothermal expansion. Indeed this process will create
new quanta. The total energy E = uV . Since u stays constant in the process and V
increases, it follows that the system’s total energy E must increase and, with it, the
total number of quanta also increases.12 This means that the relevant specialization of
the ideal gas law to the isothermal expansion of heat radiation is not Boyle’s law (4.11),
but one that retains dependency on n

PV = constant n

This extended form of Boyle’s law obtains for the isothermal expansion of ideal gases and
also, as we shall see in a moment, for high frequency heat radiation as well. Where they
differ is in how P behaves during the expansion. For an ideal gas, since n is constant,
pressure P will decrease in inverse proportion to V . For high frequency heat radiation,
the number of quanta n will grow in direct proportion to the volume V ; the result is
that P remains constant during the process.

So far, we have only seen that consideration of isothermal expansions do not give
prima facie grounds for expecting the ideal gas law to fail for heat radiation. That does
not establish that the ideal gas law does obtain for heat radiation. The ideal gas law
does indeed obtain for high frequency heat radiation, although to see it requires a result
from Einstein’s 1905 light quantum paper. In Section 6 of that paper, Einstein computed

12Contrast this with the familiar property of ideal gases, that their total energy remains constant during
an isothermal expansion.
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the mean energy of quanta for radiation governed by Wien’s distribution law. That law
obtains for high frequency radiation, so Einstein’s result holds as long as we consider
only high frequency radiation. He found that the mean energy of these quanta is 3kT ,
so that the energy density u = 3nkT/V . Combining this with the expression (4.12) for
radiation pressure, we find

P =
u

3
=

(3nkT/V )
3

=
nkT

V

which is just the ideal gas law.13 Now we can return to the question posed at the start
of this section. The ideal gas law does obtain for heat radiation and was then a familiar
signature of a microscopic constitution of many, independent components. So why didn’t
Einstein use it in his light quantum paper? Einstein gave no answer to this question.
However even a cursory perusal of how the corresponding argument would run shows
that it would be quite unconvincing as a means of establishing the existence of quanta.
For high frequency radiation governed by Wien’s distribution, the energy density u of
radiation would conform to the familiar Stefan-Boltzmann law u = σT 4. Substituting
this into the expression for radiation pressure (4.11) we recover

P =
u

3
=
σT 4

3
=
(
σV T 3

3k

)
k
T

V
=
nkT

V

To complete the argument, we would need to proclaim that the number of quanta can
be read from the last equality as

n =
σV T 3

3k
That would be a quite unconvincing proclamation to someone who has no allegiance to
the notion of the light quantum and may even have never conceived it. The equality
makes clear that the number of quanta will vary in most familiar thermodynamic pro-
cesses. We see that the number of quanta n will increase in direct proportion to the
volume V , as noted before. The number of quanta n will also increase with the cube
of temperature. One would be forgiven for thinking that these components are rather
unlike the permanent gas molecules, solute molecules and suspended particles of the
familiar applications of the ideal gas law. These quanta are a created and destroyed by
expansion and compression and by heating and cooling. Indeed, if one is unsure of the
number of components in a thermal system, the ideal gas law is not a reliable signature
of their constitution. That is, the mere proportionality of PV with kT for some thermal
system does not assure us that the constant of proportionality is the number of spatially
localized components.14 However if we know the number of components so that we sup-
ply the “n” of pV = nkT , the obtaining of the ideal gas law does allow us to infer their
independence and spatial localization.

Since Einstein had no independent indication of the number of components in high
frequency heat radiation, he needed a different signature; and ideally it would be one that
does not draw attention to the tenuous existence of light quanta. Such a signature should
be sought in processes that leave the number of quanta fixed. There are very few such
13The ideal gas law also turns out to obtain if we consider a single frequency cut of high frequency heat

radiation, although the calculation is more difficult. For details, see Norton (2006, p. 91).
14For an illustration of how the inference can fail, see Norton (2006, p. 77–78)

73



John D. Norton

processes. Heating, cooling and the normal sorts of volume changes all alter the number
of quanta. What Einstein managed to locate in the process of volume fluctuations is a
process, rare among those treated by the thermodynamics of heat radiation, that turns
out not to alter the number of quanta. As a result, it proves especially hospitable to the
signature Einstein employed of the dependence of entropy on the logarithm of volume.
Moreover he did not need to know in advance how many components comprised the
system under investigation. Once the proportionality of entropy and the logarithm of
volume was ascertained, the number of components could be read from the constant of
proportionality.

Finally, it should be noted that this signature of the dependence of entropy on the
logarithm of volume is much harder to see in heat radiation than in the case of ideal gases.
In the case of ideal gases, the two states that are related by the probability formula (4.1)
can also be connected by an isothermal compression. That means that the dependence
of entropy on the logarithm on volume is a familiar result from studies of the processes
of equilibrium thermodynamics. That is not the case for heat radiation. Unlike the
case of an ideal gas, an isothermal compression of a system of heat radiation will change
the system’s energy. It follows that this process is not governed by the entropy-volume
relation (4.3) that is central to Einstein’s argument. More complicated processes, such as
the volume fluctuation process Einstein described, are needed to connect the two states.

4.6 Einstein’s Demonstration of Boltzmann’s Principle

The considerations developed here help us understand the role played by a famous
demonstration Einstein included in Section 5 of his light quantum paper. There Einstein
sought to lay out a general argument for what he called “Boltzmann’s principle,” which
is expressed in the iconic formula “S = k logW” rendered as (4.2) above.

The argument begins by considering two independent thermal systems with proba-
bilities W1 and W2. Because the systems are independent, the probability of the joint
system is simply given by the product

W = W1W2 (4.13)

Now, Einstein continued, entropy S is a function of ϕ(W ) of probability and, since
entropy is an extensive magnitude, the entropy S of the joint system must be the sum
of the entropies S1 and S2 of the two component systems

S = S1 + S2 (4.14)

It is a simple problem in functional analysis to verify that the only function S = ϕ(W )
satisfying these two conditions (4.13) and (4.14) is

S = constant logW (4.15)

where the constant of this relation must be Boltzmann’s constant k if the relation is to
conform with other results in the kinetic theory of gases.

It is hard not to be dazzled by this argument. It requires only the simplest of analyses
to deliver a beautifully simple explication of entropy, the most contentious notion in sta-
tistical physics. Yet the argument is also quite maddening. For, in its speedy execution,
it passes in silence over a series of important questions:
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• What are the probabilities of equation (4.13)? The probability of an outcome
has no clear meaning if we do not specify an outcome space and the conditions
governing it. We cannot speak without fatal ambiguity of the probability that a
coin shows a head if we do not also specify that we have a fair coin with a head
on one side and a tail on the other and that it is flipped in a fair toss.

• To arrive at the simple formula (4.15), Einstein must assume that entropy S is
a function of probability only. Otherwise the constant of the formula is constant
only with respect to probability; we have not ruled out the possibility that it is
a function of the system’s other properties. How do we know that entropy S is
a function of the probability W only, for all thermal systems, not just for kinetic
gases?

• Einstein’s argument connects only to the thermodynamic notion of entropy in that
it is required in (4.14) that the quantity S be an extensive magnitude. It is not
shown that the resulting S of S = k logW coincides with the thermodynamic
entropy of the system as specified in the Clausius definition

S − S0 =
∫

dqrev
1
T

(4.16)

where S is the entropy of a system with initial entropy S0 after a reversible process
in which quantities of heat qrev are imparted to it at temperature T . At best the
argument can establish that, if there is any quantity at all that is a function of
probability only that coincides with thermodynamic entropy, then it must be that
of (4.15).

Clausius’ entropy (4.16) is defined only for equilibrium states. Yet Einstein intends
the quantity S of (4.15) to apply to non-equilibrium states such as are produced by
fluctuation processes. Does Einstein have an independent standard that authorizes his
assigning the term “entropy” to this quantity? Or is it a definition? If it is a definition,
why is it appropriate to continue to assume that the extended notion of entropy now
being defined should conform to the additive requirement (4.14)? Perhaps a natural,
non-equilibrium notion of entropy is non-additive.

My point here is not to deny Einstein’s result. In so far as we now have a service-
able explication of entropy in the modern literature, it equates entropy with k times
the logarithm of volume in phase space; that is the analog of Einstein’s S = k logW .
Rather my point is that Einstein’s analysis is hasty in the way it suppresses background
assumptions and steps needed to complete the argument.

Einstein certainly knew how to give a more precise analysis of entropy in terms of
phase space quantities. It was included in his papers prior to 1905 on the foundations
of statistical mechanics. Notably Section 6 of Einstein (1903) used Clausius’ definition
(4.16) of thermodynamic entropy to ground the expression for the canonical entropy of
an equilibrium system at temperature T and with mean energy in a phase space with
canonical coordinates p1, ..., pn

S =
Ē

T
+ k log

∫
e(− E

kT
) dp1 ... dpn (4.17)
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Indeed this result was not far from Einstein’s thoughts in 1905. It is recapitulated, along
with the statement of the equations of motion governing the system point of the phase
space, in Section 2 of the 1905 Brownian motion paper and forms the basis of Einstein’s
derivation of the ideal gas law.

So why did Einstein regress from the precision of his 1903 analysis of the canonical
entropy formula (4.17) to the ambiguity and incompleteness of his 1905 demonstration
of Boltzmann’s principle? My conjecture is that Einstein regressed to a less precise
analysis because the 1903 analysis required presumptions that he knew were either false
for light quanta or at least uncertain; and it did not analyze quite the process at issue
in 1905.

To elaborate, the 1903 analysis presumed a fixed number of components, in so far as
the number of components in the system is equated with the dimension of the phase
space. For the 1903 analysis presumed a phase space with n fixed dimensions and fixed
canonical coordinates p1,. . ., pn. Einstein’s 1905 system, however, had a variable number
of components, in that the number of quanta vary in the course of typical thermodynamic
processes.

Next, Einstein’s 1903 analysis presumed definite, Hamiltonian-like equations of mo-
tion. Einstein’s analysis 1905 analysis of light quanta had yielded no equations of motion
for individual quanta. At best one could guess what they might be in special cases.15

Finally, the 1903 analysis connected the entropy of a system at thermal equilibrium
with the corresponding phase space quantities. In 1905, Einstein needed more. It was
essential to his miraculous argument that at least one of the states was a non-equilibrium
state arrived at by a possibly extremely unlikely fluctuation. In his 1905 analysis of light
quanta, Einstein needed to related the entropy of a system with its microscopic consti-
tution in a way that did not rely on a phase space of fixed dimensions, that did not
need the presumption of any definite equations of motion and that extended to highly
non-equilibrium systems. Einstein argument for Boltzmann’s principle met all these de-
mands. In particular, its maddening vagueness is a reflection of the incompleteness of
Einstein understanding of quanta. The more precise he made his argument for Boltz-
mann’s principle, the more he risked that the presumptions of his argument might not
apply to his target system of light quanta.

4.7 Conclusion

Einstein’s miraculous argument for light quanta is a fascinating mix of insecurity and
security. It was insecure in that the notion of light quanta directly contradicted the
proudest achievement of nineteenth century physics, the wave theory of light. It was
secure in that the methods used to infer the existence and properties of light quanta were
standard techniques of statistical physics, albeit in an inspired variation. I have urged
that by 1905 Einstein had become accomplished in inferring the microscopic constitution
of systems from their macroscopic properties and that he was especially familiar with
systems consisting of many, independent, spatially localized components. Bolstered
with the further empirical evidence of the closing three sections of the paper concerning
photoluminescence, the photoelectric effect and the ionization of gases, Einstein could

15For example, free quanta plausibly propagate uniformly in straight lines at the speed of light.
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be confident that the light quantum hypothesis was correct. What remained obscure
then and later was precisely how the truth of such an extraordinary departure from the
wave theory could come about.

I have not advanced any conjectures on the specific historical pathway that Einstein
followed to his proposal of the light quantum. However it seems very plausible to me
that some role was played by Einstein’s familiarity with the macroscopic appearance of
systems consisting of many, independent, spatially localized components. It would be
interesting to know which signature of discreteness Einstein first found, how early he
found it in his conceiving of the light quantum hypothesis and how close it was to the
signature actually offered in his 1905 light quantum paper.
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This talk deals with the role of the adiabatic hypothesis in the development of the
old quantum theory. This hypothesis was formulated by Ehrenfest in a paper published
in 1916, but practically all the results that appeared there had been published by him
during the previous ten years. What Ehrenfest did in 1916, was to collect all those earlier
results on the adiabatic transformations and their relations to the quantum theory, with
the idea that they should become widely known. Far from that, the Ehrenfest’s 1916
paper had little impact during the next few years. It was only after Bohr in 1918
published an essential work about the quantum theory, where he used the adiabatic
hypothesis, that its importance began increasing.

To sum up the role that the adiabatic hypothesis played in the development of the old
quantum theory up to 1918, what follows is centred in these four axes:
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1. Summary of the antecedents of the Ehrenfest’s adiabatic hypothesis (1905–1914).

2. Description of the main contents of the Ehrenfest’s 1916 paper.

3. Analysis of the first responses, before the publication of the Bohr’s work in 1918.

4. Commentaries on the role of the adiabatic hypothesis in the Bohr’s work.

Antecedents of Ehrenfest’s Adiabatic Hypothesis (1905–1914)

Paul Ehrenfest was born in 1880 in Vienna, where he carried out his studies in Physics
and Chemistry, and became a doctor in 1904 under the guidance of Boltzmann. That is
why it is not strange that one of his principal interests was statistical mechanics.

In 1905, Ehrenfest published his first paper on quantum theory (see slide S3/1). How-
ever, it would not be until the paper published one year later that he clearly adopted a
statistical approach to the quantum theory. In both papers, he criticized Planck’s theory
of black-body radiation.
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1. Antecedents of the Ehrenfest’s adiabatic hypothesis (1905-1914)

Paul Ehrenfest was born in 1880 in Vienna, where he carried out his studies in 
Physics  and  Chemistry,  and  became  a  doctor  in  1904  under  the  guidance  of 
Boltzmann. That is why it is not strange that one of his principal interests was statistical 
mechanics.

In 1905, Ehrenfest published his first paper on quantum theory (see slide S3/1). 
However,  it  would  not  be  until  the  paper  published  one  year  later  that  he  clearly 
adopted a statistical  approach to the quantum theory.  In  both papers,  he criticized 
Planck’s theory of black-body radiation. 

Ehrenfest towards the adiabatic 
hypothesis, I (1905-1911)

• 1905-1906:  Criticism of Planck’s theory of black-body radiation.

• 1905: “Über die physikalischen Voraussetzungen der Planck’schen Theorie   
der irreversiblen Strahlungsvorgänge”. Akademie der Wissenschaften,  
Vienna. Sitzungberichte. Abteilung II, 1301-1314. 

• 1906: “Zur Planckschen Strahlungstheorie”. Physikalische Zeitschrift 7,  528-
532.

HQ1-S3/1

2

Anyway, at that time, Ehrenfest’s statistical tools were only insinuated. It was in
the ensuing years that he would develop them in his notebooks. With the paper of
1911 being the cornerstone of his work, for there he carries out a statistical analysis of
the radiation (see slide S3/2). It is important to highlight some points of this crucial
publication that specially concern our purposes in this brief exposition:

• Ehrenfest proved that by imposing the validity of Boltzmann’s principle,

S = k logW

(S is the entropy, k Boltzmann’s constant, and W the probability of a macrostate),
Wien’s displacement law could be obtained.

• In the corresponding proof, Ehrenfest imposed that the variation of the entropy
was zero during an adiabatic compression of the cavity that contained the radiation
(in an adiabatic compression the work done completely turns into energy of the
system). Here Ehrenfest took advantage, for the first time, of an adiabatic invari-
ant, which is a quantity that remains constant during this type of transformations.
In the case of the radiation in a cavity, the invariant quantity is:

Eν
ν
,

where Eν is the energy of a mode of vibration, and ν its frequency.

• By following this procedure, he also discovered that, in order to account for some
indisputable features of the spectral distribution law, the quantization might be
applied precisely to the adiabatic invariants, so justifying the form of the Planck’s
quantum of energy, as any other quantization would have contradicted Boltzmann’s
law (h is Planck’s constant):

Eν
ν

= 0, h, 2h, 3h, . . .
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In 1912, Ehrenfest tried to extend these results to more general mechanical systems.
This research gave rise to two papers in 1913.

In the first one, Ehrenfest deduced the quantization of the energy of a system of rotating
molecules, by using an adiabatic transformation. To analyze it, Ehrenfest:

• considered a quantized system of harmonically vibrating electric dipoles in the
presence of a strong orienting field (the dipole behaves like a Planckian resonator);
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• after diminishing the value of the orienting field adiabatically, from a finite number
to zero, saw that, as in this last state the electric dipoles did rotate, it was possible
to connect adiabatically the vibration and the uniform rotation, and stated that
the allowed quantum motions became (other) allowed quantum motions after an
adiabatic transformation;

• and with this, he could deduce, as he knew the quantization of the energy for the
vibrating molecules, thanks to the quantization of the adiabatic invariant at this
point, the quantization for the rotating molecules.

This is the germ of the adiabatic hypothesis, although in this paper Ehrenfest scarcely
justified it. It was in the second work of 1913, where he fully justified that supposition.
In all likelihood, this is the work that contains the earliest version of the adiabatic
hypothesis, although Ehrenfest did not call it this way.

We cannot dwell upon this point, but it must be pointed out that in this stage of
his research, Ehrenfest did think that the quantization of the adiabatic invariant was
compatible with the validity of Boltzmann’s principle. In fact, in the 1911 paper he
got to Wien’s displacement law and also to the necessity of quantizing the adiabatic
invariants by imposing, among other things, Boltzmann’s principle. But later research,
started by Ehrenfest in the summer of 1913, led him to realize that this compatibility
may not be so obvious. So in 1914 he opened another line of investigation to see in which
cases would Boltzmann’s statistical foundations of the second law of thermodynamics be
valid (see slide S4/2). Ehrenfest could not obtain a definitive result, but he could prove
that the previous uses of Planck’s, Debye’s, and Einstein’s of this principle were valid.
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Ehrenfest did not call the adiabatic hypothesis this way in 1914, it was Einstein
who did, and used it for the first—and, as far as we know, last—time in his quantum
researches in a paper published in 1914. This paper—that contains an erroneous appli-
cation of the hypothesis—was consequence of an intense dialogue that these two friends
kept in the first months of 1914 about the adiabatic idea.

Apart from this Einstein’s contribution, the results obtained by Ehrenfest had no
visible incidence whatsoever during the next few years. Not even Sommerfeld nor Planck
would worry about proving the compatibility of their respective quantum rules of 1915
with the adiabatic hypothesis. Probably compelled by this ignorance, Ehrenfest decided
to gather all his previous results in a new paper and publish it in three different journals,
as he thought that the adiabatic hypothesis should furnish with a basis on which to
generalize the quantum theory.

“On Adiabatic Changes of a System in Connection with the
Quantum Theory” (1916)

These are the front pages of the three versions of the paper written in 1916, which are
practically the same (we will quote the version of Philosophical Magazine):
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The main contents are the following:

1. Formulation of the hypothesis.

2. Its relation to other quantum rules. This being the principal novelty respect to
prior Ehrenfest’s results. At this point he shows that his hypothesis agrees with
the quantization rules proposed by Planck, Sommerfeld, and Debye.

3. Examination of some difficulties that appear in the application of the hypothesis:
the singular motions.

4. Connection between the adiabatic hypothesis and the statistical interpretation of
the second law of thermodynamics.

In this new presentation, Ehrenfest calls the hypothesis by its name, and offers an
accurate formulation of it. Moreover, contrary to the 1913 papers, the way of presenting
the results is systematic. Let’s see shortly its contents, bearing in mind that this is the
most complete version that Ehrenfest gave of his hypothesis.

85
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Formulation of the Hypothesis

Before the formulation, Ehrenfest defines a “reversible adiabatic affection of a system”.
To do that, he considers:

• A potential energy that depends on the coordinates q1, q2, . . . , and on certain
parameters a1, a2, . . . “the values of which can be altered infinitely slowly”.

• A kinetic energy T , which is an homogeneous quadratic function of the velocities
q̇1, q̇2, . . ., and the coefficients of which are functions of q1, q2, . . . , and may be of
a1, a2, . . .

Ehrenfest defines a reversible adiabatic influence on a system as an infinitively slow
change of the parameters a1, a2 . . .
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Given this definition, Ehrenfest enunciates his hypothesis:

This perfectly fits what Ehrenfest had supposed in his first paper of 1913, when he
deduced for the first time the quantization of the energy of a system of rotating dipoles,
by using an adiabatic transformation.

It is obvious that the adiabatic invariants play a very important role in this procedure.
Ehrenfest referred to them in this way:
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This statement implies that quantum rules must be enunciated through these quantities,
because they must characterize the allowed motions.

As an example of an adiabatic invariant, Ehrenfest gives one for periodic motions,
obtained from a mechanical theorem of Boltzmann’s, Clausius’, and Szily’s, which is:

δ′
∫ P

0
2T dt = 0

(δ′ stands for the variation during an adiabatic transformation; P is the period of the
motion, and T the kinetic energy). From this theorem, Ehrenfest obtains the following
adiabatic invariant:

2T̄
ν

(ν is the frequency of the motion, and T̄ the mean value of the kinetic energy during a
period). Moreover, in the case of harmonic vibration, this invariant becomes:

ε

ν

(ε is the total energy, that is, the kinetic and the potential ones), being this expression
perfectly related to Planck’s quantization of energy done in 1900:

ε

ν
= 0, h, 2h, 3h, . . .

Summarizing:

Relation to Quantum Rules

To connect his hypothesis with Planck’s and Debye’s quantization rules, Ehrenfest pro-
posed an example referred to a one-dimensional system that consisted of a non-linear
oscillator. By imposing a1 = a2 = 0 (see slide S10), it is possible to recover the equation
of motion of an harmonic oscillator, i.e., of a Planck’s resonator. In this case, the poten-
tial energy curve is a parabola, and the allowed motions describe ellipses on the phase
plane.
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Reversing the reasoning, by considering an adiabatic change of the value of the param-
eters a1, a2 . . . from zero to any finite value, we can see how the equation of motion that it
is obtained corresponds to an anharmonic oscillator. According to Debye’s quantization,
the allowed motions are defined by the closed curves represented on the corresponding
phase plane, which are quite different from those of Planck’s. As the quantities that
remain constant during an adiabatic transformation are the quantities on which the
quantization must be applied, both quantization rules, Planck’s and Debye’s, have to be
equivalent to Ehrenfest’s adiabatic hypothesis.

To connect his hypothesis with the Sommerfeld quantization rules, Ehrenfest considers
a central system that can be described by the following equations of motion:

These equations correspond to a Kepler system in polar coordinates, and χ(r, a1, a2, . . .)
is the potential corresponding to an attractive central force. The second equation of
motion means mr2φ̇ = p2 that is constant under variation of time. With this result,
the two previous equations are clearly equivalent to a following unique one-dimensional
equation for the radial coordinate r, which oscillates between two fixed values. In ef-
fect, as it is easily seen, this last expression (see slide S11/1) is analogous to that one
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describing the one-dimensional oscillator, and because of that Ehrenfest can apply his
adiabatic hypothesis to this motion in the same way he had in the previous example.

Having taken account of the fact that p2 is also invariant under variations of the
parameters a1, a2 . . . , Ehrenfest obtains a second quantization rule (see slide S11/2).
On the other hand, by applying independently the Sommerfeld quantization rules to the
Kepler system in polar coordinates, the quantization has exactly this form for each one
of the coordinates:

Hence, both ways to quantize are, in this case, equivalent. Ehrenfest also states this
procedure to be valid for all central forces, since any central force can be connected
to the Kepler system adiabatically by changing infinitively slowly the corresponding
parameters on which the central potential depends.

Up to this point, Ehrenfest has proved the compatibility of his hypothesis with all
different quantization rules that had appeared until that moment. The only quantization
rule that Ehrenfest does not mention is Bohr’s one, probably because he thought of it
unfavourably by then.

Difficulties: Singular Motions

However, in applying the hypothesis some difficulties appear. By analyzing the adiabatic
transformation of the movement of an electric dipole from a vibration to a rotation by
diminishing the orienting field ~E, it is possible to better understand these difficulties (see
slide S12). In path 1, just in the transition movement between vibration and rotation, a
motion with an infinite period emerges, in which it is impossible to define an infinitively
slow change, that is, an adiabatic transformation, as the change rate is always defined
in reference to the period of motion. Then, Ehrenfest’s adiabatic hypothesis cannot be
applied at this point. As a visible consequence of this fatal ambiguity, after this motion,
the electric dipole can rotate clockwise or counter clockwise.

Ehrenfest proposes an alternative transformation to shun this problem (see path 2 ).
In this picture, the dipole does not oscillate in a single plane, but it does so conically,
so that after varying the value of the electric field adiabatically, from a finite number
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to zero, the final motion has no indetermination and the electric dipole has not passed
through a singular motion.

This second path avoids the ambiguity, but does not get rid of this dark point in
the whole coherence of the Ehrenfest adiabatic hypothesis. In principle, it would be
necessary to justify the plausibility of path 1. Ehrenfest hints that solving this question
could be related to a possible extension of the application of his hypothesis to aperiodic
motions.

Connection to the Statistical Basis of the Second Law

As we have commented above, in the paper of 1914, Ehrenfest wondered about the com-
patibility between the quantum theory and the statistical interpretation of the second law
of thermodynamics, as the suppositions from which Boltzmann’s and Planck’s statistics
were constructed were quite different. In the first case, all initial conditions—compatible
with the corresponding constraints—, are possible. On the contrary, in Planck’s statis-
tics, not all initial conditions—compatible with constraints—are possible, but only those
represented by Planck’s ellipses on the phase plane. In the case of Boltzmann’s statistics,
all regions with equal area on the phase plane are equally probable, while in the case of
Planck’s statistics, where not all movements are possible, allowed motions are equally
likely.

After some calculations and considerations, Ehrenfest deduced in 1914, and exposed
again in this 1916 paper, that the validity of Boltzmann’s principle is ensured for systems
with one degree of freedom if the quantization is applied to adiabatic invariants. This is
not the case for systems with more than one degree of freedom, for which this validity—
and henceforth its compatibility with the adiabatic hypothesis—still remains doubtful.
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First Reactions (1916–1918)

In the first half of 1916 new developments of the Sommerfeld theory, which tried to
give a solution to the dependence of the quantization on the coordinate system, were
published. We are referring to the contributions by Epstein and Schwarzschild, who used
the Hamilton-Jacobi theory to try and elucidate for which coordinate system Sommerfeld
rules could be applied. These contributions dealt with multiperiodic motions, which are,
in a sense, made up by partial periodic motions for each of its coordinates.

This kind of motions can be defined accurately through the Hamilton-Jacobi equation:

H

(
q1, . . . , qn;

∂S

∂q1
, . . . ,

∂S

∂qn

)
+
∂S

∂t
= 0

(S is the generatrix function of a transformation that converts the original coordinates
q1 . . . qn into constants of motion). In the case of separable systems (systems where
the Hamilton-Jacobi equation is separable), it is possible to obtain, in some coordinate
systems, one Hamilton-Jacobi equation for each coordinate. That is:

Hi

(
qi;

∂S

∂qi
;α1, . . . , αn

)
+
∂Si
∂t

= 0

(Si only depends on the coordinate qi, on n different constants of motion α1 . . . αn, and
on time t). In other words, in separable systems the generatrix function S has the form:

S =
∑
i

Si (qi;α1, . . . , αn; t) .
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Epstein and Schwarzschild stated that only in such cases was it possible to apply the
quantization to the different phase integrals without ambiguities: the correct quantiza-
tion was that one obtained in the coordinate system where the Hamilton-Jacobi equation
was separable.

This new contributions reduced the problem to the so called ‘degenerate motions’.
This class of motions can be characterized through its ‘proper’ frequencies: frequencies
of degenerate motions satisfy one or more ‘commensurability relations’, and frequencies
of non degenerate ones does not (see slide S15). In the former, the separation of variables
can be done in more than one system of coordinates, so that an ambiguity remained in
how quantization should be applied.

In the postscript of his 1916 paper, Ehrenfest wondered if the phase integrals referred
by Epstein, Schwarzschild, and Sommerfeld were adiabatically invariant. It was for this
reason that Ehrenfest entrusted his disciple Burgers with the task of finding an answer
to this question.

Very soon, in December of the same year and January of the next one, Burgers ob-
tained a definite result. He found that, in the case of non degenerate motions, the phase
integrals were always adiabatically invariant, whereas in the case of degenerate motions,
only certain linear combinations of these phase integrals were so only if the degree of
degeneration (the number of commensurability relations) remained constant during the
adiabatic transformation.
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This contribution of Burgers must be considered, not as a new application of the
Ehrenfest’s hypothesis, but as a part of it, as it perfectly completed the exposition
contained in the 1916 paper and contributed to improve its theoretical basis, extending
the proof of the compatibility of the adiabatic hypothesis with the quantum rules which
appeared after Ehrenfest had redacted his work.

Apart from Burgers, two former disciples of Ehrenfest, Kramers and Krutkow, also
contributed to give foundation to the adiabatic hypothesis in similar ways. Kramers,
who had been installed in the summer of 1916 in Copenhagen as Bohr’s collaborator,
tried to go further than Burgers, and began writing a manuscript where he was to study
the adiabatic transformations in degenerate systems more deeply. In this manuscript,
Kramers assesses that Burgers’ proof could be generalized to relativistic systems. As far
as we know, this manuscript was never published, but Kramers sent a copy to Ehrenfest
in the summer of 1917.
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Krutkow, a friend of Ehrenfest’s from his Russian days, who still resided in Saint
Petersburg, was only partially aware of Burger’s works. He did not know the contribution
of 1918 by Bohr either. In late 1918 he sent a paper to Ehrenfest that scarcely contained
any novelties, for in it Krutkow only proposed a new way to find adiabatic invariants (the
action-angle variables introduced in the quantum theory by Schwarzschild—to which we
will not refer here—had solved this particular question; moreover Burgers had proved
in the third paper of his contribution to the Amsterdam Academy the compatibility
between the Schwarzschild approach and the adiabatic hypothesis). Anyway, Ehrenfest
decided to publish it in the Proceedings of the Amsterdam Academy.

But all of these contributions did not contain any new applications of the adiabatic hy-
pothesis. They were destined for showing the harmony that existed between Ehrenfest’s
idea and the quantum theory. As far as we know, in 1917 and 1918, the adiabatic hy-
pothesis was used only in five papers: two by Smekal, one by Planck, one by Sommerfeld,
and one by Bohr.

Smekal, who was a young physicist when he moved to Berlin to finish his studies,
published then, in 1918, two papers in the Physikalische Zeitschrift about the adiabatic
hypothesis. They were basically centred on its statistical connections. Mainly he tried
to generalize the considerations about the validity of Boltzmann’s principle to systems
with more than one degree of freedom.

Also in 1918, Planck used the hypothesis to choose one of the two possible quantiza-
tions found for the asymmetric spinning top (a rigid solid with three different moments
of inertia). In this case, Planck privileged the quantization that was in agreement with
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the adiabatic hypothesis by Ehrenfest.

Sommerfeld used Ehrenfest’s hypothesis to give a basis to his treatment of the mag-
netic field influence on the trajectory of the electrons in a paper on light’s dispersion.
Sommerfeld stated that Ehrenfest’s rule, which restricted the quantization only to adia-
batic invariants, ensured the validity of the mechanical laws during slow transformations.

As we can see, all these uses are, in a way, minor uses. Because of that, we asses
that the first response to Ehrenfest’s publication was rather scarce, almost null. On the
other hand, as we have seen, the works of Burgers, Kramers and Krutkow can not be
considered as new applications or true reactions, because all of them contain attempts
to give solid reasons to present the adiabatic hypothesis as a fundamental rule for the
quantum theory. Moreover, only the papers by Burgers were often quoted in the following
years. But this scenario changed abruptly when Bohr published his new theory.

The Adiabatic Hypothesis in Bohr’s 1918 Paper

The first part of On the quantum theory of line spectra was published in April of 1918
as a memory of the Danish Real Academy. Its diffusion was not fast—the war had not
finished yet—, but it gradually became one of the essential works of the quantum theory.
This part contained the general theoretical basis of Bohr’s theory, and the second one—
published in December—contained a detailed analysis of the spectrum of the hydrogen

96



The Ehrenfest Adiabatic Hypothesis and the Old Quantum Theory

atom. It was with the publication of the first part that a new stage of the role that
Ehrenfest’s adiabatic hypothesis played in the development of quantum ideas began.

However, this was not the first work where Bohr made use of Ehrenfest results. In early
1916, he had finished a renewed version of his quantum theory of 1913, now extended
to all kind of periodic systems. However, when this paper was going to be published in
the Philosophical Magazine, Bohr received by mail the recent Sommerfeld contributions
and decided to restate the whole thing from scratch.
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This paper of 1916 shows that Bohr knew Ehrenfest’s work very well, except for
the 1914 one about Boltzmann’s principle. Two years later, in 1918, he is already
a connoisseur of that paper and even uses some of the statistical considerations that
appeared in it. In fact, in 1919, he explained to Sommerfeld that it was precisely the
lack of a rich statistical approach to the quantum theory that had prevented him from
reformulating quickly his results of 1916.

In this theory, Bohr used for the first time the mechanical theorem by Boltzmann-
Clausius-Szily rescued by Ehrenfest for the quantum theory, and he proposed to quantize
the adiabatic invariant to characterize the stationary states of periodic systems. That is
to say, he proposed to generalize Planck’s quantum hypothesis the same way as Ehrenfest
did. But all of this remained unpublished.

Coming back to Bohr’s 1918 work, we must recall that it was based on two postulates.
According to the first one, an atomic system could only exist permanently in a specific
series of states corresponding to a discontinuous series of values for its energy, which were
called ‘stationary states’; any transition between two of these states implied a change
in the energy of the system. According to the second one, the frequency of the energy
emitted or absorbed during such a transition would have the value

ν =
E′ − E′′

h

where E′ and E′′ are the values of the energy of the two stationary states considered.
In this theory, Bohr included not only the contributions by Sommerfeld, Epstein, and

Schwarzschild, but also the transition probabilities introduced by Einstein in 1916 and
the principle of the “mechanical transformability”, which is the name with which he
rebaptized the Ehrenfest’s adiabatic hypothesis.

Bohr wanted this principle to function as guarantee of the stability of the stationary
states. Thus, according to it, the mechanical laws were valid, not only under constant
external conditions, but also during infinitively slow changes of them, that is, during
adiabatic transformations:
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This implied that no small change of the motion could provoke quantum jumps, and
that by them no emission or absorption processes could take place.

But the adiabatic hypothesis still had another crucial role:

(A “continuous transformation” means an “adiabatic transformation”, and “the singular
systems” are related to “the singular motions” to which we have referred above). This
passage of Bohr’s paper can be summarized as follows: during an adiabatic transforma-
tion, the a priori probabilities for the states remain constant. This assumption about
the a priori probabilities of the stationary states links directly to the considerations that
Ehrenfest introduced in 1914 and afterwards in 1916 about the validity of Boltzmann’s
principle. But while Ehrenfest limited the assessment of the validity of the statistical
interpretation of the second law to systems with one degree of freedom, Bohr extends
directly this validity to systems with more than one degree of freedom. We must remind
that Bohr deals only with stationary states (quantum states) while Ehrenfest does not
so.

Apart from these applications, Bohr contributed to extend the implications of the
Ehrenfest’s adiabatic hypothesis to more circumstances. For instance, he extended it
to relativistic systems, he took profit of the characteristic situation of the degenerate
motions to connect different stationary states of the same system, and he also conceived
a way to calculate the a priori probabilities in a degenerate system.
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Final Remarks

1. As we have shown, the Ehrenfest’s adiabatic hypothesis had no considerable impact
in the development of the quantum theory before the publication of Bohr’s paper
of 1918.

2. Despite his own developments, Bohr’s use of the adiabatic hypothesis is very close
to the original formulation. Because of that, Bohr’s principle of mechanical trans-
formability can be considered the most complete version of it.

3. Since 1918, the references to the adiabatic hypothesis increase. They emerged
in so different fields as atomic models, specific heats of solids or quantization of
aperiodic motions.

4. And, finally, we would like to conclude this talk pointing out that after his paper
of 1916, Ehrenfest hardly worked anymore on the adiabatic hypothesis. The only
subsequent publication that was related to it was a retrospective paper that the
editors of Die Naturwissenschaften asked to him to include it in the number of
1923 devoted to celebrate the tenth anniversary of Bohr’s atomic model.
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6 Re-Examining the Crisis in Quantum
Theory, Part 1: Spectroscopy

David C. Cassidy

One of the topics set for this workshop touches upon the transition from the old quantum
theory to the new quantum mechanics—in particular, “how the physics community came
to recognize the limitations” of the old quantum theory.1

Some of the answers to this question may be found in one of the most unsettled
periods in the history of quantum physics. These were the years between the end of the
First World War in 1918 and the breakthrough to quantum mechanics in 1925–27. It
was a period of great difficulty and upheaval, but also remarkable creativity—both for
quantum physics and for European society, Germany in particular.

Paul Forman and others have long recognized the remarkable simultaneity of events
occurring at that time in the realms of physics and society. Equally remarkable is
the appearance during this period of public expressions of a crisis situation within both
realms. For example, while Oswald Spengler prophesied the Untergang des Abendlandes,
a number of physicists, among them Einstein, lamented what he called “The present crisis
of theoretical physics.”2 In both physics and society those years were indeed, to quote
the title of another book by Spengler, Jahre der Entscheidung.3

What was going on here? What developments inside and outside the old quantum
theory could lead a large number of quantum physicists to doubt the possibility of further
progress using that theory? In what sense and to what extent could this be regarded as
a “crisis” situation? Was there really any connection between the simultaneous events
occurring within physics and society?

These are all very profound and far-reaching historical questions. But, of course, they
are not new. This year marks not only the 60th aniversary of the passing of Max Planck
in 1947, but also the 40th anniversary of the completion of the Archive for History of
Quantum Physics and the publication of its catalogue in 1967.4

Greatly stimulated in part by the availability of this archive, during the past half
century a large number of historical studies have been devoted to answering many of
the fundamental questions about this fertile period of transition from the old to the new

1MPIWG, “Conference on the history of quantum physics, 2–6 July 2007, Berlin.”
2Oswald Spengler, Der Untergang des Abendlandes, 2 vols. (Munich: C. H. Beck, 1918); Albert Einstein,
“Über die gegenwärtige Krise der theoretischen Physik,” Kaizo (Tokyo), 4 (1922), 1–8, reprinted, Karl
von Meyenn, ed., Quantenmechanik und Weimarer Republik (Braunschweig: Vieweg, 1994), 233–239,
quote on 238–239. The talk of a crisis was not new in physics. It appeared before the war in, for
instance, Paul Ehrenfest, Zur Krise der Lichtäther-Hypothese (Berlin: Springer, 1913). I thank Skúli
Sigurdsson for bringing this to my attention.

3Oswald Spengler, Jahre der Entscheidung, erster Teil (Munich: C. H. Beck, 1933).
4Thomas S. Kuhn et al., eds., Sources for history of quantum physics: An inventory and report (Philadel-
phia: Am. Philosophical Society, 1967).
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quantum physics.
Looking back over the past decades, two important historiographic works regarding

the crisis in quantum theory immediately spring to mind.

Historiographic Works

1. Thomas S. Kuhn, The Structure of Scientific Revolutions, 1962.

For Kuhn, crises entail a rupture between two paradigms, caused mainly by internal
developments within normal science. Kuhn described a crisis situation this way:

“Because it leads to large-scale paradigm destruction . . . the emergence
of new theories is generally preceded by a period of pronounced pro-
fessional insecurity. As one might expect, that insecurity is generated
by the persistent failure of the puzzles of normal science to come out
as they should.”5

2. Paul Forman, “Weimar Culture, Causality, and Quantum Theory, 1918–1927,”
1972, takes Kuhn one step further regarding the crisis in quantum theory:

“While it is undoubtedly true that the internal developments in atomic
physics were important in precipitating this widespread sense of crisis
... nonetheless it now seems evident to me that these internal develop-
ments were not in themselves sufficient conditions. The possibility of
the crisis of the old quantum theory was, I think, dependent upon the
physicists’ own craving for crises, arising from participation in, and
adaptation to, the Weimar intellectual milieu.”6

Not until very recently has another work appeared offering a different perspective
on the crisis situation in quantum theory.

3. Suman Seth, “Crisis and the construction of modern theoretical physics,” March
2007.

According to Seth, “Different subgroups within theoretical physics viewed the sit-
uation in dramatically different ways,” depending upon their differing research
agendas.

• “Members of the Sommerfeld school in Munich, who saw the task of the
physicist as lying in the solution of particular problems, neither saw a crisis
nor acknowledged its resolution.”
• “Researchers associated with Bohr’s institute in Copenhagen, who focused on

the creation and adaptation of new principles, openly advocated a crisis even
before decisive anomalies arose.”7

5Thomas S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1962),
pp. 67–68.

6Paul Forman, “Weimar Culture, Causality, and Quantum Theory, 1918–1927: Adaptation by German
Physicists and Mathematicians to a Hostile Intellectual Environment,” Historical Studies in the Physical
Sciences, 3 (1972), 1–115, on 62; German translation in: von Meyenn, note 2, 61–179.

7Suman Seth, “Crisis and the construction of modern theoretical physics,” British Journal for History
of Science, 40 (March 2007), 25–51, on p. 25.
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Historical Works

Historical studies of the crisis period over the past forty years display a similar pattern—
an initial flurry of work on the origins and evolution of quantum physics, followed by a
quantum gap as historians turned to other topics, ending with a revival of interest in
recent years. Here are some examples:

M. Jammer. The Conceptual Development of Quantum Mechanics, 1966.
P. Forman. “The doublet riddle and atomic physics circa 1924,” Isis, 59 (1968), 156–174.
P. Forman. “Alfred Landé and the anomalous Zeeman Effect,” HSPS, 2 (1970), 153–261.
H. Small. The Helium Atom in the Old Quantum Theory, PhD diss., 1971.
R. Stuewer. The Compton effect: Turning point in physics, 1971.
D. Cassidy. Werner Heisenberg and the Crisis in Quantum Theory, 1920–1925. PhD
diss., 1976.
D. Serwer. “Unmechanischer Zwang: Pauli, Heisenberg, and the Rejection of the me-
chanical atom, 1923–1925,” HSPS, 8 (1977), 189–256.
J. Hendry. “Bohr-Kramers-Slater: A virtual theory of virtual oscillators,” Centaurus,
25 (1981), 189–221.
—Gap—
O. Darrigol. From c-numbers to q-numbers: The classical analogy in the history of quan-
tum theory, 1992. Chapter 8, “A Crisis”.
H. Kragh. Quantum generations: A history of physics in the 20th century, 1999. Sec-
tion: “Quantum anomalies”.

In addition to these studies, the last few decades have brought us the publications
of the Pauli correspondence, the Born-Einstein letters, the Sommerfeld-Nachlass, and
the collected papers of nearly every major physicist of the era, along with many online
resources.

With the availability of all of these pioneering works and interpretations, and a rich
trove of primary source material, I think we may now be in a position to make the leap
to a new quantum state—a re-examination of the quantum crisis at a much deeper level
as both history and historiography, thereby achieving a much fuller understanding of
what happened and why.

Origins of the Crisis

Re-examining the mounting problems arising within quantum theory during the early
1920s, we are soon lead back far earlier than 1918, all the way back to the introduc-
tion of the quantum itself by Planck and Einstein beginning in 1900, and to the Bohr-
Sommerfeld theory of the atom in 1913–16.

While the nature of light and the quantum remained persistent problems, it was the
Bohr atom of 1913 and its extensions by Sommerfeld that lay at the foundation of the
later crisis situation in quantum atomic physics. It was a critical situation that reached
an apex ironically with the celebration of the 10th anniversary of the Bohr atom in 1923.
I would like to point out briefly several implications of this theory.
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The Bohr Atom

• It provided an extraordinarily successful visualizable mechanical model of orbiting
electrons in stationary states obeying classical mechanics but not electrodynamics.
It accounted for stability, optical spectra, and ionization of hydrogen atoms.

• Despite this success, many statements appeared over the next decade on the fun-
damentally unsatisfactory nature of the theory, starting with Bohr himself in 1913.
For instance, James Jeans declared: “The only justification at present put forward
for these assumptions is the very weighty one of success . . . It would be futile to
deny that there are difficulties, still unsurmounted, which appear to be enormous.”8

• Yet the success of the Bohr atom (with extensions by Sommerfeld) set the standard
for over a decade of a successful quantum theory of atomic phenomena.

• It became the definition, if you will, of normal quantum atomic science. In this sci-
ence, what was frequently called “eine modellmäßige Deutung,”—“a modelbased
interpretation/ explanation”—of atomic phenomena became the goal of a success-
ful theory, what Heisenberg and Pauli later called a “physical explanation.”

My Points

With the Bohr atom as a background, my argument regarding the crisis in quantum
theory is composed of the following points:

• Beginning about 1918, new and more precise data and mechanical calculations
resulted by the early 1920s in an increasing failure to achieve the ideal set by
the Bohr atom. At the same time, new funding strategies during the post-war
economic crisis in Germany provided a boast directly to atomic research.

• The failure of the theory magnified the sense of professional insecurity about the
old quantum theory within the community of physicists and mathematicians.

• The insecurity reached such proportions by 1923 that it came close to what Kuhn
described as a crisis situation. At the same time, as Seth has suggested, noticeable
differences did appear among different groups. However,

• The old quantum theory did in fact work quite well for many other phenomena,
such as molecular band spectra.9

• The Forman thesis and related issues regarding the quantum crisis are addressed
in a separate paper.10

8James Jeans, address to British Association, reported in Nature, 92 (1913), 304–309; quoted by Ulrich
Hoyer, introduction to Niels Bohr, Collected Works, vol. 2 (Amsterdam: North-Holland, 1981), 124.

9For example, Edwin Kemble, “The application of the correspondence principle to degenerate systems
and the relative intensities of band lines,” Physical Review, 25 (1925), 1–22.

10D. Cassidy, “Heisenberg, Weimar culture, and the Forman thesis,” paper delivered to conference on
35th anniversary of Forman’s paper, Vancouver, March 2007.
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Three Critical Problems, Three Groups, Three Places—Roughly Defined

In my rather internal re-examination of this period, I have identified three main prob-
lem areas, involving three main research groups in three different places, that caused
increasing trouble.

1. Problem: Multiplet (complex) line spectra of atoms and their anomalous Zeeman
effects. Research group: Sommerfeld school in Munich, including Tübingen spec-
troscopists Friedrich Paschen, Ernst Back with theorist Alfred Landé.

2. Problem: Simple 3-body atomic/molecular systems beyond hydrogen atom: H+
2 ,

normal He, and excited He. Research group: Born school in Göttingen, including
Pauli and Heisenberg, also Sommerfeld, Kramers, Kemble, and Van Vleck. Both of
these problem areas concerned atomic structure. The third problem area involved
the nature of light.

3. Problem: Interaction of radiation and matter, including dispersion theory and the
existence of light quanta. Research group: Bohr school in Copenhagen, including
Pauli, Heisenberg, Kramers.

Sommerfeld and the Anomalous Zeeman Effect

As also discussed recently by Suman Seth and others, but with somewhat different
interpretation, the problem of the Zeeman effect arose within quantum atomic theory as
early as 1913, when Bohr sent a copy of his first paper on the Bohr atom to Sommerfeld.
Sommerfeld replied immediately: “Will you also apply your atomic model to the Zeeman
effect? I would like to concern myself with this.”11

Sommerfeld did work on the problem, and in 1916 he published his fundamental
paper “Zur Quantentheorie der Spektrallinien,” which established the Bohr-Sommerfeld
quantum theory of atomic structure.12 I will list only briefly some of the important
elements of this paper for our purposes:

• The Sommerfeld quantum conditions, involving only integral numbers of quanta

• a relativistic treatment of the Kepler orbits of the electrons in the Bohr model led
to angular momentum as a degree of freedom, and . . .

• two new quantum numbers for the orbital motion of an electron, giving 3 alto-
gether: n the state number; k for azimuthal angular momentum; m for space
quantization, if a z-axis is defined.

Sommerfeld intended to define the z-axis by a weak magnetic field and thus obtain the
Zeeman effect. He did so in a follow-up paper that same year, as did Peter Debye. The

11Sommerfeld to Bohr, 4 Sept. 1913, in Bohr, note 8, vol. 2, 603.
12Sommerfeld, “Zur Theorie der Spektrallinien,” 3 parts, Annalen der Physik, 51 (1916), 1–94 and 125–

167; reprinted in Arnold Sommerfeld, Gesammelte Schriften, vol. 3 (Braunschweig: Friedrich Vieweg
& Sohn, 1968), 172–308.
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result was the normal Zeeman effect of hydrogen and other singlet line spectra in a weak
magnetic field defining the z-axis.13

E = E0 +
mh

2π
· eH

2mec
= E0 +mhνL where ∆m = ±1, 0

where E is the energy of a Zeeman term, E0 is the energy of the unperturbed optical
L term, and vL is the Larmor frequency. This gives the splitting of a singlet line into 3
lines in a weak magnetic field, but the origin of the selection rule was unknown, and the
theory could not account for the more prevalent anomalous Zeeman effect.

Anomalous Zeeman Effect

The effect was associated with the puzzling appearance of optical multiplet lines: the
splitting of single lines into closely spaced doublets and triplets. The doublet sodium
D-lines are a well known example. (As we know today, they arise from spin-orbit cou-
pling within the atom.) Unlike singlets, which display the normal Zeeman effect, the
multiplet lines split into more than 3 lines or into 3 lines that are not separated by
the Larmor frequency. Furthermore, Paschen and Back had discovered by 1913 the so-
called Paschen-Back effect, whereby the anomalous lines all coalesce continuously into
the normal Zeeman triplet as the external magnetic field is increased.14 In 1919 Sommer-
feld listed this behavior and the appearance of the anomalous Zeeman effect among the
“Schwebende Fragen der Atomphysik” (unsettled questions of atomic physics). Ques-
tion number 1 entailed “eine modellmassige Deutung” of these phenomena, for which,
he declared, “entirely new things” were required.15

Sommerfeld’s Program

With new and more precise data pouring into his Munich institute from Tübingen,
Sommerfeld set out to find the “entirely new things” in a program explained in paper
published in 1920. But it entailed an obvious retreat for the author of the relativistic
quantum model of the atom. For Sommerfeld the situation seemed similar to that in
hydrogen spectroscopy before the Bohr atom. As Balmer had done decades earlier,
Sommerfeld undertook analyses of the highly regular Zeeman data in search of empirical
relationships and number harmonies that he hoped would provide clues to the underlying
model interpretation of the data. As Seth has argued, Sommerfeld was solving problems
not seeking new principles, but, like Balmer, he had little choice at this point.16

Sommerfeld soon found what he was looking for. In 1920 he published his famous
Zahlenmysterium, number mystery. It consisted of a table of number harmonies in
13A. Sommerfeld,“Zur Theorie des Zeeman-Effekts der Wasserstofflinien, mit einem Anhang über den

Stark-Effekt,” Physikalische Zeitschrift, 17 (1916), 491–507; reprinted Sommerfeld, note 12, 309–325;
Peter Debye, “Quantenhypothese und Zeeman Effekte,” Phys. Zs. , 17 (1916), 507–512.

14F. Paschen and E. Back, “Normale und anomale Zeemaneffekte,” Annalen der Physik, 39 (1912), 897–
932. For the phenomena of the Zeeman effect as observed at that time, see A. Sommerfeld, Atombau
und Spektrallinien (Braunschweig: F. Vieweg & Sohn), 1st edition 1919, 3rd edition 1922, 4th edition
1924. The effect is also discussed in the literature cited earlier.

15A. Sommerfeld, “Schwebende Fragen der Atomphysik,” Phys. Zs. , 21 (1920), 619–620; reprinted in
Sommerfeld, note 12, vol. 3, 496–497.

16A. Sommerfeld, “Ein Zahlenmysterium in der Theorie des Zeemaneffktes,” Naturwiss., 8 (1920), 61–64
on 64; reprinted in Sommerfeld, note 12, vol. 3, 511–514.
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which he had traced the observed multiplet lines to combinations of quantum states to
which he assigned empirical “inner quantum numbers” j. In his scheme, each angular
momentum state k split into two or three states with values of j = k, k− 1 for doublets,
j = k, k − 1, k − 2 for triplets. Thus, for example, the sodium D-lines arise from
downward jumps from k = 2, j = 2 to k = 1, j = 1 (D2) and k = 2, j = 1 to k = 1,
j = 1 (D1). Sommerfeld believed the inner quantum numbers referred to some unknown
inner rotation and “hidden” mechanical quantum condition.

We must be clear about what Sommerfeld was doing. He was not really engaging
in number mysticism. Rather, he was attempting to solve a mystery. He was taking
the phenomenological approach because he has no other choice, and he is not happy
about it. Wrote Sommerfeld, “The musical beauty of our number table will not hide
the fact that it presently represents a number mystery. In fact I do not yet see any
way to a model-based explanation either of the doublet-triplet data or of their magnetic
influence.”17

There is none of the sense of desperation and distress expressed by some others at that
time. But it does seem to me that Sommerfeld was already participating in what Kuhn
called “a pronounced professional insecurity” about the ultimate success of his program.
This became more acute following the work of theorists Landé and Heisenberg during
the time they participated as collaborators in the Sommerfeld School.

Landé’s g-Factors

Alfred Landé managed to take Sommerfeld’s number mystery one step further. Very
briefly, he associated each multiplet term, j, with a series of Zeeman terms, each char-
acterized by the magnetic quantum number m and an empirical “gyromagnetic” factor
g.18 But his most controversial innovation was the introduction of half-integer values
for the magnetic numbers m of the doublet states on purely empirical grounds. Half
integers were required in order to achieve an even number of magnetic states for each
value of j, as shown below.

Landé, 1921:

E = E0 + mhνL normal Zeeman effect
E = Ei + gmhνL anomalous Zeeman effect

g = 1 singlets
g = 2j/(2k − 1) doublets

g =


1 + 1/k
1− 1/(k + 1)(k − 1)
1− 1/(k − 1)


j = k
j = k − 1
j = k − 2

triplets

m = 0,±1,±2, . . . ,±j triplets, 2j + 1 states, odd
m = ±1

2 ,±
3
2 ,±

5
2 , . . .,±

(
j − 1

2

)
doublets, 2j states, even

17Ibid., 64. The number table contained the so-called Runge fractions for the Zeeman terms.
18Alfred Landé, “Über den anomalen Zeemaneffekt (Teil I),” Zs. f. Physik, 5 (1921), 231–241. Discussed

at length by Forman, “Alfred Landé and the anomalous Zeeman Effect,” HSPS, 2 (1970), 153–261.
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Sommerfeld was ecstatic: “Bravo, you are able to work miracles!” he wrote Landé.
“Your construction of the doublet Zeeman types is very beautiful.”19 To Einstein he
wrote, “Light, or better, dawn really is coming to spectroscopy.”20

But Sommerfeld and Landé also acknowledged the lack of a model interpretation of
the empirical g-factors along with their continuing hope for a satisfactory model. A
model interpretation did soon appear, but it made matters only worse. It showed that
the g-factors and all of the empirical number harmonies could be reduced to a model
only if the model was so radical as to force an explicit break with the Bohr-Sommerfeld
ideal—in particular a violation of space quantization in a field, and the introduction of
actual half-integer angular momenta.

The model was Heisenberg’s Rumpf or core model of the atom, submitted in 1921 as
his first published paper while still only a 3 semester student.

Heisenberg’s Core Model

Heisenberg’s core model arose directly from Sommerfeld’s latest insight: a derivation of
Landé’s g-factors from a “quantum-theoretical reinterpretation” of a classical harmonic
oscillator model of the atom proposed earlier by Woldemar Voigt. In December 1921
Sommerfeld submitted a paper titled: “Quantentheoretische Umdeutung der Voigtschen
Theorie des anomalen Zeemaneffektes vom D-Linientypus.”21 I believe the title and the
approach of this paper had a direct influence on Heisenberg’s Umdeutung paper four
years later. Heisenberg’s core model paper was submitted 7 days after Sommerfeld’s
Umdeutung and published immediately following it in Zeitschrift für Physik.22

In his paper, Sommerfeld had obtained an equation for the energy of a Zeeman term
for doublet lines as a function of the external magnetic field. The equation, shown
in the slide below, yields Landé’s doublet g-factors for small magnetic field, and it
displays the Paschen-Back effect for the continuous transition to the normal Zeeman
effect as magnetic field increases. (Today, this equation appears as the off-diagonal
matrix elements for the energy operator in quantum mechanics.)

The Sommerfeld-Voigt equation for doublets (1921) reads

E = E + hνL

(
m∗ ± 1

2

√
1 + (2m∗/k∗)γ + γ2

)
,

where E is the energy of the Zeeman term, E the average of the doublet energies and

γ =
∆ν
νL
∝ 1
H

, k∗ = k − 1
2

, j∗ = j − 1
2

m = ±1
2
,±3

2
, . . .,±− k∗ , |m∗| ≤ j∗ .

19Sommerfeld to Landé, 25 Feb. 1921, published in Forman, note 18, p. 249.
20Sommerfeld to Einstein, 17 Oct. 1921, published in Einstein and Sommerfeld, Briefwechsel, ed. Armin

Hermann (Basel: Schwabe, 1968), p. 94.
21Sommerfeld, Zs. f. Physik, 8 (1922), 257–272; reprinted in Sommerfeld, note 12, vol. 3, 609–624.
22W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,”

Zs. f. Physik, 33 (1925), 879–893; idem, “Zur Quantentheorie der Linienstruktur und der anomalen
Zeemaneffekte,” Zs. f. Physik, 8 (1922), 273–297.
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Heisenberg managed to derive this equation for E from his core model, and to obtain
the triplet g-factors as well. The following concerns only the doublet factors.23

1. Heisenberg noted that doublet atoms are single-valence, while triplet atoms are
double valence. A single valence atom, such as sodium, contains a nobel-gas “core”
of filled electron shells, with one valence electron in the outer shell.

2. The basic idea of Heisenberg’s model is that the half-integer numbers arise from
actual half-integer angular momenta. They are 1

2 integral because the valence
electron for some reason shares 1

2 unit of angular momentum with the core, leaving
the valence electron with k − 1

2 units of momentum.

3. This reproduces what we now recognize as spin-orbit coupling. The valence elec-
tron sets up an internal magnetic field at the site of the core. The doublet term
structure arises from the parallel or anti-parallel alignment of the core, resulting
in a total angular momentum of j units, where

j =
(
k − 1

2

)
+ 1

2 = k ,

j =
(
k − 1

2

)
− 1

2 = k − 1 .

4. When an external magnetic field is applied, the motion of the valence electron is
space quantized, but the core is NOT. It simply aligns itself along the total field
vector, changing direction continuously as the external field varies. This results in
Sommerfeld’s square-root factor with its continuous transition from the anomalous
to the normal Zeeman effect.

Despite Landé’s repeated objections in letters to Heisenberg at that time, Heisenberg
held to these and other violations of quantum and classical principles, mainly because the
model worked. When Pauli objected, too, Heisenberg responded with his now famous
Machiavellian motto: “Der Erfolg heiligt die Mittel.”—“Success sanctifies the means.”24

The Response

And success it was, but at what a cost! Bohr, expressing his own agenda at that time,
rejected the model for its violation of integral quantization of angular momenta. His
newly successful building-up principle (Aufbauprinzip) of the periodic table required
integers. Bohr complained to Landé in May 1922:

“My viewpoint is this: that the entire manner of quantization (half integer quantum
numbers etc.) does not appear reconcilable with the basic principles of the quantum
theory, especially not in the form in which these principles are used in my work on
atomic structure.”25

23Further discussed in D. Cassidy, “Heisenberg’s first core model of the atom: The formation of a
professional style,” HSPS, 10 (1979), 187–224; and Olivier Darrigol, From c-numbers to q-numbers:
The classical analogy in the history of quantum theory (Berkeley: Univ. California Press, 1992), chapt.
8.

24Heisenberg letters to Landé (AHQP Mf 6, 2); Heisenberg to Pauli, 19 Nov. (1921), published in W.
Pauli, Wissenschaftlicher Briefwechsel, ed. A. Hermann, K. v. Meyenn, V. F. Weisskopf, vol. 1 (Berlin:
Springer, 1979), p. 44.

25Bohr to Landé, 15 May 1922 (Bohr Scientific Correspondence, Mf 4, 2).
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Sommerfeld, on the other hand, once again expressed amazement and delight (and
thus approved publication), but he was also perplexed. He wrote to Einstein on 11
January 1922, a now famous statement:

“I have in the meantime uncovered wonderful numerical laws for line combinations in
connection with the Paschen measurements and presented them in the third edition of
my book. A pupil of mine (Heisenberg, 3rd semester!) has even explained these laws
and those of the anomalous Zeeman effect with a model (Z. f. Ph., in press). Everything
works out but yet in the deepest sense remains unclear. I can pursue only the technique
of the quanta, you must make your philosophy... Set yourself to it!”26

This was a remarkable statement for the co-author of the Bohr-Sommerfeld quantum
atomic theory. As with the Bohr atom earlier, not only is he fully aware that something
is wrong with quantum atomic theory “in the deepest sense,” but also he has now given
up the search for a model interpretation as too difficult and is pursuing instead the
engineering of empirical data. Pauli and Heisenberg began referring to Sommerfeld’s
approach as one seeking formal connections as opposed to physical clarification.

The Bohr-Festspiel

The unsettled situation in the old quantum theory by 1922 became more unsettled
following one of the most important events of the period in quantum theory—Bohr’s
series of lectures on atomic structure in Göttingen in June 1922, known as the Bohr-
Festspiel.

The hostilities of the world war did not cease with the Armistice in 1918. Because
many German scientists had openly supported the German cause during the war, French
and British scientists attempted a boycott of German science after the war. While
Einstein and Curie worked through the League of Nations to end the boycott, Bohr
openly defied it by traveling to Germany on several occasions and inviting German
scientists to Copenhagen. In 1922 he accepted an invitation to deliver the Wolfskehl
Lectures in Göttingen. The Bohr festival became a turning point. It set the standard
for success in quantum atomic theory and thereby rendered the failure to achieve that
standard all the more obvious and unsettling.

Over a period of ten days in June 1922, Bohr presented seven lectures on “Die Theorie
des Atombaus.”27 In these lectures he systematically developed what we now view as
the old quantum theory of atomic structure. The audience consisted of nearly every
major and minor German quantum theorist. Bohr’s systematic approach in his lectures
was so impressive that it immediately reenforced at least two research efforts that fall.
The first of these, undertaken by Born and Heisenberg in Göttingen, entailed the second
problem-area noted earlier: a rigorous and systematic application of celestial mechanics
to quantum models of highly excited helium atoms. With the inner electron shielding the
+2 charge of the nucleus, the outer electron should give the spectral lines and ionization
potential of a perturbed hydrogen atom. The goal was to determine if, under rigorous
mechanical calculation, the quantum atomic theory did or did not yield the observed

26Sommerfeld to Einstein, 11 Jan. 1922, in Einstein and Sommerfeld, note 20, 96–97.
27Bohr, “Sieben Vorträge über die Theorie des Atombaus,” 12–22 June 1922 (Bohr Manuscripts, MF

10); published in Bohr, note 8, vol. 4, 341–419.
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results. In the end it did not, but I will leave that for another occasion.28

The second research program to arise from the Bohr-Festspiel was undertaken by
Bohr and Pauli in Copenhagen. Bohr explained it to Landé in March 1923: “It was
... a desperate attempt to remain true to the integer quantum numbers, in which we
hoped to see even in the paradoxes a hint for the way in which we might seek the
solution of the anomalous Zeeman effect.”29 The attempt also proved to be a complete
failure, and they never published the work. Faced with the inconsistent use of half
integers by other theorists, Pauli had had enough. He complained to Bohr in February
1924 that physicists in Germany were using integer and half-integer quantum numbers
as they pleased, depending on whether or not they could get the result to agree with
experiment. “I myself have no taste for this kind of theoretical physics and retire from
it to my heat conduction in solid bodies.”30

In light of both of these failures, Max Born summed up the desperate situation for the
public in his now famous statement in celebration of the 10th anniversary of the Bohr
atom in a special issue of Die Naturwissenschaften, published in Bohr’s honor (probably
in gratitude for his support of German science) in July 1923: “It is becoming ever more
probable that not only new assumptions in the usual sense of physical hypotheses will
be necessary, but rather that the entire system of concepts of physics must be rebuilt
from the ground out.”31

Born and Heisenberg began the search for what Born was now calling a new “quantum
mechanics.”

Conclusion

Even though I have not yet discussed the other two problem-areas to any extent, it is
already clear that by mid-1923 the crisis in quantum theory was in full swing. As Seth
has suggested, different people and their collaborators reacted to the situation in different
ways. While Pauli resigned, Sommerfeld and Landé continued analyzing the data for
numerical harmonies, Bohr maintained his consistency, and Born and Heisenberg began
the search for a new quantum mechanics. Whatever their response, all appeared to be
experiencing, in Kuhn’s words, a “pronounced professional insecurity ... generated by
the persistent failure of the puzzles of normal science to come out as they should”—in
other words, a crisis in quantum theory.

28The failure is discussed in several of the works cited earlier in the text, especially those by Small,
Darrigol, and Cassidy.

29Bohr to Landé, 3 March 1923 (AHQP Mf 4, 1).
30Pauli to Bohr, 21 Feb. 1924; published in Pauli, note 24, 147–148.
31M. Born, “Quantentheorie und Störungsrechnung,” Naturwiss., 11 (6 July 1923), Heft 27: “Die ersten

zehn Jahre der Theorie von Niels Bohr über den Bau der Atome,” pp. 537–542, on 542. See also, A.
Landé, “Das Versagen der Mechanik in der Quantentheorie,” Naturwiss., 11 (24 Aug 1923), 725–726,
letter dated 15 July 1923.
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7 The Causality Debates of the Interwar
Years and their Preconditions: Revisiting
the Forman Thesis from a Broader
Perspective

Michael Stöltzner

In this paper I have to be sketchy and up-front. Sketchy because I will try to convey the
punch line of my 400 page Ph.D.-dissertation (Stöltzner 2005) and the papers ensuing
therefrom (Stöltzner 1999, 2000, 2003). I showed there, I guess, that the oft-debated
causality debates in Weimar Germany and interwar Austria were an integral part of a
much longer causality debate that emerged from two different readings of Boltzmann’s
legacy, statistical mechanics, at the end of the 19th century and ended only in the late
1930s when the philosophical debates surrounding quantum mechanics abated. Viewed
within the context of this longer debate, the years 1918–1927 were, no doubt, a time of
turmoil ranging from culture and politics to philosophical terminology. But in contrast
to Forman (1971), I think, that most scientists seriously pondering about and writing on
causality had taken their general philosophical stand already long before. Rather than
an adaptation to a hostile intellectual milieu that, in 1927, proved to be of selective ad-
vantage, we find a complex but continuous debate about the philosophical consequences
of modern physics that, after 1913, mainly appears on the pages of the leading scientific
journal of the German-speaking world, Arnold Berliner’s Die Naturwissenschaften.

Let me be up-front, as was Forman himself when he spoke of his protagonists as
“converts to acausality” who made “quasi-religious confessions to the [anti-scientific]
milieu”, advocated “existentialism disguised as logical empiricism” (on Reichenbach)
and published a book that contained “largely blather” (on Frank 1932). To my mind,
Forman’s thesis misses core aspects of the causality debate from 1918 to 1927, and it does
so because its author followed a methodology that, albeit fruitful in many other domains,
is unable to assess the interactions between philosophical and scientific commitments in a
historical context of the kind of Weimar Germany and interwar Austria. More generally,
in order to appraise the historical dynamics of a philosophical concept, such as causality,
any broader historical and sociological approach must be accorded with the recently
sharpened methods of the history of philosophy of science.

My own picture of the causality debate is a complex one and it involves philosophical
as well as historical, ideological, and sociological motives. Philosophically, the debate
about causality and determinism was hardly separable from the quest for a proper inter-
pretation of physical probability, the conception of microphysical reality, and the more
general debates about the effects of modern physics on the conception of nature. Some of
these lines reached back into the 1890s, when the old mechanical world-view broke into
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pieces, and they concerned statistical mechanics, relativity theory, and quantum physics
alike. Many critics, among them John Hendry (1980), have noted that Forman’s main
philosophical misconception was to adopt, as did Spengler, a conception of causality
that was intimately linked to the strict determinism that predated statistical mechanics.
Already in 1872, Emil du Bois-Reymond had touted the idea that firmly sticking to this
explanatory ideal forced scientist to forgo forever a full understanding of the essence
of matter and force. Interestingly, in the Weimar days hardly any scientist rehearsed
the old Ignorabimus, but many considered it the basic misconception responsible for the
diagnosis of crisis in modern physics. It is true, Ludwig Boltzmann, in his battles with
energeticism, conceived himself as the last exponent of the mechanical world-view. But
on the other hand, in developing step-by-step the statistical interpretation of the second
law of thermodynamics he introduced a notion that was entirely alien to the mechanical
picture which DuBois-Reymond had built upon, to wit, an objective physical probability
that could no longer be understood as degree of ignorance.

The debate as to whether physical science at all required a causal foundation started
with Franz Serafin Exner’s rectorial address of 1908, by which he launched a local tra-
dition of empiricist indeterminism that I call Vienna Indeterminism. Among its main
advocates, I count, besides Exner, his former assistant Erwin Schrödinger and the Logi-
cal Empiricists Philipp Frank and Richard von Mises. Exner (1909) argued that chance
is the basis of all natural laws and that the apparent determinism in the macroscopic
domain emerged only as the thermodynamic limit of many many random events. Max
Planck, in another rectorial address of 1914 that equally sung the praise of Boltzmann,
fiercely objected to Exner’s indeterminism and insisted on a deterministic foundation of
all natural laws including the probabilistic ones. The debate, as I conceive it, ended on
the 1936 Copenhagen Congress for the Unity of Science when Frank and Moritz Schlick,
Planck’s former student and a resolute critic of any indeterminacy in principle, joined
arms to combat the increasing number of metaphysical misinterpretations of quantum
mechanics.

My main sociological point is that in the German-speaking world the causality debates
were conducted by ‘physicist-philosophers’, a role model that was more widespread there
than in other countries. It had influential historical prototypes, among them Hermann
von Helmholtz and Ernst Mach, and there was a clear conduit how a physicist laid claim
to it. Most importantly, these philosophical ambitions were only loosely embedded into
the then current philosophical schools, among them neo-Kantianism and Existenzphiloso-
phie.

Since the philosophical convictions of physicist-philosophers were not forced into a
coherent philosophical system, there was ample leeway to simultaneously participate in
different thought collectives. This conception that we owe to Ludwik Fleck (1929) is an
important clue to understand the seven years the Forman thesis is about. Yes, there
were those who defended scientific modernism and technological progress, but diagnosed
a cultural crisis. Richard von Mises, for one, still in the 1950s heeded sympathies for
Spenglerian ideas. And there were others, like his fellow physicist-philosophers from the
Vienna Circle, who at the 1929 Congress of the German Physical Society went public
with the claim that the achievements of modern science demanded an entirely new style
of scientific philosophizing and, more broadly, a scientific world conception. No wonder
that Richard von Mises disliked the manifesto, but he and Frank, in the opening session
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of the same congress, appeared almost as intellectual twins in their plea for abandoning
the old triad of “school philosophy”, the categories of space, time, and causality, and
replacing it with more suitable notions. (Frank 1919, von Mises 1930) This message was
well understood by those who rejected the neo-positivist assault on metaphysics, among
them the third speaker of the Prague session, physicist-philosopher Arnold Sommerfeld
(1929).

My paper is organized as follows. First, I provide a sketch of the causality debate.
Second, I characterize the role model of physicist-philosopher and to what extent Die
Naturwissenschaften provided a forum for this discourse. Third, I historically contex-
tualize the Forman thesis itself and indicate in what way new methodological insights
in the history of philosophy of science may prove helpful in understanding the causality
debate.

Vienna Indeterminsim and the Causality Debate

Rather than representing merely a “subterranean anticausality current” (Forman 1971,
67), as Forman put it, Exner’s inaugural speech of 1908 made a great stir and triggered
a polemic with Planck that continued the earlier Mach-Planck controversy. Frank’s rec-
ollections in the interview with T. S. Kuhn show how influential this speech was for
the then younger generation of Vienna physicists. Not that Exner in 1908 would have
continued Mach’s skepticism about atoms and the energeticist interpretation of thermo-
dynamics. To the contrary, he closely followed the brand of empiricism that Boltzmann
had developed from the late 1880s on in order to employ Mach’s anti-metaphysics against
his primary opponent, Wilhelm Ostwald’s energeticism. Boltzmann’s consistent empiri-
cism had important consequences for the basic principles of physical science. In the
last years of his life and especially in his 1903–1906 lectures on natural philosophy, he
contemplated that even the law of energy conservation was only statistically valid—an
idea that would surge much later in the 1924 Bohr-Kramers-Slater quantum theory—and
that the entropy of a system might be described by a nowhere differentiable function.
(Boltzmann 1898)

Exner amended Boltzmann’s late indeterminism in an important dimension. While
Boltzmann had devoted surprisingly little attention to the interpretation of probability,
Exner brought the relative frequency interpretation, or the Kollektivmaßlehre, developed
by Gustav Theodor Fechner (1897) to bear on the kinetic theory of gases. On this basis,
he could simultaneously claim that (i) in physics “we observe regularities which are
brought out exclusively by chance” (Exner 1909, 13) but whose probability is so high
“that it equals certainty for human conceptions” (Ibid., 16); while (ii) in the domain
of the humanities and the descriptive sciences “the random single events succeed one
another too slowly [such that] there can be no talk about a law.” (Ibid., 14) Still, or
so he would claim in an unpublished manuscript (1923), the evolution of culture was
shaped by the second law in virtue of which culture and science necessarily advance and
spread despite the death of the individual cultural organism. Such read Exners’s own
reaction to the Spenglerian challenge. (Cf. Hiebert 2000, Stöltzner 2002)

Let me turn to the opposite side in the first phase of the causality debate. Planck,
in his famous Leiden lecture of 1908 that had started the polemics with Mach, vigor-
ously defended what he took to be Boltzmann’s legacy against Mach’s anti-realism. In
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1914, he now felt obliged to save Boltzmann’s legacy from Exner’s overinterpretation.
Planck stressed “the fundamental importance of performing an exact and fundamental
separation between . . . the dynamical, strictly causal, and the merely statistical type
of lawfulness for understanding the essence of all scientific knowledge.” (1914, 57) This
distinction finds its expression in the sharp contrast between reversible processes sub-
sumed under a dynamical law and irreversible processes governed by the second law of
thermodynamics. “This dualism . . . to some may appear unsatisfactory, and one has
already attempted to remove it—as it does not work out otherwise—by denying ab-
solute certainty and impossibility at all and admitting only higher or lower degrees of
probability. . . . But such a view should very soon turn out to be a fatal and shortsighted
mistake. (Ibid., 63) This was an obvious allusion to Exner, who responded to Planck’s in
a separate chapter of his 1919 Lectures on the Physical Foundations of Natural Science.

If we look at Planck’s line of argument, we come to recognize that the principal dif-
ference between what I call Vienna Indeterminism and the Berlin reading of Boltzmann
consisted in the relationship between causality and physical ontology. Either one fol-
lowed, as did the Berliners, Kant by claiming that to stand in a causal relationship was a
condition of the possibility for the reality of a physical object (Kant called this empirical
realism), or one agreed with Mach that causality consisted in functional dependencies
between the determining elements and that physical ontology was about ‘facts’ (Tat-
sachen) that consisted in stable complexes of such dependencies. To those standing in
the Kantian tradition, the latter stance fell short of the aims of scientific inquiry. Those
standing in the Hume-Mach tradition, however, had more leeway in searching for an
ontology that was suitable for a new scientific theory. Notice that this difference in
ontology extends across a larger historical time scale than the debate I am focusing on
because it reached back to Mach’s works of the 1870s and 1880s and ended only when
philosophers of science abandoned the ideal of descriptivism after 1945.

Based upon this basic distinction between two notions of causality, Vienna Indeterminism—
as touted by Exner in 1908—can be characterized by the following three commitments:
(i) The highly improbable events admitted by Boltzmann’s statistical derivation of the
second law of thermodynamics exist. (ii) In a radically empiricist perspective, the bur-
den of proof rests with the determinist who must provide a sufficiently specific theory of
microphenomena before claiming victory over a merely statistical theory. Even worse,
assuming a deterministic micro-theory without cogent reasons would lead to a “duplica-
tion of natural law [that] closely resembles the animistic duplication of natural objects.”
(Schrödinger 1929, 11)—as Schrödinger put it in his 1922 Zurich inaugural address. (iii)
The only way to arrive at an empirical notion of objective probability is by way of the
limit of relative frequencies. It is meaningful to assume the existence of statistical col-
lectives (Kollektivgegenstände) and relate them to experience even though the limit is
only obtained for infinitely large collectives. In 1912 and 1919, von Mises provided the
rigid mathematical framework for the relative frequency interpretation.

Let me add that one has to distinguish two kinds of realism within the within the
younger generation of Vienna Indeterminists. While Frank and von Mises came to elabo-
rate the conventionalist picture and take theories as purely symbolic entities co-ordinated
to experience, Schrödinger never abandoned Boltzmann’s conception of theories as uni-
versal pictures.

In 1914, Planck rejected all three tenets of Vienna Indeterminism, but in the 1920s
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he reconciled himself with the highly improbable events (i). But even after the advent
of quantum mechanics, Planck still cherished the hope for a deterministic reformulation
of atomic physics. His former student Moritz Schlick gradually approached Vienna In-
determinism as far as the burden of proof (ii) was concerned, but he never accepted the
relative frequency interpretation (iii). Still in 1925, when already chairing the Vienna
Circle’s discussions, he held that “only in the utmost case of emergency will the scientist
or philosopher decide to postulate purely statistical micro-laws, since the scope of such
an assumption would be enormous: The principle of causality would be abandoned,
. . . and hence the possibility of exhaustive knowledge would have to be renounced.”
(Schlick 1925, 461/61) After the case of emergency had occurred in the form of quantum
mechanics, Schlick (1931) presented an entirely new theory of causality in which the
verificationist criterion of meaning blocked the assumption of a micro-world that was
deterministic but unobservable in point of principle. But Schlick still demanded to sepa-
rate all statistical regularity (Gesetzmäßigkeit) into strict law and pure randomness, such
that there were strictly speaking no “statistical laws”—a thesis that surprised physicists
as diverse as Einstein and Heisenberg. The reason was that Schlick till the end remained
committed to Johannes von Kries’s (1886) Spielraumtheorie of probability in which ob-
jective randomness was integrated into a deterministic Kantian universe. While Schlick
had to openly revoke his 1920 theory of causality in the face of quantum mechanics, the
Vienna Indeterminists could feel themselves confirmed. It is important for the sociologi-
cal coherence of the latter tradition that they typically combined such a declaration with
an explicit reference to Exner’s priority, while Schlick held that Exner’s works contained
nothing beyond the traditional philosophical criticism against determinism.

The confrontation just sketched provides a framework, in which also other alleged
‘converts to acausality’ can be integrated. Here are just two examples. Walter Nernst,
for one, had not forgotten the days he had worked with Boltzmann in Graz. “Among
all laws [of physics] the thermodynamical ones occupy a distinctive position because
unlike all others they are not just of a special kind, but applicable to any process one
can imagine.” (1922, 492) In the same vein, Exner had, in 1908, argued that the second
law is the basic principle of nature. If one related all physical laws to the second law of
thermodynamics, so Nernst continued, this would not reduce their significance or rank;
“it would however put an end to the logical overuse of the laws of nature.” (Ibid., 493)

In a review of Exner’s (1919) Lectures, Hans Reichenbach endorsed “that Exner un-
equivocally advocates the objective meaning of the probabilistic laws in which he rightly
conceives a very general regularity of nature.” (Reichenbach 1921, 415) As did Exner,
Reichenbach held that the basic laws of nature were of a statistical kind. But he did
so for reasons that contradicted the radical empiricism of the Vienna Indeterminists.
In his Ph.D. dissertation of 1915 and in a series of papers ensuing from it in the early
1920s, he argued that the principle of causality must be supplemented with a principle
of lawful distributions (later called principle of the probability function) that guarantees
that future empirical findings do not constantly change the form of the law. Due to
the unavoidability of measurement errors the connection between our experiences and
probability theory was of a more basic kind than the one between any other theory and
our experiences. This thesis of Reichenbach became a source of conflict with von Mises.

I am afraid that I have to leave it at these sketchy remarks about the continuity of
the causality debate across the breakdown of the two empires in 1918 and the quantum
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revolution in 1926. Let me just add that the problem remained under philosophical
dispute even at a time when most physicist had accepted quantum mechanics and Born’s
statistical interpretation of the wave function, and it did so even within the narrower
circle of Logical Empiricists.

The Physicist-Philosophers and Their Main Forum

Let me now turn to the sociological context of the causality debates. I have already
emphasized the importance of the role model of physicist-philosopher for my case. Let
me now describe how a physicist laid claim to this status, even though he might have
remarked to his colleagues, cunningly or wittingly, that this represented only his Sunday’s
activity.

Forman was right to assume “that institutions of German academic life provided
frequent occasions for addresses before university convocations”, and that this indicates
“the extraordinary heavy social pressure which the academic environment could and did
exert upon the individual scholar and scientist placed within it.” (1971, 6f.) Both in the
Wilhelmin Empire and in the Weimar Republic, the main duty of a physicist having been
elected rector, dean of the philosophical faculty, or secretary of an academy was to build a
bridge to his colleagues from the humanities. They demanded something more profound
than just popularizing one’s scientific achievements and emphasizing their importance
for technology and state.

Academic customs thus set the stage for the physicist-philosophers. The most influ-
ential role models were Hermann von Helmholtz and Ernst Mach, because it was mainly
them who led the way out of the older Naturphilosophie by developing a new style of
discussing the foundations of science as a philosophical problem. For this reason, many
physicist-philosophers following in their footsteps remained critical towards excessive
speculation, or published them anonymously and with a grain of salt, and they often
eschewed entering into popular discourse. Quite a few of them, accordingly, regarded
Wilhelm Ostwald’s monistic sermons and Ernst Haeckel’s writings with suspicion.

The publication of the academic addresses followed a typical scheme. Initially, they
came out as separate booklets and were republished in one or two journals of the learned
societies. At a certain point, a physicist would then assemble a collection of those aca-
demic speeches into a book that bore a title such as “Popular Writings” (Boltzmann
1905) or “Physical Panoramas” (Planck 1922). The publication of such a book testified
the author’s new status as a physicist-philosopher. There were also a few journals that
combined publications of scientists having a philosophical thrust with papers penned
by guilded philosophers who were positively disposed towards the sciences, most promi-
nently among them the Vierteljahrsschrift für wissenschaftliche Philosophie und Sozi-
ologie and Ostwald’s Annalen der Naturphilosophie. They ceased publication in 1916
and 1921 respectively.

In 1913, the media landscape for the physicist-philosopher underwent a significant
change. From now on, the mentioned academic addresses to a large percentage were
published by the newly founded Die Naturwissenschaften. Modeled after the British
Nature, the “scientific weekly for the progresses of science, medicine, and technology”—
thus read its subtitle—strove to “follow the major developments within the whole of
natural science and present them in a generally comprehensible and captivating form”
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(1913, 1). The journal not only emphasized the unity of the sciences in a time of rapidly
progressing specialization, but also—and this was among its most distinctive features
as compared to Nature—the philosophical and cultural context of the sciences. To a
large extent, this orientation was the product of the singular nature of Arnold Berliner,
who ran the journal from 1913 until he was forced out in 1935 under the Nuremberg
laws. Berliner was both one of the early technical physicist, who had worked as a factory
director, and a “Kulturmensch”, who venerated Goethe and was one of Gustav Mahler’s
closest friends. From the recollections of Wilhelm Westphal (1952) we learn that for
the younger Berlin physicists Berliner was an intellectual father figure not unlike what
Exner had become for his circle.

The impressive number of philosophical articles solicited by Berliner can be divided
into two groups. On the one hand, he ran a kind of education program by publishing
survey papers on Goethe, Kant, Schopenhauer, etc. On the other hand, he published
papers in which scientists reflected on the conceptual and philosophical foundations of
their most recent achievements, among them most papers of the causality debate and
many papers and reviews penned by Logical Empiricists. Conversely, until 1930 those
Logical Empiricists who had a science background published roughly a third of their
papers in Die Naturwissenschaften. (For further figures, see Stöltzner (2000).) This
proves that among the readers of this journal neo-positivism was by far less fringy than
Forman assumed.

Berliner’s journal unequivocally took sides in two debates that were of great impor-
tance for science as a whole in the early years of the Weimar republic. First, in the
struggles about relativity theory that had intensified after 1918, Die Naturwissenschaften
became an important stronghold in the “defense belt” (Hentschel 1990) around Einstein.
This debate shaped the philosophical understanding of modern physics, be it relativis-
tic or quantum, and prompted physicist-philosophers to take a stand against public
accusations.

Second, Berliner’s journal devoted two papers to a severe criticism of Oswald Spen-
gler’s views on biology and physics. One of the critics, the applied mathematician Paul
Riebesell, had already participated in the relativity debates. (Riebesell 1916) As did the
Vienna Indeterminists, Riebesell accepted statistical laws as genuine laws. This even
permitted him to turn the tables against Spengler. “Science—not the philosophy of
nature—will now as before stick to the principle of causality and will approach precisely
Spengler’s problem of the predetermination of history with its new methods. For, by
means of statistical laws—which Spengler incidentally does not recognize as mathemati-
cal laws—one has already successfully analyzed those mass phenomena, which historical
questions are all about.” (Riebesell 1920, 508) Thus Riebesell drew terminological con-
sequences from the present state of physics and the social sciences, but not in an act of
adaptation. In a certain sense, the break between Spengler’s cultural morphology and
the quantitative social science mentioned by Riebesell was even more radical than the
one between Spengler’s concept of causality and statistical mechanics.

In evaluating the sociological impact of this confutation of Spengler for the German
scientific community, we have to consider that Die Naturwissenschaften was closely con-
nected to two leading research organizations of the German-speaking world, the Deutsche
Gesellschaft der Naturforscher und Ärzte and the Kaiser-Wilhelm-Gesellschaft. In virtue
of this authoritative character, I have considered (Stöltzner 2000, 2005) Die Naturwis-
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senschaften as a scientifically modernist submilieu that provided scientists with a cultural
identity more specific than just being Bildungsbürger, such that they did not face the
general milieu directly without a stabilizing group identity. Today, however, I believe
that the concept of milieu—even in the operationalist sense of Fleck (1929)—is too un-
specific and ultimately forces us to accept the alternative that Forman had posed at
the beginning of his study, to wit, retrenchment versus adaptation. To my taste, all
this sounds too passive for physicist-philosophers. Moreover, after 1900 there existed no
longer a homogeneous intellectual milieu that could, as a whole, change under the influ-
ence of the lost war. As I will outline in the final section, one has to take a multi-layered
approach instead. Thus I would now say that Die Naturwissenschaften simply provided
a forum for those who endorsed scientific modernism, which could mean different things
in different disciplines, and considered science as an integral part of the general cul-
ture, towards which scientists heeded different attitudes. Much of this orientation of Die
Naturwissenschaften, especially in the fields of physics and philosophy, was due to the
singular nature of Arnold Berliner and his embedding into the Berlin scientific elite.

A characteristic element of the conduit of physicist-philosophers was, a few notable
exceptions notwithstanding, their independence from ruling philosophical schools. This
permitted them to form strategic alliances. Let me first provide an abstract characteriza-
tion this notion. A strategic alliance was formed if there was a set of basic philosophical
convictions that a group of physicists considered as central in order to further their philo-
sophical agenda within a particular intellectual, social or disciplinary context. In this
case, they confined their disagreements to internal discussions, even though in retrospect
these may appear substantial. Strategic alliances dissolved and their members regrouped,
as the convictions considered pivotal within the respective context underwent changes.
It is important to stress that the philosophical ambitions of a physicist-philosopher were
not exhausted by the intersection constituting this strategic alliance. Or to cast it into
Fleckian terms, the members of a strategic alliance were typically members of different
thought collectives.

It seems to me that both Logical Empiricism, at least initially, and the Göttingen-
Copenhagen interpretation of quantum mechanics represented strategic alliances of this
kind. When Logical Empiricists joined up with the latter, the tradition of Vienna Inde-
terminism ended in the mid 1930s because this move alienated Schrödinger from Frank
and von Mises. The reasons were at least twofold. For one, Logical Empiricists de-
cided to combat the metaphysical misinterpretations of quantum theory by developing
an empiricist reading of Bohr’s complementarity. To do so they invoked a verificationist
criterion of meaning that, in its language-oriented version, was unacceptable to Schrödin-
ger who sought for universally valid pictures rather than concepts with a limited domain
of applicability. More generally, after the EPR-paper of 1935 and Schrödinger’s (1935)
cat paper, the discussions about the interpretation of quantum mechanics shifted from
causality and indeterminism to questions of reality in the atomic domain.

But there was also a sociological element. By organizing specific meetings, through
the foundation of their own journal Erkenntnis, with their search for international allies,
and through a debate whether their distinctive method consisted in the logic of science
(Carnap), scientific philosophy (Reichenbach), or encyclopedism (Neurath), Logical Em-
piricists after 1930 accomplished the basic steps in establishing a new scientific discipline.
Through this process of discipline formation, the role model of physicist-philosopher, al-
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beit still existing, lost its pervasiveness in the German-speaking world. The further
course of the new discipline “philosophy of science” was not to be without implications
for how the Forman thesis was cast.

Contextualizing the Forman Thesis

In this section, I first want to show that the Forman thesis is a child of its days in more
than one respect; not only by revealing a strong, or even causal, influence of social factors
on the conceptual structure of empirical science—a perspective that would prove most
influential during the 1970s and beyond. Forman’s treatment of the relationship between
physical theory and cultural milieu was also deeply informed by what was common
to both Rudolf Carnap’s philosophy of science and Thomas S. Kuhn’s revolutionist
perspective on the historiography of science. As did most members of their respective
disciplines, both focused on theory and in doing so they treated a scientific theory
as a single and largely homogeneous entity. This, so I claim, prevented Forman and
others from conceiving the causality debate in its larger historical context and its proper
discursive mode, and made him disregard the philosophical continuities beyond how the
protagonists of his study, after 1918, used philosophical keywords, such as ‘causality’,
‘crisis’ and ‘Spengler’.

In the famous debates with W.V. Quine, Carnap (1950) had argued that questions
about the existence of scientific objects were only meaningful once a linguistic framework
had been specified. While Carnap continued to hold that the choice of a framework was
guided by pragmatic concerns, Kuhn’s (1962) Structure of Scientific Revolutions pointed
out that at certain moments in history, scientific revolutions overthrew an old conceptual
framework and instated a new one. The main point of Kuhn’s argument, at least in its
original form, was that the old and new frameworks were incommensurable, such that
there was no rational bridge from one paradigm to the other. Kuhn’s book has often been
understood as the final blow to a philosophy of science in the Vienna Circle style even
though it had received Carnap’s endorsement. For, both agreed that there existed not
meta-framework that could justify the transitions between two frameworks as rational.
Their main difference was that Carnap denied strong versions of the theory-ladenness of
observation, such that the brute facts always provided a bridge between two paradigms
even if there was no theoretical bridge between the old and the new paradigm. Both
their consensus and disagreement hence concerned the relationship between one or two
theories and unstructured empirical data.

The subsequent debate among philosophers centered around whether the history of
science could be rationally reconstructed—as Lakatos and Popper held—or whether
it was essentially contingent—as Feyerabend came to radicalize Kuhn’s analysis. This
debate was still in its early phase when Forman’s paper came out. Seen from perspective
of the philosophical frontline between Lakatos and Feyerabend in its mature form, we
find an interesting ambiguity in Forman’s thesis. On the one hand, by claiming a causal
influence of the post-war milieu he argued in favor of historical contingency in the style
of Feyerabend. On the other hand, Forman held that after 1927 there was sufficient
reason to abandon causality and thus assumed, in contrast, the rationality of scientific
development. Forman, it becomes clear, was not a social constructivist.

In her Quantum Dialogue, Mara Beller (1999) has made the case that Forman’s thesis
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parallels the Kuhnian picture and that he accordingly has written the history of the
winners. On her account, it was mainly Bohr’s power politics that changed a fruitful
continuous dialogue into a revolutionary narrative. In the form of deBroglie’s pilot
wave theory, she stressed, the possibility of a causal quantum mechanics had always
existed. While I agree with Beller’s paralleling Forman and Kuhn, I doubt that the
radical counterposition between dialogical emergence and rhetorical consolidation—so
the two parts of her book—does justice to the rather stable philosophical convictions of
the protagonists of her narrative because it downgrades them to justificatory rhetoric.

Again motivated by the deBroglie-Bohm theory, Jim Cushing (1994) has rightly in-
terpreted quantum mechanics as a case of Duhemian underdetermination. But he addi-
tionally construed a counterfactual history showing how the causal picture could have
prevailed, filing thus an equal rights claim for alternative interpretations of quantum
mechanics. This move was justly criticized among others by Beller (1999) and Forman
(1995). Once again, we find the above-mentioned confrontation between one or two the-
ories and empirical data. No wonder that Cushing stressed that philosophical motives
were of little importance, apart perhaps from positivism’s role in justifying the Copen-
hagen dogma. Both Beller and Cushing identify philosophy with guilded or academic
philosophy and thus miss the peculiar role model of physicist-philosopher that lies at
the heart of my reconstruction of the causality debate.

It seems to me, in contrast to Forman, Beller and Cushing, that the causality debates
among German physicist-philosophers can only be assessed by departing from a multi-
layered structure of beliefs and attitudes encompassing general philosophical principles,
mathematical formalisms, specific theories, personal research agendas and cultural self-
identities that evolved and changed on different time scales. Let me integrate my story
into this picture.

I have claimed that the causality debate extended across roughly three decades, from
Exner’s 1908 inaugural address until the discussions ensuing from the EPR-paper. There
was one thought collective, Vienna Indeterminism, whose members were not forced to
change their philosophical principles, neither in 1918, when a deep political crisis began,
nor in the face of the growing problems in atomic physics that had started around 1920,
nor after the recognition of the strange features of the new quantum theory that Born’s
interpretation of the wave function brought to light. In Schlick’s case we have seen
that for those who, unlike Schrödinger, fully endorsed the new quantum mechanics, the
philosophical reorientation was eased by the fact that indeterminism had already been an
option widely discussed. If we look at physicist-philosophers, such as Frank, von Mises
and Schlick, we see that the orientation at a Machian or Kantian conception of causality,
that lives on an even longer time scale, proved to be an enormously stable philosophical
disposition. Schlick, in particular, needed much longer to abandon the Kantian category
of causality than he did for those of space and time in the context of relativity theory.

I have remained largely silent about the mathematical levels involved in my story.
But I have to mention at least one of them, not least because it demonstrates that I
am not writing a winners’ history myself. In spite of the important role of probability
for the causality debate, the most important breakthrough in the field came only in
1932 with Kol’mogorov’s axiomatization that in virtue of its abstract nature avoided the
problems that plagued Fechner’s and von Mises’s statistical collectives. (See Hochkirchen
1999) This achievement only made clear that the problem of quantum probabilities
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was not fully resolved and that a full-blown frequentism as advocated by the Vienna
Indeterminists does not do the job.

It remains to be seen at further historical examples whether the higher-level principles
in the above structure, the philosophical and the mathematical ones, may exert such a
strong force on concept formation that they can be considered historically relativized
a prioris, as Michael Friedman (2001) has suggested in order to save the Kuhnian in-
sight from social constructivism, or whether they only mediate across fractures in the
conceptual development that occur on another level. The latter claim, it seems to me,
can be reconciled with Fleck’s (1935) insight that a single scientist may simultaneously
belong to different thought collectives. Such was the tack taken in the present analysis
because it permitted me to incorporate also other thinkers, such as Reichenbach and
Nernst, who neither were part of Vienna Indeterminism nor shared Planck’s insistence
of determinism or Schlick’s separation between lawfulness and randomness.

Finally, it is important to note that the existence of local traditions, such as Vienna
Indeterminism, does not contradict the integrity of the causality debate and the debates
occurring in Die Naturwissenschaften in so far as they took place within a single but
multifarious German-speaking scientific culture. For this reason, I am happy to observe
that Forman considers the Vienna tradition no longer just as a “subterranean anticausal-
ity current” (Forman 1971, 67) but as part of a broader Austro-Hungarian tradition in
which positivist tendencies were pivotal and which had its roots long before 1918. (For-
man 2007, 40) I hope to have shown that also the stance of the Weimar participants
in the debate—both thematically and socially—was not primarily a product of the fall
of the Wilhelminian Empire but shaped by earlier philosophical commitments that had
been defined in a struggle about Boltzmann’s legacy statistical mechanics.
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Boltzmann, Ludwig (1898), ‘Über die sogenannte H-Kurve’, Mathematische Annalen
50, 325–332.
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8 Electron Spin or ‘Classically
Non-Describable Two-Valuedness’

Domenico Giulini

In December 1924 Wolfgang Pauli proposed the idea of an inner degree of freedom of
the electron, which he insisted should be thought of as genuinely quantum mechanical in
nature. Shortly thereafter Ralph Kronig and a little later Samuel Goudsmit and George
Uhlenbeck took up a less radical stance by suggesting that this degree of freedom somehow
corresponded to an inner rotational motion, though it was unclear from the very begin-
ning how literal one was actually supposed to take this picture, since it was immediately
recognised (already by Goudsmit and Uhlenbeck) that it would very likely lead to serious
problems with Special Relativity if the model were to reproduce the electron’s values for
mass, charge, angular momentum, and magnetic moment. However, probably due to
the then overwhelming impression that classical concepts were generally insufficient for
the proper description of microscopic phenomena, a more detailed reasoning was never
given. In this contribution I shall investigate in some detail what the restrictions on the
physical quantities just mentioned are, if they are to be reproduced by rather simple clas-
sical models of the electron within the framework of Special Relativity. It turns out that
surface stresses play a decisive role and that the question of whether a classical model for
the electron does indeed contradict Special Relativity can only be answered on the basis
of an exact solution, which has hitherto not been given.

8.1 Introduction

The discovery of electron spin is one of the most interesting stories in the history of
Quantum Mechanics; told e.g. in van der Waerden’s contribution to the Pauli Memo-
rial Volume ([11], pp. 199–244), in Tomonaga’s book [46], and also in various first-hand
reports [47,19,30]. This story also bears fascinating relations to the history of under-
standing Special Relativity. One such relation is given by Thomas’ discovery of what
we now call “Thomas precession” [44,45], which explained for the first time the correct
magnitude of spin-orbit coupling and hence the correct magnitude of the fine-structure
split of spectral lines, and whose mathematical origin can be traced to precisely that
point which marks the central difference between the Galilei and the Lorentz group (this
is e.g. explained in detail in Sects. 4.3–4.6 of [17]). In the present paper I will dwell a
little on another such connection to Special Relativity.

As is widely appreciated, Wolfgang Pauli is a central figure, perhaps the most central
figure, in the story of spin . Being the inventor of the idea of an inner (quantum mechan-
ical) degree of freedom of the electron, he was at the same time the strongest opponent
to attempts to relate it to any kind of interpretation in terms of kinematical concepts
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that derive from the picture of an extended material object in a state of rotation. To
my knowledge, Pauli’s hypothesis of this new intrinsic feature of the electron, which
he cautiously called “a classical non-describable two valuedness”, was the first instance
where a quantum-mechanical degree of freedom was claimed to exist without a corre-
sponding classical one. This seems to be an early attempt to walk without the crutches
of some ‘correspondence principle’. Even though the ensuing developments seem to have
re-installed—mentally at least—the more classical notion of a spinning electron through
the ideas of Ralph Kronig (compare section 4 of van der Waerden’s contribution to [11],
pp. 209–216) and, a little later, Samuel Goudsmit and George Uhlenbeck1[20,21], Pauli
was never convinced, despite the fact that he lost the battle against Thomas2 and de-
clared “total surrender” in a letter to Bohr written on March 12. 1926 ([27], Vol. I,
Doc. 127, pp. 310). For Pauli the spin of the electron remained an abstract property
which receives its ultimate and irreducible explanation in terms of group theory, as
applied to the subgroup3 of spatial rotations (or its double cover) within the full sym-
metry group of space-time, may it be the Galilei or the Lorentz group (or their double
cover).4 In this respect, Pauli’s 1946 Nobel Lecture contains the following instructive
passage (here and throughout this paper I enclose my annotations to quotes within
square brackets):

Although at first I strongly doubted the correctness of this idea [of the elec-
tron spin in the sense of Kronig, Goudsmit and Uhlenbeck] because of its
classical-mechanical character, I was finally converted to it by Thomas’ calcu-
lations on the magnitude of doublet splitting. On the other hand, my earlier
doubts as well as the cautions expression �classically non-describable two-
valuedness� experienced a certain verification during later developments,
since Bohr was able to show on the basis of wave mechanics that the electron
spin cannot be measured by classically describable experiments (as, for in-
stance, deflection of molecular beams in external electromagnetic fields) and

1 Van der Waerden states that Goudsmit and Uhlenbeck conceived the idea of the spinning electron
independently of Kronig, even though he also reports that after Kronig first told his idea to Pauli, who
did not approve, in Tübingen on January 8th 1925 he went straight to Copenhagen to “discuss the
problem with Heisenberg, Kramers and others”, who did not approve either ([11], p. 212). Hence, in
principle, Kronig’s idea could well have transpired to Goudsmit and Uhlenbeck prior to their publication,
though there seems to be no evidence for that. In contrast, already in the spring of 1926 Kronig
published two critical notes [26,25] in which he much stressed the problems with Goudsmit’s and
Uhlenbeck’s idea (sic!). He concluded [26] by saying: “The new hypothesis, therefore, appears rather
to effect the removal of the family ghost from the basement to the sub-basement, instead of expelling
it definitely from the house.” In later recollections he gently brings himself back into the game, like in
his contribution to the Pauli memorial volume ([11], p. 5–39), but also emphasises his awareness of the
critical aspects, as, e.g., in a letter to van der Waerden ([11], p. 212).

2At this point Frenkel’s remarkable contribution [14] should also be mentioned, which definitely improves
on Thomas’ presentation and which was motivated by Pauli sending Frenkel Thomas’ manuscript, as
Frenkel acknowledges in footnote 1 on p. 244 of [14]. A more modern account of Frenkel’s work is given
in [43].

3It is more correct to speak of the conjugacy class of subgroups of spatial rotations, since there is no
(and cannot be) a single distinguished subgroup group of ‘spatial’ rotations in Special Relativity.

4Half-integer spin representations only arise either as proper ray-representations (sometimes called
‘double-valued’ representations) of spatial rotations SO(3) or as faithful true representations (i.e.
‘single-valued’) of its double-cover group SU(2), which are subgroups of the Galilei and Lorentz groups
or their double-cover groups respectively.
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Figure 8.1: Part of a letter by L.H. Thomas to S. Goudsmit dated March 25th 1926, taken from [18].

must therefore be considered as an essential quantum-mechanical property
of the electron.5 ([31], p. 30)

This should clearly not be misunderstood as saying that under the impression of
Thomas’ calculations Pauli accepted spin in its ‘classical-mechanical’ interpretation. In
fact, he kept on arguing fiercely against what in a letter to Sommerfeld from December
1924 he called “model prejudices” ([27], Vol. I, Doc. 72, p. 182) and did not refrain from
ridiculing the upcoming idea of spin from the very first moment (cf. Fig. 8.1). What
5At this point Pauli refers to the reports of the Sixth Physics Solvay Conference 1932. In his handbook
article on wave mechanics, Pauli is more explicit ([33], p. 165): The spin-moment of the electron can
never be measured in clean separation from the orbital moment by those experiments to which the
classical notion of particle-orbit applies. (German original: “Das Spinmoment des Elektrons kann
niemals, vom Bahnmoment eindeutig getrennt, durch solche Versuche bestimmt werden, auf die der
klassische Begriff der Partikelbahn anwendbar ist.”) However, this general statement seems to be based
entirely on its validity in specific situations, like those discussed by Mott ([29], Appendix, pp. 440–442).
A closer examination shows that the envisaged theorem of Bohr and Pauli is physically unwarranted
in the generality in which it is presented above. This can, for example, be illustrated by the possibility
to create macroscopically separated beams of polarised (anti)protons in a storage ring via the Stern-
Gerlach effect (see [36]). Other examples to the same effect of Gedanken- and real experiments are
discussed in [8].
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Pauli accepted was the idea of the electron possessing an intrinsic magnetic moment and
angular momentum, the latter being interpreted exclusively in a formal fashion through
its connection with the generators of the subgroup of rotations within the Lorentz group,
much like we nowadays view it in modern relativistic field theory. To some extent it
seems fair to say that, in this case, Pauli was a pioneer of the modern view according
to which abstract concepts based on symmetry-principles are seen as primary, whereas
their concrete interpretation in terms of localised material structures, to which e.g. the
kinematical concept of ‘rotation’ in the proper sense applies, is secondary and sometimes
even dispensable. But one should not forget that this process of emancipation was
already going on in connection with the notion of classical fields, as Einstein used to
emphasise, e.g., in his 1920 Leiden address “Ether and the Theory of Relativity”6 ([42],
Vol. 7, Doc. 38, pp. 308–320). We will come back to this point below.7

Besides being sceptical in general, Pauli once also made a specific remark as to the
inadequateness of classical electron models; that was three years after Thomas’ note, in
a footnote in the addendum to his survey article “General Foundations of the Quantum
Theory of Atomic Structure”8, that appeared 1929 as chapter 29 in ‘Müller-Pouillets
Lehrbuch der Physik’. There he said:

Emphasising the kinematical aspects one also speaks of the ‘rotating electron’
(English ‘spin-electron’). However, we do not regard the conception of a
rotating material structure to be essential, and it does not even recommend
itself for reasons of superluminal velocities one then has to accept. ([24],
Vol. 1, pp. 721–722, footnote 2)

Interestingly, this is precisely the objection that, according to Goudsmit’s recollec-
tions [18], Lorentz put forward when presented with Goudsmit’s and Uhlenbeck’s idea
by Uhlenbeck, and which impressed Uhlenbeck so much that he asked Ehrenfest for help
in withdrawing the already submitted paper [18]. He did not succeed, but the printed
version contains at least a footnote pointing out that difficulty:

The electron must now assume the property (a) [a g-factor of 2], which Landé
attributed to the atom’s core, and which is hitherto not understood. The
quantitative details may well depend on the choice of model for the electron.
[...] Note that upon quantisation of that rotational motion [of the spherical
hollow electron], the equatorial velocity will greatly exceed the velocity of
light. ([20], p. 954)

This clearly says that a classical electron model cannot reproduce the observable quan-
tities, mass, charge, angular momentum, and magnetic moment, without running into
severe contradictions with Special Relativity.9 The electron model they had in mind
6German original: Äther und Relativitätstheorie.
7The case of a classical electromagnetic field is of particular interesting insofar as the suggestive picture
provided by Faraday’s lines of force, which is undoubtedly helpful in many cases, also provokes to view
these lines as objects in space, like ropes under tension, which can be attributed a variable state of
motion. But this turns out to be a fatal misconception.

8German original: Allgemeine Grundlagen der Quantentheorie des Atombaues.
9The phrase “upon quantisation” in the above quotation is to be understood quantitatively, i.e. as
“upon requiring the spin angular-momentum to be of magnitude ~/2 and the magnetic moment to be
one magneton (g = 2)”.
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was that developed by Abraham in his 1903 classic paper on the “Principles of Electron
Dynamics” [1] (cited in footnote 2 on p. 954 of [20]). Interestingly, one of the first ones to
spread this criticism was Kronig, who in [26] asserts that “the internal velocities would
have to be exceedingly close to that of light” and again in [25] that “the velocities of
spin would have to be exceedingly high if classical concepts could still be applied to the
case in question” ([25], p. 329). Much later, in his letter to van der Waerden that we
already mentioned, he again stresses as one of the primary difficulties with this idea “the
necessity to assume, for the rotating charge of an electron of classical size, velocities sur-
passing the velocity of light” ([11], p. 212). Since then it has become standard textbook
wisdom that classical electron models necessarily suffer from such defects (compare, e.g.,
[5], p. 155) and that, even in quantum mechanics, “the idea of the rotating electron is
not be taken literally”, as Max Born once put it ([5], p. 188). Modern references iterate
this almost verbatim:

The term ‘electron spin’ is not to be taken literally in the classical sense as
a description of the origin of the magnetic moment described above. To be
sure, a spinning sphere of charge can produce a magnetic moment, but the
magnitude of the magnetic moment obtained above cannot be reasonably
modelled by considering the electron as a spinning sphere.
(Taken from 〈 http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html〉)

In this contribution I wish to scrutinise the last statement. This is not done in an
attempt to regain respect for classical electron models for modern physics, but rather
to illuminate in some detail a specific and interesting case of the (well know) general
fact that progress is often driven by a strange mixture of good and bad arguments,
which hardly anybody cares to separate once progress is seen to advance in the ‘right
direction’. Also, the issues connected with an inner rotational motion of the electron are
hardly mentioned in the otherwise very detailed discussion of classical electron theories
in the history-of-physics literature (compare [28,23]). Last but not least, the present
investigation once more emphasises the importance of special-relativistic effects due to
stresses, which are not necessarily connected with large velocities, at least in a phe-
nomenological description of matter. But before giving a self-contained account, I wish
to recall Pauli’s classic paper of December 1924, where he introduced his famous “clas-
sically non-describable two-valuedness”.

8.2 A Classically Non-Describable Two-Valuedness

8.2.1 Preliminaries

We begin by recalling the notion of gyromagnetic ratio. Consider a (not necessarily
continuous) distribution of mass and charge in the context of pre-Special-Relativistic
physics, like, e.g., a charged fluid or a finite number of point particles. Let ~v(~x) denote
the corresponding velocity field with respect to an inertial frame and ρq and ρm the
density distributions of electric charge and mass corresponding to the total charge q
and mass m0 respectively. The total angular momentum is given by (× denotes the
antisymmetric vector product)

~J =
∫
d3x ρm(~x)

(
~x× ~v(~x)

)
. (8.1)
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The electric current distribution, ~j(~x) := ρq~v(~x), is the source of a magnetic field which
at large distances can be approximated by a sum of multipole components of increasingly
rapid fall-off for large distances from the source. The lowest possible such component
is the dipole. It has the slowest fall-off (namely 1/r3) and is therefore the dominant
one at large distances. (A monopole contribution is absent due to the lack of magnetic
charges.) The dipole field is given by10

~Bdipole(~x) :=
(µ0

4π

) 3~n(~n · ~M)− ~M

r3
, (8.2)

where r := ‖~x‖, ~n := ~x/r and where ~M denotes the magnetic dipole moment of the cur-
rent distribution, which is often (we shall follow this) just called the magnetic moment:

~M := 1
2

∫
d3x ρq(~x)

(
~x× ~v(~x)

)
. (8.3)

Note the similarity in structure to (1), except for the additional factor of 1/2 in front
of (3).

The gyromagnetic ratio of a stationary mass and charge current-distribution, Rg, is
defined to be the ratio of the moduli of ~M and ~J :

Rg :=
‖ ~M‖
‖ ~J‖

. (8.4)

We further define a dimensionless quantity g, called the gyromagnetic factor, by

Rg =: g
q

2m0
. (8.5)

These notions continue to make sense in non-stationary situations if ~M and ~J are
slowly changing (compared to other timescales set by the given problem), or in (quasi)
periodic situations if ~M and ~J are replaced by their time averages, or in mixtures of
those cases where, e.g., ~J is slowly changing and ~M rapidly precesses around ~J (as in
the case discussed below).

An important special case is given if charge and mass distributions are strictly pro-
portional to each other, i.e., ρq(~x) = λρm(~x), where λ is independent of ~x. Then we
have

Rg =
q

2m0
⇒ g = 1 . (8.6)

In particular, this would be the case if charge and mass carriers were point particles of
the same charge-to-mass ratio, like N particles of one sort, where

ρq(~x) =
q

N

N∑
i=1

δ(3)(~x− ~xi) and ρm(~x) =
m0

N

N∑
i=1

δ(3)(~x− ~xi) . (8.7)

After these preliminaries we now turn to Pauli’s paper.
10We use SI units throughout so that the electric and magnetic constants ε0 and µ0 will appear explicitly.

Note that ε0µ0 = 1/c2 and that µ0 = 4π · 10−7 kg ·m · C−2 exactly, where C stands for ‘Coulomb’, the
unit of charge.
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8.2.2 Pauli’s Paper of December 1924

On December 2nd 1924, Pauli submitted a paper entitled “On the influence of the
velocity dependence of the electron mass upon the Zeeman effect”11 ([24], Vol. 2, pp. 201–
213) to the Zeitschrift für Physik. In that paper he starts with the general observation
that for a point particle of rest-mass m0 and charge q, moving in a bound state within
a spherically symmetric potential, the velocity dependence of mass,

m = m0/
√

1− β2 , (8.8)

affects the gyromagnetic ratio. Here β := v/c, where v := ‖~v‖. The application he
aims for is the anomalous Zeeman effect for weak magnetic fields, a topic on which he
had already written an earlier paper, entitled ’On the Rules of the anomalous Zeeman
Effect’12 ([24], Vol. 2, pp. 151–160), in which he pointed out certain connections between
the weak-field case and the theoretically simpler case of a strong magnetic field. Note
that “weak” and “strong” here refers to the standard set by the inner magnetic field
caused by the electrons orbital motion, so that “weak” here means that the Zeeman
split is small compared to the fine-structure.

Since the charge is performing a quasi periodic motion13, its magnetic moment due
to its orbital motion is given by the time average (I will denote the time average of a
quantity X by 〈X〉)

〈 ~M〉 = q 〈~x× ~v〉/2 . (8.9)

On the other hand, its angular momentum is given by

~J = m (~x× ~v) = m0 (~x× ~v)/
√

1− β2 . (8.10)

It is constant if no external field is applied and slowly precessing around the magnetic
field direction if such a field is sufficiently weak, thereby keeping a constant modulus.
Hence we can write

〈~x× ~v〉 =
~J

m0

〈√
1− β2

〉
, (8.11)

where the averaging period is taken to be long compared to the orbital period of the
charge, but short compared to the precession period of ~J if an external magnetic field is
applied. This gives

‖〈 ~M〉‖
‖ ~J‖

=
|q|

2m0
γ , (8.12)

where14

γ :=
〈√

1− β2
〉
. (8.13)

11German original: Über den Einfluß der Geschwindigkeitsabhängigkeit der Elektronenmasse auf den
Zeemaneffekt.

12German original: Über die Gesetzmäßigkeiten des anomalen Zeemaneffekts.
13Due to special-relativistic corrections, the bound orbits of a point charge in a Coulomb field are not

closed. The leading order perturbation of the ellipse that one obtains in the Newtonian approximation
is a prograde precession of its line of apsides.

14This is Pauli’s notation. Do not confuse this γ with the Lorentz factor 1/
p

1− β2, which nowadays is
usually abbreviated by γ, though not in the present paper.
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More specifically, Pauli applies this to the case on an electron in the Coulomb field of
a nucleus. Hence m0 from now on denotes the electron mass. Its charge is q = −e, and
the charge of the nucleus is Ze. Using the virial theorem, he then gives a very simple
derivation of

γ = 1 +W/m0c
2 , (8.14)

where W denotes the electron’s total energy (kinetic plus potential). For the quantised
one-electron problem, an explicit expression for W in terns of the azimuthal quantum
number k (j+ 1 in modern notation, where j is the quantum number of orbital angular-
momentum) and the principal quantum number n (n = nr + k, where nr is the radial
quantum number) was known since Sommerfeld’s 1916 explanation of fine structure (see,
e.g., [40], p. 53, formula (17)). Hence Pauli could further write:

γ =

1 +
α2Z2(

n− k +
√
k2 − α2Z2

)2


−1/2

≈ 1− α2Z2

2n2
, (8.15)

where the approximation refers to small values of α2Z2 and where α := e2/4πε0~c ≈
1/137 is the fine-structure constant. For higher Z one obtains significant deviations from
the classical value γ = 1. For example, Z = 80 gives g = 0.812.

The relativistic correction factor γ affects the angular frequency15 with which the
magnetic moment created by the electron’s orbital motion will precess in a magnetic
field of strength B. This angular frequency is now given by γω0, where ω0 is the Larmor
(angular) frequency:

ω0 = ge
eB

2m0
. (8.16)

Here we explicitly wrote down the gyromagnetic ratio, ge, for of the electron’s orbital
motion even though ge = 1, just to keep track of its appearance. The energy for the
interaction of the electron with the magnetic field now likewise receives a factor of γ.

Pauli now applies all this to the “core model” for atoms with a single valence electron.16

According to the simplest version of this model, the total angular momentum, ~J , and the
total magnetic moment, ~M , are the vector sums of the angular and magnetic momenta
of the core (indicated here by a subscript c) and the valence electron (indicated here by
a subscript e):

~J = ~Jc + ~Je , (8.17a)
~M = ~Mc + ~Me . (8.17b)

The relations between the core’s and electron’s magnetic momenta on one side, and their
angular momenta on the other, are of the form

~Mc =
egc
2m0

~Jc , (8.18a)

~Me =
ege
2m0

~Je . (8.18b)

15We will translate all proper frequencies in Pauli’s paper into angular frequencies. Hence there are
differences in factors of 2π. This is also related to our usage of ~ := h/2π rather than h (Planck’s
constant).

16Instead of the more modern expression “valence electron” Pauli speaks of “light electron” (German
original: Lichtelektron). Sometimes the term “radiating electron” is also used (e.g., in [46]).
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The point is now that ~M is not a multiple of ~J if ge 6= gc. Assuming a constant ~J
for the time being, this means that ~M will precess around ~J . Hence ~M is the sum of a
time independent part, ~M‖, parallel to ~J and a rotating part, ~M⊥, perpendicular to ~J .
The time average of ~M⊥ vanishes so that the effective magnetic moment is just given
by ~M‖. Using (17) and (18), and resolving scalar products into sums and differences of
squares,17 we get

~M‖ =
~J · ~M
J2

~J

=
e

2m0

ge( ~J · ~Je) + gc( ~J · ~Jc)
J2

~J

=
e

2m0

ge(J2 + J2
e − J2

c ) + gc(J2 + J2
c − J2

e )
2J2

~J

=
e

2m0

{
ge +

(
gc − ge

)J2 + J2
c − J2

e

2J2

}
~J .

(8.19)

Setting again ge = 1, the expression in curly brackets gives the gyromagnetic factor of
the total system with respect to the effective magnetic moment. Its quantum analog is
obtained by replacing J2 → J(J + 1) and correspondingly for J2

c and J2
e , which is then

called the Landé factor18 gL. Hence

gL := 1 + (gc − 1)
J(J + 1) + Jc(Jc + 1)− Je(Je + 1)

2J(J + 1)
. (8.20)

All this is still right to a good approximation if ~J is not constant, but if its frequency
of precession around the direction of the (homogeneous) external field is much smaller
than the precession frequency of ~M around ~J , which is the case for sufficiently small
external field strength .

Basically through the work of Landé it was known that gc = 2 fitted the observed
multiplets of alkalies and also earth alkalies quite well. This value clearly had to be
considered anomalous, since the magnetic moment and angular momentum of the core
were due to the orbital motions of the electrons inside the core, which inevitably would
lead to gc = 1, as explained in section 8.2.1. This was a great difficulty for the core model
at the time, which was generally referred to as the “magneto-mechanical anomaly”. Pauli
pointed out that one could either say that the physical value of the core’s gyromagnetic
factor is twice the normal value, or, alternatively, that it is obtained by adding 1 to the
normal value.

These two ways of looking at the anomaly suggested two different ways to account for
the relativistic correction, which should only affect that part of the magnetic moment
that is due to the orbital motion of the inner electrons, that is, the ‘normal’ part of gc.
Hence Pauli considered the following two possibilities for a relativistic correction of gc,
corresponding to the two views just outlined:

gc = 2 · 1 → gc = 2 · γ or gc = 1 + 1 → gc = 1 + γ . (8.21)

17Like, e.g., ~J · ~Je = − 1
2

`
( ~J − ~Je)

2 − J2 − J2
e

´
= − 1

2

`
J2
c − J2 − J2

e

´
.

18For more historical background information on Landé’s impressive work on the anomalous Zeeman
effect we refer to the comprehensive studies by Forman [13,12].
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Then comes his final observation, that neither of these corrections are compatible with
experimental results on high-Z elements by Runge, Paschen and Back, which, like the
low-Z experiments, resulted in compatibility with (20) only if gc = 2. In a footnote Pauli
thanked Landé and Back for reassuring him that the accuracy of these measurements
where about one percent. Pauli summarises his findings as follows

If one wishes to keep the hypothesis that the magneto-mechanical anomaly
is also based in closed electron groups and, in particular, the K shell, then
it is not sufficient to assume a doubling of the ratio of the group’s magnetic
moment to its angular momentum relative to its classical value. In addition,
one also needs to assume a compensation of the relativistic correction. ([24],
Vol. 2, p. 211)

After some further discussion, in which he stresses once more the strangeness19 that lies
in gc = 2, he launches the following hypothesis, which forms the main result of his paper:

The closed electron configurations shall not contribute to the magnetic mo-
ment and angular momentum of the atom. In particular, for the alkalies,
the angular momenta of, and energy changes suffered by, the atom in an
external magnetic field shall be viewed exclusively as an effect of the light-
electron, which is also regarded as the location [“der Sitz”] of the magneto-
mechanical anomaly. The doublet structure of the alkali spectra, as well as
the violation of the Larmor theorem, is, according to this viewpoint, a result
of a peculiar, classically indescribable disposition of two-valuedness of the
quantum-theoretic properties of the light-electron. ([24], Vol. 2, p. 213)

Note that this hypothesis replaces the atom’s core as carrier of angular momentum by
the valence electron. This means that (17), (18), and (20) are still valid, except that
the subscript c (for “core”) is now replaced by the subscript s (for “spin”, anticipating
its later interpretation), so that we now have a coupling of the electron’s orbital angular
momentum (subscript e) to its intrinsic angular momentum (subscript s). In (20), with
gc replaced by gs, one needs to set gs = 2 in order to fit the data. But now, as long as
no attempt is made to relate the intrinsic angular momentum and magnetic moment of
the electron to a common origin, there is no immediate urge left to regard this value as
anomalous. Also, the problem in connection with the relativistic corrections (21) now
simply disappeared, since it was based on the assumption that ~Jc and ~Mc were due to
orbital motions of inner (and hence fast) electrons, whereas in the new interpretation
only ~Je and ~Me are due to orbital motion of the outer (and hence slow) valence electron.

It is understandable that this hypothesis was nevertheless felt by some to lack precisely
that kind of ‘explanation’ that Pauli deliberately stayed away from: a common dynamical
origin of the electron’s inner angular momentum and magnetic moment. From here the
‘story of spin’ takes its course, leading to the hypothesis of the rotating electron, first
conceived by Kronig and a little later by Goudsmit and Uhlenbeck, and finally to its
implementation into Quantum Mechanics by Pauli [32] (“Pauli Equation” for the non-
relativistic case) and Dirac [9] (fully Lorentz invariant “Dirac Equation”). Since then
many myths surrounding spin built up, like that the concept of spin, and in particular
19For example: how can one understand the sudden doubling that the gyromagnetic factor of an outer

electron must suffer when joining the core?
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the value g = 2, was irreconcilable with classical (i.e. non-quantum) physics and that
only the Dirac equation naturally predicted g = 2. As for the latter statement, it is well
known that the principle of minimal coupling applied to the Pauli equation leads just
as natural to g = 2 as in case of the Dirac equation (cf. [15] and [10], p. 37). Also, the
very concept of spin has as natural a home in classical physics as in quantum physics if
one starts from equally general and corresponding group-theoretic considerations.20

For the rest of this contribution I wish to concentrate on the particular side aspect
already outlined in the introduction. Let me repeat the question: In what sense do the
actual values of the electron parameters, mass, charge, intrinsic angular-momentum, and
gyromagnetic factor, resist classical modelling in the framework of Special Relativity?

8.3 Simple Models of the Electron

In this section we will give a self-contained summary of the basic features of simple
electron models. The first model corresponds to that developed by Abraham [1], which
was mentioned by Goudsmit and Uhlenbeck as already explained.21 We will see that this
model can only account for g factors in the interval between 3/2 and 11/6 if superluminal
speeds along the equator are to be avoided. We also critically discuss the assumption
made by Goudsmit and Uhlenbeck that this (i.e. Abraham’s) model predicts g = 2. Since
this model neglects the stresses that are necessary to prevent the charge distribution from
exploding, we also discuss a second model in which such stresses (corresponding to a
negative pressure in the electron’s interior) are taken into account, at least in some slow-
rotation approximation. This model, too, has been discussed in the literature before [7].
Here it is interesting to see that due to those stresses significantly higher values of g are
possible, though not for small charges as we will also show.22 Finally we discuss the
restriction imposed by the condition of energy dominance, which basically says that the
speed of sound of the stress-supporting material should not exceed the speed of light.
This sets an upper bound on g given by 9/4. Note that all these statements are made
only in the realm where the slow-rotation approximation is valid. I do not know of any
fully special-relativistic treatment on which generalisations of these statements could
be based. In that sense, the general answer to our main question posed above is still
lacking.

20The spaces of states in quantum and classical mechanics are Hilbert spaces and symplectic manifolds
respectively. An elementary system is characterised in Quantum Mechanics by the requirement that the
group of space-time symmetries act unitarily and irreducibly on its space of states. The corresponding
requirement in Classical Mechanics is that the group action be symplectic and transitive [3]. The
classification of homogeneous (with respect to the space-time symmetry group, be it the Galilei or
Lorentz group) symplectic manifolds [2,22] leads then as natural to a classical concept of spin as
the classification of unitary irreducible (ray-) representations leads to the quantum-mechanical spin
concept. The mentioned classical structures are related to the quantum structures by various concepts
of ‘quantisation’ like ‘geometric quantisation’. Compare [49], in particular Chap. 6 on elementary
systems.

21Since we are mainly concerned with the spin aspects, we will ignore the differences between Abraham’s
and, say, Lorentz’ model (rigid versus deformable), which become important as soon as translational
motions are considered. We mention Abraham not for any preference for his ‘rigid’ model, but for the
reason that he considered rotational motion explicitly. Its interaction with the translational motion
was further worked out in detail by Schwarzschild in [38], but this is not important here.

22This is another example of a special-relativistic effect which has nothing to do with large velocities.
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8.3.1 A Purely Electromagnetic Electron

Consider a homogeneous charge distribution, ρ, of total charge Q on a sphere of radius
R centred at the origin (again we write r := ‖~x‖ and ~n := ~x/r):

ρ(~x) =
Q

4πR2
δ(r −R) . (8.22)

For the moment we shall neglect the rest mass of the matter that sits at r = R and
also the stresses it must support in order to keep the charge distribution in place. The
charge is the source of the scalar potential

φ(~x) =
1

4πε0

∫
ρ(~x′)
‖~x− ~x′‖

d3x′ =
Q

4πε0R

{
1 for r < R ,

R/r for r > R ,
(8.23)

with corresponding electric field

~E(~x) =
Q

4πε0R2

{
~0 for r < R ,

~n for r > R .
(8.24)

Let now the charge distribution rotate rigidly with constant angular velocity ~ω. This
gives rise to a current density

~j(~x) = (~ω × ~x) ρ(~x) =
Q

4πR2
(~ω × ~x) δ(r −R) , (8.25)

which, in turn, is the source of a vector potential according to

~A(~x) =
µ0

4π

∫ ~j(~x′)
‖~x− ~x′‖

d3x′ =
µ0Q

12πR
~ω ×

{
~x for r < R ,

~x (R/r)3 for r > R .
(8.26)

Hence, in the rotating case, there is an additional magnetic field in addition to the
electric field (24):

~B(~x) =
µ0

4π

{
2 ~M/R3 for r < R ,(
3~n(~n · ~M)− ~M

)
/r3 for r > R ,

(8.27)

where
~M := 1

3QR
2 ~ω . (8.28)

For r < R this is a constant field in ~ω direction. For r > R it is a pure dipole field (i.e.
all higher multipole components vanish) with moment (28).

Energy

The general expression for the energy of the electromagnetic field is23

E =
∫

R3

1
2

(
ε0E

2(~x) + 1
µ0
B2(~x)

)
d3x . (8.29)

23From now on we shall denote the modulus of a vector simply by its core symbol, i.e., ‖ ~E‖ = E etc.
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For the case at hand, the electric and magnetic contributions to the energy are respec-
tively given by

Ee =
Q2

8πε0R

{
0 from r < R

1 from r > R
(8.30a)

Em =
µ0

4π
M2/R3

{
2/3 from r < R

1/3 from r > R .
(8.30b)

The total magnetic contribution can be written as

Em =
µ0

4π
M2/R3 = 1

2 I ω
2 , (8.31)

where
I :=

µ0

18π
Q2R (8.32)

may be called the electromagnetic moment of inertia [1]. It has no mechanical interpre-
tation in terms of a rigid rotation of the electrostatic energy distribution (see below)!

The total electromagnetic energy can now be written as

E = Ee + Em =
Q2

8πε0R

{
1 + 2

9β
2
}
, (8.33)

where we used ε0µ0 = 1/c2 and set β := Rω/c. The ratio of magnetic (‘kinetic’) to total
energy is then given by

Em
E

=
β2

9/2 + β2
, (8.34)

which is a strictly monotonic function of β bounded above by 1 (as it should be). How-
ever, if we require β < 1, the upper bound is 2/11.

Angular Momentum

The momentum density of the electromagnetic field vanishes for r < R and is given by

~p(~x) =
µ0

16π2
Q ( ~M × ~n)/r5 (8.35)

for r > R (1/c2 times ‘Poynting vector’). The angular-momentum density also vanishes
for r < R. For r > R it is given by

~̀(~x) = ~x× ~p(~x) =
µ0

16π2
Q

~M − ~n(~n · ~M)
r4

. (8.36)

Hence the total linear momentum vanishes, whereas the total angular momentum is
given by

~J :=
∫
r>R

~̀(~x) d3x = I~ω (8.37)

with the same I (moment of inertia) as in (32).
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The Gyromagnetic Factor

The gyromagnetic ratio now follows from expressions (28) for ~M and (37) for ~J :

M

J
=

6π R
µ0Q

=: g
Q

2m
, (8.38)

where m denotes the total mass, which is here given by

m := E/c2 =
µ0

8π
Q2

R

{
1 + 2

9β
2
}
. (8.39)

Hence g can be solved for:

g =
3
2

{
1 + 2

9β
2
}
, (8.40)

so that
3
2 < g < 11

6 if 0 < β < 1 . (8.41)

Even with that simple model we do get quite close to g = 2.

Predicting g = 2?

It is sometimes stated that Abraham’s model somehow ‘predicts’ g = 2 (e.g., [30] p. 39
or [34] p. 206), though this is not at all obvious from [1]. My interpretation for how such
a ‘prediction’ could come about can be given in terms of the present special-relativistic
model.24 It rests on an (inconsistent) combination of the following two observations.
First, if we Lorentz transform the purely electric field (24) into constant translational
motion with velocity w, we obtain a new electric and also a non-vanishing magnetic field.
The integrated Poynting vector then gives the total electromagnetic momentum of the
charged shell at speed w:

p =
4
3

mew√
1− w2/c2

, (8.42)

where

me := Ee/c2 =
µ0

8π
Q2

R
. (8.43)

The infamous factor 4/3 results from the contribution of the (unbalanced) electromag-
netic stresses.25 In this way one is led to assign to the electron a dynamically measurable
rest-mass of m = 4

3me if one neglects the rotational energy. Second, we may ask how
fast the electron is to spin for (39) to just give m = 4

3me (rest energy of the spinning

24Here we ignore Abraham’s rigidity condition which would complicate the formulae without changing
the argument proper. Also recall footnote 21.

25 Generally speaking, the factor 4/3 marks the discrepancy between two definitions of ‘electromagnetic
mass’, one through the electromagnetic momentum, the other, called me above, through the electro-
static energy. This discrepancy is nothing to get terribly excited about and simply a consequence of
the non-conservation of the electromagnetic energy-momentum tensor, i.e., ∇µTµνem 6= 0, a result of
which is that the (unbalanced) electromagnetic stresses contribute to the electromagnetic momentum
another third of the expression p = mew/

p
1− w2/c2 that one naively obtains from just formally

transforming total energy and momentum as time and space components respectively of a four vector.
Much discussion in the literature was provoked by getting confused whether this state of affairs had
anything to do with Lorentz non-covariance. See, e.g., [6] for a good account and references.
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electron). The immediate answer is, that this is just the case if and only if 1 + 2
9β

2 = 4
3 ,

which in view of (40) is equivalent to g = 2.
It is now obvious how this argument rests on the conflation of two different notions of

mass. The factor 4/3 will consistently be dealt with by taking into account the stresses
that balance electrostatic repulsion, not by trying to account for it in letting the electron
spin fast enough.

8.3.2 A Side Remark on the Kinematics of Faraday Lines

In the Introduction we stressed that the emancipation of the notion of angular momen-
tum from the usual kinematical notion of rotation in space had already begun in classical
field theory. More precisely this applies to Maxwell’s theory, in which the notion of a field
differs from that of, say, hydrodynamics in that it is not thought of as being attached
to a material carrier. This has consequences if we wish to apply kinematical states of
motion to the field itself.

At first sight, Faraday’s picture of lines of force in space suggests to view them as
material entities, capable of assuming different kinematical states of motion. If so, the
time-dependence of the electromagnetic field might then be interpreted as, and possibly
explained by, the motions of such lines (given by some yet unknown equations of motion,
of which the Maxwell equations might turn out to be some coarse grained version). That
this is not possible has been stressed by Einstein in his 1920 Leiden address “Ether and
the Theory of Relativity”, where he writes

If one wishes to represent these lines of force as something material in the
usual sense, one is tempted to interpret dynamical processes [of the em.
field] as motions of these lines of force, so that each such line can be followed
in time. It is, however, well known that such an interpretation leads to
contradictions.
In general we have to say that it is possible to envisage extended physical
objects to which the notion of motion [in space] does not apply. ([42], Vol. 7,
Doc. 38, p. 315)

The reason why we mention this is that the notion of an “electromagnetic moment of
inertia”, introduced in (32), nicely illustrates this point. Assume that the electrostatic
energy density ρe of the Coulomb field of charge Q corresponded to a mass density
according to a local version of E = mc2, i.e.,

ρm(~x) := ρe(~x)/c2 =
( µ0

32π2

) Q2

r4
. (8.44)

If the electrostatic energy is now thought of as being attached to the somehow individ-
uated lines of force, a moment of inertia for the shell R < r < R′ would result, given
by

I(R′) =
∫
R<r<R′

ρm(~x) (r sin θ)2 d3x =
(

2µ0

27π

)
Q2 (R′ −R) . (8.45)

But this diverges as R′ →∞, in contrast to (32), showing that we may not think of the
energy distribution of the electromagnetic field as rigidly rotating in the ordinary sense.
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8.3.3 An Electron Model with Poincaré Stresses

In this section we will modify the previous model for the electron in the following three
aspects

1. The infinitesimally thin spherical shell is given a small rest-mass of constant surface
density m0/4πR2.

2. Stresses in the shell are taken into account which keep the electron from exploding.
They are called “Poincaré stresses” since Poincaré was the first in 1906 to discuss
the dynamical need of balancing stresses [38,28].

3. The rotational velocity is small, so that (Rω/c)n terms are neglected for n ≥ 2.

Poincaré Stress

The second modification needs further explanation. If we view the surface r = R as a
kind of elastic membrane, there will be tangential stresses in the surface of that mem-
brane that keep the charged membrane from exploding. In the present approximation,
which keeps only linear terms in ω, these stresses need only balance the electrostatic
repulsion, which is constant over the surface r = R. In quadratic order the stresses
would, in addition, need to balance the latitude dependent centrifugal forces, which we
neglect here.

To calculate the surface stress that is needed to balance electrostatic repulsion we
recall the expression (30a) for the electrostatic energy as function of radius R:

Ee =
Q2

8πε0R
. (8.46)

Varying R gives us the differential of work that we need to supply in order to change
the volume through a variation of R. Equating this to −pdV = −p 4πR2 dR gives the
pressure inside the electron:

p =
(

1
4πε0

)
Q2

8π R4
. (8.47)

Now, imagine the sphere r = R being cut into two hemispheres along a great circle.
The pressure tries to separate these hemispheres by acting on each with a total force of
strength pπR2 in diametrically opposite directions.26 This force is distributed uniformly
along the cut (the great circle), whose length is 2πR. Hence the force per length is just
pR/2. The surface stress, σ, (force per length) that is needed to prevent the electron
from exploding is just the negative of that. Using (47), we therefore get

σ = −
(

1
4πε0

)
Q2

16πR3
. (8.48)

26This follows immediately from the general fact that the total force along a given direction that a
constant pressure exerts on a surface is given by the pressure times the area of the planar projection
of that surface perpendicular to the given direction. Alternatively it may be verified directly through
integrating the element of force in polar direction (i.e. perpendicular to the surface spanned by the
great circle), dF = (p cos θ)(R2 sin θdθdϕ), over a hemisphere.
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Energy-Momentum Tensor

The energy-momentum tensor now receives a contribution that accounts for the presence
of the surface stress (48) that acts tangential to the surface r = R in the local rest frame
corresponding to each surface element of the rotating sphere. The four-velocity of each
surface element is given by27

u = ∂t + ω ∂ϕ , (8.49)

which is normalised (g(u, u) = c2) up to terms ω2 (which we neglect). Recall that the
space-time metric of Minkowski space in spatial polar coordinates is (we use the “mostly
plus” convention for the signature)

g = − c2 dt⊗ dt+ dr ⊗ dr + r2 dθ ⊗ dθ + r2 sin2 θ dϕ⊗ dϕ . (8.50)

The energy-momentum tensor has now three contributions, corresponding to the mat-
ter of the shell (subscript m), the Poincaré stresses within the shell (subscript σ), and
the electromagnetic field (subscript em):

T = Tm + Tσ + Tem . (8.51a)

The first two comprise the shell’s contribution and are given by

Tm =
m0

4πR2
δ(r −R)u⊗ u , (8.51b)

Tσ = −
(

1
4πε0

)
Q2

16πR3
δ(r −R) P . (8.51c)

Here P is the orthogonal projector onto the 2-dimensional subspace orthogonal to u and
∂r, which is the subspace tangential to the sphere in each of its local rest frames. It can
be written explicitly in terms of local orthonormal 2-legs, n1 and n2, spanning these local
2-planes. For example, we may take n1 := 1

r∂θ and write (since n2 must be orthogonal
to ∂r and ∂θ) n2 = a∂t + b∂ϕ, where the coefficients a, b follow from g(u, n2) = 0 and
normality. This gives

P = n1 ⊗ n1 + n2 ⊗ n2 , (8.52a)

where

n1 := 1
r2
∂θ , (8.52b)

n2 := c−2ω r sin θ ∂t + (r sin θ)−1∂ϕ . (8.52c)

Note that g(n1, n1) = g(n2, n2) = 1 and g(n1, n2) = 0. Equation (52a) may therefore be
be written in the form (again neglecting ω2 terms)

P = r−2 ∂θ ⊗ ∂θ + (r sin θ)−2 ∂ϕ ⊗ ∂ϕ + c−2ω
(
∂t ⊗ ∂ϕ + ∂ϕ ⊗ ∂t

)
. (8.53)

For us the crucial term will be the last one, which is off-diagonal, since it will contribute
to the total angular momentum. More precisely, we will need to invoke the integral of
∂t ·P ·∂ϕ) (the dot ( · ) refers to the inner product with respect to the Minkowski metric)
over the sphere r = R:∫

(∂t ·P · ∂ϕ)R2 sin θdθdϕ =
∫
c−2 ωgttgϕϕR

2 sin θdθdϕ = − 8π
3 ωR

4 . (8.54)

where we used gtt := g(∂t, ∂t) = −c2 and gϕϕ := g(∂ϕ, ∂ϕ) = R2 sin2 θ from (50).
27I use spacetime coordinates (t, r, θ, ϕ) where the latter three are standard spherical polar coordinates.

I also employ the notation ∂µ := ∂/∂xµ for the chart-induced vector fields, so that, e.g., ∂ϕ := ∂/∂ϕ.
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A Note on Linear Momentum and von Laue’s Theorem

The addition of the stress part has the effect that the total energy-momentum tensor is
now conserved (here in the slow-rotation approximation):

∇µTµν = 0 , (8.55)

as one may explicitly check. Note that since we use curvilinear coordinates here we need
to invoke the covariant derivative.28 Indeed, writing the shell’s energy momentum tensor
as Ts := Tm + Tσ, it is not difficult to show that ∇µTµνs is zero for ν 6= r, and for ν = r
is given by p δ(r−R) with p as in (47). But this clearly equals −∇µTµνem since, according
to Maxwell’s equations, this quantity equals minus the electromagnetic force density on
the charge distribution, which is obviously −p δ(r − R). In fact, this is precisely the
interpretation that we used to determine p in the first place.

The conservation equation (55) generally ensures that total energy and total momen-
tum form, respectively, the time- and space component of a four vector. Let us now
show explicitly that Tσ removes the factor 4/3 in the calculation of the linear momen-
tum when the system is boosted in ,say, the z direction. To do this we need to calculate
the integral of ∂z ·Tσ · ∂z over all of space and show that it precisely cancels the corre-
sponding integral of the electromagnetic part, i.e. the integral over ∂z ·Tem · ∂z. Noting
that g(∂θ, ∂z) = r sin θ, we have∫

dV
(
∂z ·Tσ · ∂z

)
=
∫
drdθ dϕ

(
σ δ(r −R) r2 sin3 θ

)
= 8π

3 σR
2 = −1

3Ee , (8.56)

whereas the tracelessness of Tem together with isotropy immediately imply∫
dV
(
∂z ·Tem · ∂z

)
= 1

3

∫
dV c−2

(
∂t ·Tem · ∂t

)
= 1

3Ee . (8.57)

That the sum of (56) and (57) vanishes is a consequence of Laue’s theorem, which
basically states that the integral over all of space of the space-space components of a
time-independent conserved energy-momentum tensor vanish. Here this was achieved by
including stresses, which subtracted one third of the electromagnetic linear momentum.29

Similarly, the stresses will also subtract from the electromagnetic angular momentum,
this time even the larger portion of three quarters of it. Moreover, since the magnetic
moment is the same as before, the stresses will have the tendency to increase the gyro-
magnetic ratio. This we will see next in more detail

28We have∇µTµν = ∂µT
µν + ΓµµλT

λν + ΓνµλT
µλ, where Γνµλ := 1

2
gνσ
`
−∂σgµλ+∂λgσµ+∂µgλσ

´
, with gµν

taken from (50). The Γ’s are most easily computed directly from the geodesic equation.
29The requirement on the stress part Tσ to be such that the total energy and momentum derived from

Tem +Tσ should transform as a four vector clearly still leaves much freedom in the choice of Tσ. The
choice made here is such that the total rest energy equals the electrostatic self energy. But other values
for the rest energy (like, e.g., 4/3 of the electrostatic contribution) would also have been possible. In
particular, the ‘covariantisation through stresses’ does not as such prefer any of the ‘electromagnetic
masses’ mentioned above (footnote 25), as has also been demonstrated in an elegant and manifestly
covariant fashion in [39].
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Angular Momentum

The total angular momentum represented by (51) is calculated by the general formula

J = − 1
c2

∫
∂t ·T · ∂ϕ d3x = Jm + Jσ + Jem . (8.58a)

The matter part, Jm, corresponding to (51b), yields the standard expression for a mass-
shell of uniform density:

Jm = 2
3m0ωR

2 . (8.58b)

The electromagnetic part is the same as that already calculated, since the electromag-
netic field is the same. Therefore we just read off (37) and (32) that

Jem = 2
3 ·

2
3 meωR

2 . (8.58c)

Finally, using (54), the contribution of the stresses can also be written down:

Jσ = − 1
2 ·

2
3 meωR

2 = − 3
4 Jem . (8.58d)

Adding the last two contributions shows that the inclusion of stresses amounts to reduc-
ing the electromagnetic contribution from the value given by (58b) to a quarter of that
value:

Jem + Jσ = Jem − 3
4Jem = 1

4Jem (8.58e)

In total we have
J =

(
m0 + 1

6me

)
2
3ωR

3 . (8.58f)

To linear order in ω the kinetic energy does not contribute to the overall mass, m,
which is therefore simply given by the sum of the bare and the electrostatic mass

m = m0 +me . (8.59)

Using this to eliminate me in (58f) gives

J =
(

1 + 5m0/m

6

)(
2
3
mωR2

)
. (8.60)

The Gyromagnetic Factor

Since the electromagnetic field is exactly as in the previous model, the magnetic moment
in the present case is that given by (28). The gyromagnetic factor is defined through

M

J
= g

Q

2m
, (8.61)

which leads to
g =

6
1 + 5m0/m

. (8.62)

This allows for a range of g given by

1 ≤ g ≤ 6 , (8.63)
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where g = 1 corresponds to m = m0, i.e., no electromagnetic contribution and g = 6
corresponds to m0 = 0, i.e., all mass is of electromagnetic origin. The interval (63) looks
striking, given the modern experimental values for the electron and the proton:

gelectron = 2.0023193043622 and gproton = 5.585694713 . (8.64)

However, we have not yet discussed the restrictions imposed by our slow-rotation as-
sumption. This we shall do next.

Restrictions by Slow Rotation

Our model depends on the four independent parameters, P = (m0, Q,R, ω). On the
other hand, there are four independent physical observables, O = (m,Q, g, J) (M is
dependent through (61)). Our model provides us with a functional dependence express-
ing the observables as functions of the parameters: O = O(P ). Since Q is already an
observable, it remains to display m, g, J in terms of the parameters:

m(m0, Q,R) = m0 +
µ0

8π
Q2

R
=: m0 +me(Q,R) , (8.65a)

g(m0, Q,R) =
6

1 + 5m0/m(m0, Q,R)
, (8.65b)

J(m0, Q,R, ω) =
(
m0 + 1

6me(Q,R)
)

2
3ωR

2 . (8.65c)

These relations can be inverted so as to allow the calculation of the values of the param-
eters from the values of the observables. If we choose to display β := Rω/c rather than
ω, this gives

m0(m, g) = m
6− g

5g
, (8.66a)

me(m, g) = m−m0 = m
6(g − 1)

5g
, (8.66b)

R(m,Q, g) =
µ0

8π
Q2

me
=

µ0

8π
Q2

m

5g
6(g − 1)

(8.66c)

β(J,Q, g) = 2J
[
Q2

4πε0c

]−1 9(g − 1)
5

, (8.66d)

where the last equation (66d) follows from (65c) using (66a–66c). It is of particular
interest to us since it allows to easily express the slow-rotation assumption β � 1. For
this it will be convenient to measure Q in units of the elementary charge e and J in
units of ~/2. Hence we write

Q = nQ e and 2J = nJ ~ . (8.67)

Then, using that the fine-structure constant in SI units reads α = e2/(4πε0c~) ≈ 1/137,
we get

β =
nJ
n2
Q

α−1 9(g − 1)
5

. (8.68)
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This nicely shows that the slow-rotation approximation constrains the given combination
of angular momentum, charge, and gyromagnetic factor. In particular, any gyromagnetic
factor up to g = 6 can be so obtained, given that the charge is sufficiently large. If we
set g = 2 and nJ = 1 (corresponding to the electron’s values), we get

nQ �
√
nJ(g − 1)247 ≈ 16 . (8.69)

This means that indeed we cannot cover the electrons values with the present model while
keeping the slow-rotation approximation, though this model seems to be able to accom-
modate values of g up to six if the charge is sufficiently high. However, we did not check
whether the assumption that the matter of the shell provided the stabilising stresses is
in any way violating general conditions to be imposed on any energy-momentum tensor.
This we shall do next.

Restrictions by Energy Dominance

Energy dominance essentially requires the velocity of sound in the stress-supporting
material to be superluminal. It is conceivable that for certain values of the physical
quantities (m,Q, g, J) the stresses would become unphysically high. To check that, at
least for the condition of energy dominance, we first note from (51c) and (43) that the
stress part of the energy-momentum tensor can be written in the form

Tσ = − 1
2
me

4πR2
c2δ(r −R)P . (8.70)

Hence the ratio between the stress within the shell (in any direction given by the unit
spacelike vector n tangent to the shell, so that n · P · n = 1) and its energy density, as
measured by a locally co-rotating observer, is given by∣∣∣∣n ·T · nu ·T · u

∣∣∣∣ =
me

2m0
=

3(g − 1)
6− g

, (8.71)

where we used (66a) and (66b) in the last step. The condition of energy dominance now
requires this quantity to be bounded above by 1, so that

3(g − 1)
6− g

≤ 1⇐⇒ g ≤ 9
4
. (8.72)

Interestingly this depends on g only. Hence we get, after all, an upper bound for g,
though from the condition of energy dominance, i.e. a subluminal speed of sound in the
shell material, and not from the condition of a subluminal rotational speed.

The Size of the Electron

What is the size of the electron? According to (66c), its radius comes out to be

R =
1

4πε0c2

e2

2m
5
3
, (8.73)

where we set Q = −e and g = 2. On the other hand, in Quantum Mechanics, the
Compton wavelength of the electron is

λ =
2π~
mc

, (8.74)
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so that their quotient is just
R

λ
=

5
6
α

2π
≈ 2 · 10−3 . (8.75)

This might first look as if the classical electron is really small, at least compared to its
Compton wavelength. However, in absolute terms we have (fm stands for the length
scale “Fermi”)

R ≈ 2 · 10−15m = 2 fm , (8.76)

which is very large compared to the scale of 10−3 fm at which modern high-energy exper-
iments have probed the electron’s structure, so far without any indication for substruc-
tures. At that scale the model discussed here is certainly not capable of producing any
reasonable values for the electron parameters, since the electrostatic mass (and hence
the total mass, if we assume the weak energy-condition, m0 > 0, for the shell matter)
comes out much too large and the angular momentum much too small (assuming β < 1).

One might ask whether the inclusion of gravity will substantially change the situation.
For example, one would expect the gravitational binding to reduce the electrostatic self-
energy. An obvious and answerable questions is whether the electron could be a Black
Hole? What is particularly intriguing about spinning and charged Black Holes in General
Relativity is that their gyromagnetic factor is g = 2, always and exactly!30 For a mass
M of about 10−30 kg to be a Black Hole it must be confined to a region smaller than the
Schwarzschild radius Rs = 2GM/c2 ≈ 10−57 m, which is almost 40 orders of magnitude
below the scale to which the electron structure has been probed and found featureless.
Hence, leaving alone Quantum Theory, it is certainly a vast speculation to presumes the
electron to be a Black Hole. But would it also be inconsistent from the point of view
of General Relativity? The Kerr-Newman family of solutions for the Einstein-Maxwell
equations allow any parameter values for mass (except that it must be positive), charge,
and angular momentum. As already stated, g = 2 automatically. Hence there is also
a solution whose parameter values are those of the electron. However, only for certain
restricted ranges of parameter values do these solutions represent Black Holes, that is,
possess event horizons that cover the interior singularity; otherwise they contain naked
singularities.

More precisely, one measures the mass M , angular momentum per unit mass A, and
charge Q of a Kerr-Newman solution in geometric units, so that each of these quantities
acquires the dimension of length. If we denote these quantities in geometric units by the
corresponding lower case letters, m, a, and q respectively, we have

m = M
G

c2
, (8.77a)

a =
A

c
, (8.77b)

q = Q

√
µ0

4π
G

c2
. (8.77c)

The necessary and sufficient condition for an event horizon to exist is now given by( a
m

)2
+
( q
m

)2
≤ 1 . (8.78)

30It is known that g = 2 is already a preferred value in special-relativistic electrodynamics [4], a fact on
which modern precision measurements of g − 2 rest. See [34] and [16] for instructive discussions as to
what makes g = 2 also a special value in General Relativity.
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The relevant quantities to look at are therefore the dimensionless ratios31

a

m
=

A

M
· c
G

≈ A[m2 · s−1]
M [kg]

· 5.5 · 1018 , (8.79a)

q

m
=

Q

M
·
√
µ0

4π
c2

G
≈ Q[C]

M [kg]
· 1010 . (8.79b)

Now, if we insert the parameter values for the electron32 (we take for Q the modulus e
of the electron charge) we arrive at the preposterous values

a

m

∣∣∣
electron

≈
(

5 · 1025
)(

5.5 · 1018
)
≈ 2.5 · 1044 , (8.80a)

q

m

∣∣∣
electron

≈
(

1.6 · 1011
)
· 1010 ≈ 1.6 · 1021 , (8.80b)

so that we are indeed very far from a Black Hole. Classically one would reject the
solution for the reason of having a naked singularity. But note that this does not exclude
the possibility that this exterior solution is valid up to some finite radius, and is then
continued by another solution that takes into account matter sources other than just the
electromagnetic field.33

8.4 Summary

Understanding the generation of new ideas and the mechanisms that led to their accep-
tance is a common central concern of historians of science, philosophers of science, and
the working scientists themselves. The latter might even foster the hope that important
lessons can be learnt for the future. In any case, it seems to me that from all perspec-
tives it is equally natural to ask whether a specific argument is actually true or just put
forward for persuasive reasons.

Within the history of Quantum Mechanics the history of spin is, in my opinion, of
particular interest, since it marks the first instance where a genuine quantum degree of
freedom without a classically corresponding one were postulated to exist. If this were
the general situation, our understanding of a quantum theory as the quantisation of a
classical theory cannot be fundamentally correct.34 On the other hand, modern theories
31We write P [X] to denote the number that gives the physical quantity P in units of X.
32We have A = S/M with S = 1

2
~ (modulus of electron spin) and use the approximate values ~[J · s] ≈

10−34, M [kg] = 10−30, and Q[C] = 1.6 · 10−19.
33Even in mesoscopic situations a < m means a very small angular momentum indeed. Recall that

in Newtonian approximation the angular momentum of a homogeneous massive ball of radius R is
2MR2ω/5, so that a/m ≤ 1 translates to the following inequality for the spin period T = 2π/ω:

T ≥ 4π

5

R

c

R

m
≈ R2[m]

M [kg]
· 1019 sec , (8.81)

which for a ball of radius one meter and mass 103 kilogrammes sets an upper bound for T of 3·108 years!
In fact, (81) is violated by all planets in our solar system.

34I take this to be an important and very fundamental point. Perhaps with the exception of Axiomatic
Local Quantum Field Theory, any quantum theory is in some sense the quantisation of a classical
theory. Modern mathematical theories of ‘quantisation’ understand that term as ‘deformation’ (in a
precise mathematical sense) of the algebra of observables over classical phase space; cf. [48].
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of quantisation can explain the quantum theory of a spinning particle as the result of
a quantisation applied to some classical theory, in which the notion of spin is already
present.35 Hence, from a modern perspective, it is simply not true that spin has no
classical counterpart. That verdict (that is has no classical counterpart), which is still
often heard and/or read36, is based on a narrow concept of ‘classical system’, which
has been overcome in modern formulations, as was already mentioned in footnote 20 to
which I refer at this point. From that point of view, spin is no less natural in classical
physics than in Quantum Theory, which has now become the standard attitude in good
textbooks on analytical mechanics, e.g. [41,22] as well as in attempts to formulate
theories of quantisation [48,49].

In the present contribution I concentrated on another aspect, namely whether it is
actually true that classical models for the electron (as they were already, or could have
been, established around 1925) are not capable to account for the actual values of the four
electron parameters: mass, charge, angular momentum, and the gyromagnetic factor.
This criticism was put forward from the very beginning (Lorentz) and was often repeated
thereafter. It turns out that this argument is not as clear cut as usually implied. In
particular, g = 2 is by no means incompatible with classical physics. Unfortunately,
explicit calculations seem to have been carried out only in a simplifying slow-rotation
approximation, in which the Poincaré stresses may be taken uniform over the charged
shell. In the regime of validity of this approximation g = 2 is attainable, but not for
small charges. I do not think it is known whether and, if so, how an exact treatment
improves on the situation. In that sense, the answer to the question posed above is not
known. An exact treatment would have to account for the centrifugal forces that act on
the rotating shell in a latitude dependent way. As a result, the Poincaré stresses cannot
retain the simple (constant) form as in (51c) but must now also be latitude dependent.
In particular, they must be equal in sign but larger in magnitude than given in (48)
since now they need in addition to balance the outward pushing centrifugal forces. On
one hand, this suggests that their effect is a still further reduction of angular momentum
for fixed magnetic moment, resulting in still larger values for g. On the other hand,
fast rotational velocities result in an increase of the inertial mass according to (8) and
hence an increase of angular momentum, though by the same token also an increase in
the centrifugal force and hence an increase in stress. How the account of these different
effects finally turns out to be is unclear (to me) without a detailed calculation.37 It
would be of interest to return to this issue in the future.

Acknowledgements I thank one of the anonymous referees for suggesting more care in
calling the work of Goudsmit’s and Uhlenbeck’s ‘independent’ of the earlier one by Kronig
(cf. footnote1), as done in an earlier version, and also for pointing out reference [8].

35Namely in the sense that it has a corresponding classical state space given by a two-sphere, which is
a symplectic manifold. However, this state space is not the phase space (i.e. cotangent bundle) over
some space of classical configurations, so that one might feel hesitant to call it a classical degree of
freedom.

36Even in critical historical accounts, e.g.: “Indeed, there were unexpected results from quantum the-
ory such as the fact that the electron has a fourth degree of freedom, namely, a spin which has no
counterpart in a classical theory” ([28], p. 319).

37In that respect the corresponding statements made in Sect. 4.7.1 of [37] seem to me premature.
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jedes einzelnen Elektrons. Die Naturwissenschaften, 47: 953–954, 1925.

[21] Samuel A. Goudsmit and George E. Uhlenbeck. Spinning electrons and the struc-
ture of spectra. Nature, 117: 264–265, 1926.

[22] Victor Guillemin and Shlomo Sternberg. Symplectic Techniques in Physics. Cam-
bridge University Press, Cambridge, 1990. Corrected reprint.

[23] Michel Janssen and Matthew Mecklenburg. From classical to relativistic mechan-
ics: Electromagnetic models of the electron. Boston Studies in the Philosophy of
Science, 251: 65–134, 2006.

[24] Ralph Kronig and Victor F. Weisskopf, editors. Collected Scientific Papers by
Wolfgang Pauli, Vols. 1–2. Interscience Publishers, a division of John Wiley &
Sons, Inc., New York, 1964.

[25] Ralph de Laer Kronig. The magnetic moment of the electron. Proceedings of the
National Academy of Sciences of the United States of America, 12(5): 328–330,
1926.

[26] Ralph de Laer Kronig. Spinning electrons and the structure of spectra (letter to
the editor). Nature, 117: 550, 1926.

[27] Karl von Meyenn, editor. Wolfgang Pauli: Scientific Correspondence with Bohr,
Einstein, Heisenberg, a.O., Vol. I–IV, volume 2, 6, 11, 14, 15, 17, 18 of Sources
in the History of Mathematics and Physical Sciences. Springer Verlag, Heidelberg
and New York, 1979–2005.

[28] Arthur I. Miller. A study of Henri Poincaré’s Sur la Dynamique de l’ Electron.
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9 First Steps (and Stumbles) of
Bose-Einstein Condensation

Daniela Monaldi

Introduction

In 1924, Einstein predicted the occurrence of condensation in an ideal gas. He published
the prediction at the beginning of 1925, in the second of his papers on the application
of Bose’s statistical method to a gas of particles. The theoretical physicist Chen Ning
Yang called this prediction “a most daring and insightful extrapolation which has only
now been brilliantly experimentally confirmed.”1 Yang was referring to the experimental
observation of the phenomenon known as Bose-Einstein condensation in dilute gases,
which was achieved in 1995 and was awarded the Nobel Prize in physics in 2001. The
Bose-Einstein condensation produced and observed in 1995 in real gases, in fact, is
universally identified with the process predicted by Einstein seventy years earlier.

There are two kinds of historical narratives in which Einstein’s prediction appears.
When the history of Bose-Einstein condensation is outlined, it is often said that Einstein
predicted a new kind of phase transition. For example, a text of the Royal Swedish
Academy of Sciences reads,

Einstein noted that if the number of particles is conserved even totally non-
interacting particles will undergo a phase transition at low enough tempera-
tures. This transition is termed Bose-Einstein condensation (BEC).2

Einstein’s prediction is cast against the backdrop of a supposedly familiar notion of phase
transitions, while its novelty of being caused solely by quantum statistics and not by
intermolecular interactions is highlighted. It is implicitly suggested that Einstein relied
on a pre-existing theory of phase transitions to make the prediction.

Yet, when the history of phase transitions is recalled, Bose-Einstein condensation is
listed as one of a group of phenomena, along with ordinary gas-liquid transitions, fer-
romagnetism, the He-I to He-II transition, and superconductivity, from which a general
idea of phase transition gradually emerged, making it possible to attempt formulating
an encompassing classification, common theoretical concepts, and a unified theoretical
picture.

My main point will be that the history of Bose-Einstein condensation is more complex
than the script about the final verification of an “insightful” theoretical prediction im-
plies. In particular, the history of Bose-Einstein condensation cannot be decoupled from

1Chen Ning Yang, “Remarks About Some Developments in Statistical Mechanics”, HFPN, Number 06,
March 15, 1996, available at http://chris.kias.re.kr/yang.htm.

2Royal Swedish Academy of Sciences, “Advanced information on the Nobel Prize in Physics 2001”,
http://nobelprize.org/nobel prizes/physics/laureates/2001/phyadv.pdf .
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the history of phase transitions. I shall concentrate on an episode to which neither of the
two narratives I sketched above pays much attention. We find this episode recounted,
instead, when the focus is on the anecdotic or the biographical; it is typically character-
ized as a detour that “delayed the general acceptance of the Bose-Einstein condensation
for 10 years”.3 For over a decade Einstein’s prediction was “not taken terribly seriously
even by Einstein himself”, and “rather got the reputation of having only a purely imag-
inary existence,” until it was “resurrected” by Fritz London in 1938 in connection with
a possible clarification of the “lambda transition” in liquid He.4 Yet, this very detour
might offer an insight on how the history of Bose-Einstein condensation and the history
of phase transitions are interrelated.

There appear to be two reasons for the long neglect of Einstein’s prediction. The first is
that in 1927 George E. Uhlenbeck severely questioned Einstein’s argument. Uhlenbeck’s
criticism persuaded even Einstein that the prediction was mistaken. The second reason is
that the predicted phenomenon “appeared to be devoid of any practical significance[.]”5

Einstein himself had admitted that, although the densities of real gases such as helium
and hydrogen could reach values not too far from the saturation values that would
mark the onset of condensation in the corresponding ideal gases, the effects of quantum
degeneracy would be obscured by molecular interactions.6 In the following decades,
although the onset of Bose-Einstein condensation was not in itself considered to be
beyond the reach of experiment, the densities required were so high and the temperatures
so low that, as Schrödinger wrote in 1946,

the van der Waals corrections are bound to coalesce with the possible effects
of degeneration, and there is little prospect of ever being able to separate the
two kinds of effect.7

The conviction that Bose-Einstein condensation could never be observed in real gases
was abandoned only in the late 1970s, when the suggestion that spin-polarized hydrogen
would remain gaseous down to zero temperature, together with tremendous advances in
the technology of ultracold temperatures, triggered the first efforts toward an experi-
mental realization of the phenomenon.

Uhlenbeck, however, withdrew his objection in 1937, thus clearing the way for Lon-
don’s resurrection of Bose-Einstein condensation as a possible theoretical model for the
underlying mechanism of the lambda transition in liquid helium. As I shall try to show,
this alleged resurrection was in fact a new formulation of the condensation prediction
based on a new understanding of phase transitions.
3E. G. D. Cohen, “George E. Uhlenbeck and statistical mechanics”, American Journal of Physics, 58
(1990), 619–625, on 619. See also A. Pais, “Einstein and the quantum theory”, Reviews of Modern
Physics, 51 (1979), 863–914, on 897; G. E. Uhlenbeck, “Some Reminiscences About Einstein’s Visit to
Leiden”, in H. Woolf, ed., Some Strangeness in the Proportion. A Centennial Symposium to Celebrate
the Achievements of Albert Einstein (Reading, MA: Addison-Wesley Publishing Company, 1980), 524–
525.

4Eric A. Cornell and Carl E. Wiemann, “Bose-Einstein condensation in a Dilute Gas; The First 70 Years
and Some Recent Experiments”, Les Prix Nobel. The Nobel Prizes 2001, T. Frängsmyr, ed. (Stockholm:
Nobel Foundation, 2002), 78–108, on 78; F. London, “The λ-phenomenon of Liquid Helium and the
Bose-Einstein Degeneracy”, Nature, 141, 643–644, on 644.

5F. London, “On the Bose-Einstein condensation”, Physical Review, 54 (1938), 947–954, on 947.
6Einstein, “Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung”, Berliner Berichte
(1925), 3–14, on 11–12.

7E. Schrödinger, Statistical Thermodynamics (Cambridge, 1967), on 54.
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Einstein’s Argument

Einstein’s 1925 prediction was as follows:

In the theory of the ideal gas, it seems a self-evident requirement that volume
and temperature of a quantity of gas can be given arbitrarily. The theory
determines then the energy or the pressure of the gas. But the study of the
equation of state contained in equations (18), (19), (20), (21) shows that if the
number of molecules n and the temperature T are given, the volume cannot
be made arbitrarily small. [. . .] But then, what happens if I let the density
of the substance, n

V , increase further at this temperature (for example, by
isothermal compression)?

I assert that in this case a number of molecules, a number increasing with the
total density, passes into the first quantum state (state without kinetic en-
ergy), while the remaining molecules distribute themselves according to the
parameter value λ = 1. Thus, the assertion means that there occurs some-
thing similar to when isothermally compressing a vapour above the satura-
tion volume. A separation takes place; a part “condenses”, the rest remains
a “saturated ideal gas” (A = 0, λ = 1).8

In this text, the expression “I assert [Ich behaupte]” makes a contrast with the language
of the previous sentences, “The study of the equations shows. . . It follows from. . .”
Einstein wanted to tell us that his Behauptung was no deduction from the preceding
theory. In fact, he formulated it as a way out from what would have otherwise been a
serious limitation of the theory. And he drew it only on the basis of a physical model,
the model of a vapour at the saturation volume, without having a formal analogy to go
with it.

Einstein had derived for the total number of particles of his ideal gas the expression,

n =
∑
S

1
1
λe

ES
kT − 1

(1)

8A. Einstein, “Quantentheorie. Zweite Abhandlung” (note 6), on 3–4, emphasis added. The equations
referred to in the quotation are,

n =
X
σ

1

eαS − 1
(18)

Ē =
3

2
pV = c

X
σ

s
2
3

eαS − 1
(19)

αS = A+
cs

2
3

xT
(20)

c =
ES

s
2
3

=
h

2m

„
4

3
πV

«− 2
3

(21)

where A is defined by equation (16), eA = π
3
2 h−3 V

n
(2mxT )

3
2 . Einstein defined the parameter λ by

the statement, “. . .the quantity e−A, which we want to indicate by λ . . .” . Einstein, “Quantentheorie
des einatomigen idealen Gases”, Berliner Berichte (1924), 261–267, on 265–266. Today, the letter λ
is commonly used for another quantity, the thermal de Broglie wavelength of the gas, λdB ≡ h√

2πmkT
,

which is related to Einstein’s parameter by λ = n
V
λ3
dB .
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and had identified the parameter λ as “ein Maß für die ‘Entartung’ des Gases.”9 In
order to examine the dependence of the number of particles on the volume and on the
temperature, Einstein had carried out the following manipulations. Observing that the
Entartung parameter has to be in principle smaller or equal to one, he had expanded
each term of the sum into a power series,

n =
∑
S

∑
σ

λτ exp
(
−ESτ
kT

)
and then had replaced the sum over s by an integration, thus obtaining,

n =
(2πmkT )

3
2

h3
V
∑
τ

τ−
3
2λτ

He had then noted that this equation expressed an upper limit on the number of particles
for a given volume and a given temperature the gas. The maximum number of particle
in the gas was given by

nmax =
(2πmkT )

3
2

h3
V
∑
τ

τ−
3
2

where the sum in τ is just a finite constant. It was at this point that he had asked, “But
then what happens if I let the density of the substance increase further at this temper-
ature (for example by isothermal compression)?”, and had asserted that, according to
the model of the isothermal compression of a saturated vapour, a separation would take
place, and the molecules in excess of the maximum number would “condense” into the
quantum state of lowest energy.

Uhlenbeck’s Criticism

In 1927, Uhlenbeck, then a student of Paul Ehrenfest in Leiden, studied the Fermi-Dirac
and the Bose-Einstein statistics, and their relation to the classical Maxwell-Boltzmann
statistics for his doctoral thesis. He came to object to Einstein’s prediction of conden-
sation on the following ground. He observed that Einstein’s conclusion was in mathe-
matical contradiction with the fact that the first term of the sum (1), which represented
the average number of molecules in the state of zero kinetic energy, became infinite for
λ = 1. The appearance of a maximum for the number of gas molecules was caused only
by the approximation of the sum by an integral. The exact expression for the number of
molecules had no upper limit; on the contrary, it became infinite for λ → 1. The value
of the Entartung parameter was indeed determined by the given number of molecules
and temperature, and it was certainly smaller than one for high temperatures and low
densities. As the temperature lowered, the lowest quantum states would “be more and
more filled, and in much stronger degree than would be the case in Boltzmann statis-
tics.” The Entartung parameter could reach the value one only asymptotically, and no
“splitting into two phases” would occur.10

9Einstein, “Quantentheorie” (note 7), on 266. I re-wrote Einstein’s equation in a compact form. See
note 7 for Einstein’s original formulae.

10G. E. Uhlenbeck, Over Statistische Methoden in de Theorie der Quanta (‘s Gravenhage: Martinus
Nijhoff, 1927), 69–71. I thank Jos Uffink for his help with the original Dutch text.
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The criticism came from Leiden, the location of Kamerlingh-Onnes’s cryogenic labo-
ratory, powerhouse for the production of new knowledge on condensation phenomena,
and the academic home of Paul Ehrenfest. Ehrenfest was the first to whom Einstein
had communicated his idea of a “condensation without attractive forces” in a gas gov-
erned by Bose’s “almost unintelligible” statistics. We know that Ehrenfest was rather
sceptical of this new statistical method, which, as Einstein himself admitted, could be
justified only a posteriori through its success for the radiation law. Possibly, Einstein’s
had been encouraged in envisioning condensation in such a gas by the fact that, in re-
sponse to Ehrenfest’s criticisms, he had had to recognize that his and Bose’s method
did not treat the gas molecules as independent. Hence, although there were no attrac-
tive forces among molecules, one had to admit a “mutual influence” which was, for the
time being, of a “mysterious nature”.11 Ehrenfest was unmoved, and apparently the
condensation by mysterious influence did nothing to mitigate his reserves. Not only did
Ehrenfest support Uhlenbeck’s criticism, but he positively cheered for it, for he wrote
his friend Einstein a playful letter in the form of a physics journal article, which began,
“Title: Does the Bose-Einstein Statistics Lead for Ideal Gases to a Condensation in the
Degenerate State? Summary: No!” In 1933, Ehrenfest published the first attempt at
a comprehensive classification of phase transitions. This was his last work before his
death. Bose-Einstein condensation was not mentioned in it. But the wind had begun to
turn, and Ehrenfest’s classification would unintentionally play a major role in reversing
the fortune of Einstein’s prediction.

The Reappraisal

In the first place, the advancement of quantum mechanics had dispelled the mystery
around the Bose-Einstein gas. In 1926, Paul Dirac had showed that the new quantum
statistics, the Bose-Einstein statistics and the one that became known as the Fermi-Dirac
statistics, were related to the symmetry of the wave function, and hence to the invariance
of observable quantities, under exchanges of particles. This property, which became
known as the quantum indistinguishability of particles, was adopted as the justification
of the appearance of mutual influence among particles subjected to the Bose-Einstein
statistics.

Another pivotal development had taken place right in Leiden. It was the imme-
diate motivation of Eherfest’s re-thinking of phase transitions. Willem Hendrik Kee-
som, Kamerlingh-Onnes’s successor, and his collaborator Mieczislav Wolfke observed an
abrupt variation in dielectric constant of liquid helium. Added to earlier data about
other sharp changes in thermodynamic parameters, the change in dielectric constant
suggested a phase transition near the critical temperature Tc = 2.2 K. Keesom and
Wolfke hypothesized two phases in liquid helium and called them He-I and He-II. The
helium transition was similar to ordinary phase transitions in the sudden jumps that
several thermodynamic parameters underwent around the critical temperature, but it
differed in that it involved no latent heat and no change in the appearance of the sub-
stance. In 1932–33, Keesom and collaborators measured the variation of specific heat
with temperature around the critical temperature, and published a curve which showed
a characteristic, very marked jump. Keesom took up a suggestion from Ehrenfest and

11Einstein, “Quantentheorie. Zweite Abhandlung” (note 6), on 6.
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called the critical temperature “the lambda point” because of the shape of the curve.
The transition became known as “the lambda transition”.

The existing theoretical treatment of phase transitions was a combination of the van
der Waals equation and Gibbs’s conditions of thermodynamic equilibrium of coexisting
phases. A process like the lambda transition was not contemplated in it. Ehrenfest
formulated a characterization of phase transitions capable of including ordinary phase
transitions and the lambda transition, as well as other critical phenomena such as the
magnetization of ferromagnetic materials and superconductivity. He defined a phase
transition as an analytic discontinuity in the derivatives of the Gibbs free energy, G =
U−TS+pV . He then classified processes as being of the first order if they corresponded
to a discontinuity of the first derivative, of the second order if they corresponded to a
discontinuity of the second derivative, and so on. Accordingly, ordinary changes of
state such as gas to liquid were first order transitions because in them the entropy
and the volume, first derivatives of the Gibbs free energy, were discontinuous. In the
lambda transition, entropy and volume did not change, but the specific heat, a second
derivative of the Gibbs free energy, had a jump, so the lambda transition was a second
order transition. The scheme made room naturally for hypothetical transitions of higher
orders.

The Ehrenfest classification was a very influential attempt at ordering the growing
variety of critical processes under a general definition based on the mathematical prop-
erties of thermodynamic functions. It has been described as a major step toward the
creation of a new area of study concerned with “cooperative phenomena”.12 These
are a subclass of the phenomena pertaining to large assemblies of particles. They are
defined as those phenomena in which the states of the assembly are not related in a
simple manner to the states of the individual particles because the particles are strongly
correlated. Understood as cooperative phenomena in this sense, phase transitions are re-
garded as paradigmatic of the emergent properties of complex systems.13 But a subfield
centred on this negative definition could only form by differentiating itself from a field
founded upon the assumption that large assemblies of particles do have states that can
be understood in terms of the states of the individual components. To be more specific,
a theoretical understanding of phase transitions as cooperative phenomena required a
general statistical mechanical derivation of thermodynamics as a precondition.14

Uhlenbeck’s reconsideration of his objection to Bose-Einstein condensation was in-
spired by the first statistical-mechanical theory of condensation, which was formulated
in 1937 by the American physical chemist Joseph E. Mayer. Mayer had begun his career
at the school of physical chemistry headed by Gilbert N. Lewis in Berkeley. Physical
chemistry in those days was, according to Mayer, “almost exclusively the application of

12L. Hoddeson et al., “Collective Phenomena”, in L. Hoddeson et al., eds., Out of the Crystal Maze.
Chapters from the History of Solid-State Physics (New York: Oxford University Press, 1992), 489–
598. Hoddeson et al. attribute the explicit definition of the statistical mechanical study of cooperative
phenomena as a separate subfield to R. H. Fowler, in the 1936 edition of his Statistical Mechanics.

13See, for example, Philip W. Anderson, “More is Different”, Science 177, 4047 (1972), 393–396.
14My observation is limited to the statistical definition of cooperative phenomena, which consists of the

denial of an otherwise underlying assumption in statistical mechanics. For an history and analysis of
early notions of “collectivized entities”, that is, individual electrons that are neither “free” nor “bound”
to single atoms in solids, or quantized collective excitations, see A. Kojevnikov, “Freedom, collectivism,
and quasiparticles: Social metaphors in quantum physics”, Historical Studies in the Physical and
Biological Sciences, 29 (1999), 295–331.
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thermodynamics.” Mayer and Lewis undertook a systematic study of statistical mechan-
ics in 1928. Here is Mayer’s account of his encounter with this discipline:

I had no knowledge of statistical mechanics and Lewis had never worked
in the field either. He had become interested in the discovery that had
just been made of the difference between quantum mechanical statistical
mechanics and the classical, and the Bose-Einstein versus the Fermi-Dirac
systems. During the day I tried to learn statistical mechanics. . . Gilbert
and I spent the evening together . . .I still like the methods that we evolved
for deriving thermodynamics from statistical mechanics, that is, from the
mechanical laws for the motion of molecules.15

The result of this effort was a series of papers on the derivation of thermodynamics from
statistical mechanics by Lewis and Mayer (Lewis and Mayer, 1928, 1929). The last of
the Lewis and Mayer papers dealt with quantum statistics; notably, however, it makes
no mention of Bose-Einstein condensation.

In 1937, Mayer wrote, in collaboration with two of his students, “an epochmaking
series of papers” which were titled “The Statistical Mechanics of Condensing Systems”.16

In these, he developed a method for deriving the thermodynamic quantities of systems
of interacting particles, that is, real systems, starting from simple assumptions about the
inter-particle potential. The method used a series expansion of the partition function, in
which the first term corresponded to the non-interacting (ideal) gas, and the subsequent
terms represented the corrections arising from the interactions. Mayer’s method is known
as the “method of cluster expansions” because it decomposes the effects of particle-
particle interactions in terms of a two-particle function and its two-fold, three-fold, etc.
products, each of which can be interpreted as representing a cluster of two, three, etc.
particles. The cluster terms will depend on the volume V of the system in a way that
can be interpreted as a “surface effect”. In the limit of infinite volume, they have a
finite value that depends on the temperature. Therefore, the equation of state of the
interacting system can be written, in the limit V →∞, as

Pν

kT
=
∞∑
l=1

al(T )
(
λ3
dB

ν

)l−1

where ν = V
n is the volume per particle in the system, and λdB is the parameter

called mean thermal wavelength , or thermal de Broglie wavelength of the particles in

the system, and is defined as λdB ≡
(

h
2πmkT

) 1
2 . This form of the state equation is known

as the virial expansion of the system, and the al(T ) are called virial coefficients.
Max Born regarded Mayer’s theory of condensation “as a most important contribu-

tion to statistical mechanics,” and presented it at an international conference that was
15Joseph E. Mayer, “The Way It Was”, Annual Review of Physical Chemistry, 33 (1982), 1–23, on 9 and

13–14.
16Bruno H. Zimm, “Joseph Edward Mayer”, Biographical Memoirs of the National Academy of Sciences,

65 (1994), 211–220, on 213. J. E. Mayer, “The Statistical Mechanics of Condensing Systems. I”,
Journal of Chemical Physics, 5 (1937), 67–73; J. E. Mayer and P. G. Ackermann, “The Statistical
Mechanics of Condensing Systems. II”, Journal of Chemical Physics, 5 (1937), 74–83; J. E. Mayer and
S. F. Harrison, “The Statistical Mechanics of Condensing Systems. III”, Journal of Chemical Physics,
6 (1938), 87–100; S. F. Harrison and J. E. Mayer, “The Statistical Mechanics of Condensing Systems.
IV”, Journal of Chemical Physics, 6 (1938), 101–104.
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held in Amsterdam in late 1937 for the van der Waals’s centenary.17 Since, however, he
found Mayer’s treatment obscure and somewhat unconvincing, he undertook a system-
atization and clarification of it in collaboration with Klaus Fuchs. Meanwhile, he was
corresponding with Uhlenbeck, who had also become interested in Mayer’s work.

Mayer’s theory and Born’s elaboration of it dealt with a classical system. Uhlenbeck
and his student Boris Kahn extended it to quantum statistics. Furthermore, they were
able to modify the method so that it could be also applied to an ideal gas. In particular,
Kahn and Uhlenbeck noticed a strong formal analogy between the virial expansion of
Mayer’s theory and Einstein’s series expansions, and between Mayer’s and Einstein’s
arguments for condensation. A physical interpretation of the analogy was enabled by
a result obtained by Uhlenbeck in 1932, according to which the assumption of Bose-
Einstein statistics was equivalent to the assumption of “quasiattractional forces” among
the molecules.18 Having simplified Mayer’s forbidding formalism, Uhlenbeck and Kahn
obtained formulae for the density and pressure of the non-ideal gas that were “identical
with Einstein’s equations” for the ideal gas. They wrote,

Einstein has already shown that these equations describe a condensation
phenomenon. In fact the series for N converges for the maximum value of A
and there exist therefore a maximum density. For smaller volumes a certain
number of molecules will condense into the state of zero energy, and the
pressure remains constant.19.

Uhlenbeck and Kahn repeated Uhlenbeck’s earlier remark, that Einstein’s formulae
were valid only if one neglected the quantization of the translational energy of the
molecules. They endorsed Mayer’s argument for condensation adducing that it coin-
cided with the argument given by Einstein for the ideal gas, even though they still
considered Einstein’s formulae inapplicable. In turn, as we will see, Mayer’s theory and
the reflections that it stirred would afford Uhlenbeck and Kahn the means to rehabilitate
Einstein’s formulae. The argument, as they articulated it, consisted of two points. The
first was that for a given volume the number of particles of the gas had a finite max-
imum. The reaching of the maximum would mark the saturation point, beyond which
the molecules in excess would begin to accumulate in the state of zero energy. The
second was that the pressure of the gas would remain constant as the volume decreased
beyond the saturation point, as was expected in a condensation process. Even thought
Kahn and Uhlenbeck attributed the reasoning to Einstein and Mayer, only the first of
the two points had been presented by Einstein in the 1925 paper. And only the second
had been part of Mayer’s discussion of how to read the occurrence of condensation out
of his involved mathematical formalism.

Born, and Kahn and Uhlenbeck’s treatments of condensing systems caused a “vigor-
ous discussion” at the Amsterdam conference, “on the question as to whether Mayer’s
17Max Born and Klaus Fuchs, “The Statistical Mechanics of Condensing Systems”, Proceedings of the

Royal Society of London, A166 (1938), 391–414, on 391; Max Born, “The Statistical Mechanics of
Condensing Systems”, Physica, 4 (1937), 1034–1044.

18B. Kahn and G. E. Uhlenbeck, “”On the theory of condensation”, Physica, 4 (1937), 1155–1156, on
1155; G. E. Uhlenbeck and L. Gropper, “The Equation of State of a Non-ideal Einstein-Bose or Fermi-
Dirac Gas”, Physical Review, 41 (1932), 79–90.

19B. Kahn and G. E. Uhlenbeck, “On the theory of condensation”, Physica, 4 (1937), 1155–1156, on
1155. Kahn and Uhlenbeck’s parameter A is A = λ

λ3
dB
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explanation of the phenomena of condensation is correct.”20 By this time, following the
Ehrenfest classification, phase transitions had come to be defined as analytical discon-
tinuities in thermodynamic functions. At the same time, it had become self-evident
that the thermodynamic functions of a system were to be derived from its statistical
mechanics. A conflict arose, for it was difficult to see how one could obtain analytical
discontinuities from the partition function of a system of particles, which was thoroughly
analytic. The debate was so undecided that the question was put to vote, and the votes
turned out to be evenly divided. Here is how Uhlenbeck later recounted this episode:

Can one prove with mathematical rigor from the foundations of statistical
mechanics, i.e. from the partition function, that a gas with given inter-
molecular forces will condense at sufficiently low temperature at a sharply
defined density, so that the isotherms will exhibit a discontinuity? It may
seem strange now that there could be any doubt that this would be possible
but at the Conference (so still in 1937!) one wasn’t so sure and I remember
that Debye, for instance, doubted it. In my opinion, the liberating word was
spoken by Kramers. He remarked that a phase transition (such as condensa-
tion) could mathematically only be understood as a limiting property of the
partition function. Only in the limit, where the number of molecules N and
the volume V go to infinity such that N/V remains finite (one calls this now
the thermodynamic limit) can one expect that the isotherm will exhibit the
two known discontinuities.21

Kahn and Uhlenbeck embraced Kramers’s proposal, which allowed them to reconcile
Ehrenfest’s definition of phase transitions with their belief that the statisticalmechanical
partition function contained “all possible states of a system”. They converted to the
idea that a mathematical description of phase transitions could only be obtained in the
limit of infinite volume and infinite number of particles, with the density remaining
finite, and that the physical sense of such operation would be recovered by stating that
“the problem has only physical sense when N is very large.”22 This new logic entailed
a tacit reversal of position. Ten years earlier Uhlenbeck had maintained that, since
the Entartung parameter of Einstein’s gas would approach the value one without ever
reaching it, a splitting of the gas into two phases would not occur. Now, he and Kahn
were ready to champion the new understanding of phase transitions as “limit properties”,
and hence to accept that also in an ideal Bose-Einstein gas condensation would occur in
the thermodynamic limit.

Deepening the analogy between Mayer’s and Einstein’s theories, Kahn and Uhlenbeck
were able to adapt the cluster summation to the ideal gas and to derive the condensa-
tion formulae with a “strict calculation” that avoided the questionable approximation
used by Einstein. They stressed, however, that Einstein’s and Mayer’s arguments for
condensation were incomplete.

Comparing the thermodynamic functions obtained in Mayer’s and Einstein’s case with
those of the Fermi-Dirac statistics, Uhlenbeck and Kahn came to the conclusion that
condensation would occur in Mayer’s and in Einstein’s gases, but not in a Fermi-Dirac
20Born and Fuchs, “The statistical mechanics of condensing systems” (note 17), on 391.
21Uhlenbeck, quoted in Cohen, “George E. Uhlenbeck and statistical mechanics” (note 3), on 619.
22B. Kahn and G. E. Uhlenbeck, “On the Theory of Condensation”, Physica, 5 (1938), 399–415, on 401.
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gas. Along with the recursive application of the formal analogy between the Bose-
Einstein ideal gas and Mayer’s real gas, the crucial ingredient of this conclusion was an
enlarged notion of condensation according to Ehrenfest’s definition of phase transitions,
complemented by the idea of phase transitions as “limit properties”. Uhlenbeck and
Khan pointed out that Einstein’s condensation would have “some uncommon features”;
for instance, the isothermal variation of the pressure with the volume would have no
discontinuity at the critical point.23 Nonetheless, in the Mayer and Einstein cases the
value one of the Entartung parameter would represent a singular point for density and
pressure, while it would not represent a singular point in the Fermi-Dirac case. In the
same vein, shortly later Fritz London would observe that the condensation of the Bose-
Einstein gas represented “a discontinuity of the derivative of the specific heat (phase
transition of the third order).”24

Conclusion

To summarize, the first theory of phase transitions founded on classical statistical me-
chanics was produced by a physical chemist, who had trained himself in statistical me-
chanics in the wake of enthusiasm and curiosity that followed the birth of quantum statis-
tics and quantum mechanics. This theory, in turn, led to a systematic re-formulation,
on the basis of a quantum statistical method and a new definition of phase transitions,
of Einstein’s argument for condensation in an ideal gas. From this outline of the story
of the early days of Bose-Einstein condensation, it would seem that, contrary to the sug-
gestions implied by the terminology of “classical” statistics and quantum “revolution”,
quantum statistical mechanics did not come to overthrow and supplant a normal-science
regime of classical statistical mechanics. It arrived, rather, at a stage in which statistical
mechanics was itself young, and the classical and quantum branches of it developed to
a considerable extent in parallel, or better, interacting with each other.

In the way of conclusion I shall formulate two questions for my ongoing research.
How much did the advent of quantum mechanics and quantum statistics influence, or
even favour, the widespread adoption of statistical mechanics as the effective foundation
of thermodynamics? And how much did Bose-Einstein condensation, being the first
phase transition fully rooted in the statistical treatment of a thermodynamic system,
contribute to the emergence of the new category of “cooperative phenomena”?

23Kahn and Uhlenbeck, “On the Theory of Condensation” (note 22), on 408–409.
24F. London, “The λ-Phenomenon in Liquid Helium and the Bose-Einstein Degeneracy”, Nature, 141

(1938), 643–644, on 644.
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10 Pascual Jordan’s Resolution of the
Conundrum of the Wave-Particle
Duality of Light

Anthony Duncan and Michel Janssen

In 1909, Einstein derived a formula for the mean square energy fluctuation in black-
body radiation. This formula is the sum of a wave term and a particle term. In a key
contribution to the 1926 Dreimännerarbeit with Born and Heisenberg, Jordan showed
that one recovers both terms in a simple model of quantized waves. So the two terms do
not require separate mechanisms but arise from a unified dynamical framework. In this
paper, we give a detailed reconstruction of Jordan’s derivation of this result and discuss
the curious story of its reception. Several authors have argued that various infinities
invalidate Jordan’s result. We defend it against such criticism. In particular, we note
that the fluctuation in a narrow frequency range, which is what Jordan calculated, is
perfectly finite. We also note, however, that Jordan’s argument is incomplete. In modern
terms, Jordan calculated the quantum uncertainty in the energy of a subsystem in an
energy eigenstate of the whole system, whereas the thermal fluctuation is the average
of this quantity over an ensemble of such states. Still, our overall conclusion is that
Jordan’s argument is basically sound and that he deserves more credit than he received
for having resolved a major conundrum in the development of quantum physics.

10.1 The Recovery of Einstein’s Fluctuation Formula in the
Dreimännerarbeit

In the final section of the famous Dreimännerarbeit of Max Born, Werner Heisenberg, and
Pascual Jordan (1926), the Umdeutung [= reinterpretation] procedure of (Heisenberg,
1925) is applied to a simple system with infinitely many degrees of freedom, a continuous
string fixed at both ends. In a lecture in Göttingen in the summer of 1925 (p. 380, note
2)1—attended, it seems, by all three authors of the Dreimännerarbeit—Paul Ehrenfest
(1925) had used this system as a one-dimensional model for a box filled with black-body
radiation and had calculated the mean square energy fluctuation in a small segment
of it. The string can be replaced by an infinite set of uncoupled harmonic oscillators,
one for each mode of the string. The harmonic oscillator is the simplest application
of Heisenberg’s new quantum-theoretical scheme. The basic idea behind this scheme
was to retain the classical equations of motion but to reinterpret these equations—hence
the term Umdeutung—as expressing relations between arrays of numbers, soon to be
recognized as matrices (Born and Jordan, 1925), assigned not to individual states but to

1Unless noted otherwise, references are to (Born, Heisenberg, and Jordan, 1926).
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transitions between them and subject to a non-commutative multiplication law.2 When
this Umdeutung procedure is applied to the harmonic oscillators representing the modes
of a string and the mean square energy fluctuation in a small segment of the string and in
a narrow frequency interval is calculated, one arrives at a surprising result. In addition
to the classical wave term, proportional to the square of the mean energy, one finds a
term proportional to the mean energy itself. This term is just what one would expect
for a system of particles.

For this simple model, one thus recovers both terms of Albert Einstein’s well-known
formula for the mean square energy fluctuation in a narrow frequency range in a small
subvolume of a box with black-body radiation. As Einstein showed in 1909, this formula
is required by Planck’s law for the spectral distribution of black-body radiation and
some general results in statistical mechanics. As Martin J. Klein (1970) characterized
the situation: “Einstein concluded that there were two independent causes producing
the fluctuations, and that an adequate theory of radiation would have to provide both
wave and particle mechanisms” (p. 6). The derivation in the Dreimännerarbeit shows,
contrary to Einstein’s expectation, that both terms in the fluctuation formula can be
accounted for within a unified dynamical framework.

The authors presented their unified mechanism in terms of (quantized) waves, but it
can also be described in terms of (quantum) particles. Heisenberg (1930) stated this
explicitly a few years later: “The quantum theory, which one can interpret as a particle
theory or a wave theory as one sees fit, leads to the complete fluctuation formula” (p. 101;
see also, e.g., Jordan, 1936, p. 220). The result thus illustrates the kind of wave-particle
duality associated with Niels Bohr’s notion of complementarity, which is different from
the kind originally envisioned by Einstein. It does not involve the coexistence of two
different mechanisms but the existence of one that can be described in different ways.
While illustrating one aspect of complementarity, the fluctuation formula undermines
another. A quantum system is supposed to present itself to us either under the guise of
waves or under the guise of particles, depending on the experimental context. However,
if one were to measure the mean square energy fluctuation in a small subvolume of a
box with black-body radiation, as one probably could even though Einstein conceived
of it only as a thought experiment, and Einstein’s formula is correct, which is no longer
in any serious doubt,3 one would see the effects of waves and particles simultaneously.4

One might have expected that the recovery of Einstein’s fluctuation formula in the
Dreimännerarbeit would have been hailed right away as the triumphant resolution of
a major conundrum in the development of quantum physics; and that it would since
have become a staple of historical accounts of the wave-particle duality of light. Both
expectations prove to be wrong. As we shall see in sec. 10.3, Jordan was responsible
for this part of the Dreimännerarbeit and even his co-authors were skeptical about the
result.5 To give an example from the historical literature, Klein’s (1964) classic paper,

2See (Duncan and Janssen, 2007) both for an account of what led Heisenberg to this idea and for further
references to the extensive historical literature on this subject.

3Pace (Gonzalez and Wergeland, 1973).
4We owe this last observation to Jos Uffink (private communication). For discussion of the differences be-
tween Heisenberg’s wave-particle equivalence and Bohr’s wave-particle complementarity, see (Camilleri,
2006).

5More recently, physicists have recognized the importance of Jordan’s result (see, e.g., Weinberg, 1977,
1995; Wightman, 1996; Cini, 2003).
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“Einstein and the wave-particle duality,” does not even cite the Dreimännerarbeit.6 To
the best of our knowledge, the only Einstein biography that touches on the derivation of
the fluctuation formula in the Dreimännerarbeit is the one by Abraham Pais (1982, p.
405). The canonical twin stories of the light-quantum hypothesis and the wave-particle
duality of light end with the Compton effect and Bohr complementarity, respectively.
The canonical history fails to mention that the specific challenge posed by Einstein’s
fluctuation formula, which suggested wave-particle duality in the first place, was taken
up and, we want to argue, convincingly met in the Dreimännerarbeit.7 It also tends to
ignore the difference noted above between Einstein’s original conception of wave-particle
duality and wave-particle duality as it is usually understood in quantum mechanics (see,
e.g., Pais, 1982, p. 404).

Having chastised historians of physics in such broad-brush fashion, we hasten to add
that ours is certainly not the first contribution to the historical literature that draws
attention to the fluctuation calculations in the Dreimännerarbeit. For instance, even
though Klein (1980) did not mention these calculations in his lecture at the Princeton
Einstein centenary symposium, John Stachel, director of the Einstein Papers Project at
the time, did bring them up in question time (Woolf, 1980, p. 196). Stachel also drew at-
tention to correspondence between Einstein and Jordan pertaining to these calculations.
Unfortunately, most of Einstein’s letters to Jordan have not survived.8 Jagdish Mehra
and Helmut Rechenberg (1982–2001, Vol. 3, pp. 149–156) devote a section of their com-
prehensive history of quantum mechanics to this part of the Dreimännerarbeit, although
they offer little assistance to a reader having difficulties following the derivation. The
relevant section of the Dreimännerarbeit also plays a central role in a paper on Einstein’s
fluctuation formula and wave-particle duality by Alexei Kojevnikov (1990); in a recent
paper on Jordan’s contributions to quantum mechanics by Jürgen Ehlers (2007); and
in a paper on the origin of quantized matter waves by Olivier Darrigol (1986). This
last author clearly shares our enthusiasm for these fluctuation calculations, calling them
“spectacular” at one point and stressing that they formed the solution to “the most
famous puzzle of radiation theory” (ibid., p. 221–222).
6The same is true for Klein’s (1979, 1980, 1982) contributions to three volumes published in connection
with the centenary of Einstein’s birth, even though the first briefly touches on Einstein’s reaction to
matrix mechanics (Klein, 1979, p. 149) and the third is specifically on Einstein and fluctuations. In a
much earlier paper on Ehrenfest, Klein (1959, p. 50) mentioned the importance of (Ehrenfest, 1925)
for this part of the Dreimännerarbeit, but added, contrary to what we shall argue, that “a satisfactory
discussion of the “mechanism” of the fluctuations” was not given until (Heisenberg, 1931).

7Another episode in the history of Einstein and wave-particle duality that seldom gets attention is the
one involving the fraudulent canal ray experiments of Emil Rupp (Van Dongen, 2007a,b).

8In response to a query by Stachel, Jordan wrote, whitewashing his own involvement with the Nazis in
the process: “Indeed those letters the loss of which I mention in [Jordan, 1969, p. 55] are really destroyed
and there is no hope that they could be still discovered anywhere. Perhaps you may be astonished that
I did not strive more earnestly to preserve them. But you must understand that only the fact of keeping
in my house a series of kind und personal letters of Einstein meant a condition of permanent danger
under the circonstances in which I had to live here for “1000 years”. Being criticized by Lenard and
other political enemies of modern physics as a dangerous follower of Einstein and other antagonists
of the Hitler Empire I was forced to await every day the possibility that a police-examination of my
papers could be performed and finding there the letters from Einstein might result in my immediate
arrest. During the war this danger became still more threatening. Therefore the letters must not only
been kept, but they must remain hidden in an appropriate manner, and that was bad for preserving
them in cases of air-attack in the night” (Jordan to Stachel, April 14, 1978, typed in imperfect English
[Einstein Archive (AE), 75–274]).
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Aside from a preamble on Einstein’s fluctuation formula and its early history (sec.
10.2) and a brief conclusion (sec. 10.5), our paper is divided into two longer sections,
one historical and one technical (secs. 10.3–4). In the latter, we give a detailed and self-
contained reconstruction of the calculation in the Dreimännerarbeit of the mean square
energy fluctuation in a small segment of a string, Ehrenfest’s simple one-dimensional
model for a subvolume of a box filled with black-body radiation. This fills an important
gap in the historical literature. Our reconstruction will enable us to defend the derivation
against various criticisms and it will enable readers to assess such criticisms and our
rejoinders for themselves. In the historical section (sec. 10.3), which draws both on the
work of Darrigol and Kojevnikov and on the results of our own reconstruction of the
calculations, we explore the question why the recovery of Einstein’s fluctuation formula
in the Dreimännerarbeit is not nearly as celebrated as one might have expected it to be.

10.2 Einstein, Fluctuations, and Wave-Particle Duality

In a fifty-page semi-popular history of the light-quantum hypothesis, Jordan (1928, pp.
162–163)9 distinguished between “Einstein’s first fluctuation formula” and “Einstein’s
second fluctuation formula.”10 The former is derived in the paper introducing light
quanta. Einstein (1905) considered black-body radiation in the Wien regime of high
frequencies in a box of volume V0. He imagined a fluctuation as a result of which, for a
brief moment, all energy E of the radiation in a narrow frequency range around ν gets
concentrated in a subvolume V . Using Boltzmann’s relation between entropy and prob-
ability, Einstein showed that the probability of this fluctuation is given by (V/V0)E/hν

(where, unlike Einstein in 1905, we used Planck’s constant h). For an ideal gas of N
particles in a box of volume V0, the probability of a fluctuation such that all particles
momentarily end up in a subvolume V is given by (V/V0)N . Comparing the two expres-
sions, Einstein (1905) concluded that “monochromatic radiation [in the Wien regime]
behaves thermodynamically as if it consisted of [N ] mutually independent energy quanta
of magnitude [hν]” (p. 143).

The Dreimännerarbeit is concerned with Einstein’s second fluctuation formula. This
formula does not give the probability of a specific fluctuation but the mean square energy
fluctuation of black-body radiation in a narrow frequency range in some subvolume.
Statistical mechanics gives the following general formula for the mean square energy
fluctuation:

〈∆E2〉 = kT 2d〈E〉
dT

, (10.1)

where k is Boltzmann’s constant, T is the temperature, and 〈E〉 is the mean energy.
Einstein (1904) derived this formula in the concluding installment of his so-called “sta-
tistical trilogy.” Unbeknownst to him, it had already been published in 1902 by Josiah
W. Gibbs. Einstein (1904, sec. 5), however, was the first to apply it to black-body
radiation. A few years later, Einstein (1909a,b) returned to these considerations. As
9Jordan sent an offprint of this article to Einstein (Jordan to Einstein, November 23, 1928 [AE 13–476]).
From a letter three weeks later (Jordan to Einstein, December 11, 1928 [AE 13–477]), it can be inferred
that Einstein replied with a long letter. This letter has not survived (see note 8) and Jordan’s response
is of little help in reconstructing its contents.

10See (Norton, 2006; Rynasiewicz and Renn, 2006; Uffink, 2006) for recent discussions of Einstein’s early
use of fluctuation arguments.
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Klein (1964) writes: “instead of trying to derive the distribution law from some more
fundamental starting point [as Max Planck had done in 1900], . . . [Einstein] assume[d]
its correctness and [saw] what conclusions it implied as to the structure of radiation” (p.
9). In the special case of black-body radiation, there is a “frequency specific version”
(Rynasiewicz and Renn, 2006, p. 19) of Eq. (10.1):

〈∆E2
ν〉 = kT 2d〈Eν〉

dT
= kT 2∂ρ(ν, T )

∂T
V dν, (10.2)

where 〈Eν〉 = ρ(ν, T )V dν is the mean energy of the black-body radiation in the frequency
range (ν, ν + dν) at temperature T in the subvolume V . 〈∆E2〉 is the integral of 〈∆E2

ν〉
over all frequencies. By inserting the Rayleigh-Jeans law, the Wien law, and the Planck
law (denoted by the subscripts ‘RJ’, ‘W’, and ‘P’) for ρ(ν, T ) in Eq. (10.2), we find the
formula for 〈∆E2

ν〉 predicted by these three laws (c is the velocity of light):

ρRJ =
8π
c3
ν2kT, 〈∆E2

ν〉RJ =
c3

8πν2

〈Eν〉2RJ

V∆ν
;

ρW =
8πh
c3

ν3e−hν/kT , 〈∆E2
ν〉W = hν〈Eν〉W; (10.3)

ρP =
8πh
c3

ν3

ehν/kT − 1
, 〈∆E2

ν〉P =
c3

8πν2

〈Eν〉2P
V∆ν

+ hν〈Eν〉P.

For the Rayleigh-Jeans law, 〈∆E2
ν〉 is proportional to the square of the mean energy.

To borrow a phrase from John Norton (2006, p. 71), this is the signature of waves. For
the Wien law, 〈∆E2

ν〉 is proportional to the mean energy itself. This is the signature
of particles. For the Planck law—originally obtained through interpolation between the
Wien law and (what became known as) the Rayleigh-Jeans law—〈∆E2

ν〉 has both a wave
and a particle term.

In a lecture at the 1909 Salzburg Naturforscherversammlung, Einstein (1909b) fa-
mously prophesized on the basis of this last formula and a similar one for momentum
fluctuations “that the next phase of the development of theoretical physics will bring us
a theory of light that can be interpreted as a kind of fusion of the wave and emission
theories” (pp. 482–483). Contrary to what the term “fusion” [Verschmelzung] in this
quotation suggests, Einstein believed that his fluctuation formulae called for two sep-
arate mechanisms: “the effects of the two causes of fluctuation mentioned [waves and
particles] act like fluctuations (errors) arising from mutually independent causes (addi-
tivity of the terms of which the square of the fluctuation is composed)” (Einstein, 1909a,
p. 190, our emphasis).11 This was still Einstein’s view in the early 1920s. As he wrote
to Arnold Sommerfeld on October 9, 1921: “I am convinced that some kind of spherical
wave is emitted besides the directional energetic process” (Einstein, 1987–2006, Vol. 7,
p. 486; our emphasis).

Reluctant to abandon the classical theory of electromagnetic radiation and to embrace
Einstein’s light-quantum hypothesis, several physicists in the 1910s and early 1920s tried
either to poke holes in Einstein’s derivation of the (energy) fluctuation formula so that

11See also (Einstein 1909b, p. 498; 1914, p. 346), the quotation from (Klein, 1970) in the introduction,
and the discussion in (Bach, 1989, p. 178).
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they could avoid the formula or to find an alternative derivation of it that avoided
light quanta.12 In the wake of the discovery of the Compton effect and of Satyendra
Nath Bose’s (1924) new derivation of Planck’s black-body radiation law, however, both
Einstein’s fluctuation formula and his light quanta began to look more and more in-
escapable. The problem of reconciling the wave and the particle aspects of light thus
took on greater urgency. In the paper that provided the simple model of a string used
in the Dreimännerarbeit, for instance, Ehrenfest (1925) emphasized the paradoxical sit-
uation that quantizing the modes of a classical wave according to a method proposed
by Peter Debye (1910) gives the correct Planck formula for the spectral distribution
of black-body radiation but the wrong formula for the mean square energy fluctuation
(Stachel, 1986, p. 379). This problem is also highlighted in the Dreimännerarbeit (p.
376). As Einstein characterized the situation in an article on the Compton effect in
the Berliner Tageblatt of April 20, 1924: “There are . . . now two theories of light, both
indispensable and—as one must admit today despite twenty years of tremendous effort
on the part of theoretical physicists—without any logical connection.”13

One possibility that was seriously considered at the time, especially after the decisive
refutation in April 1925 of the theory of Bohr, Kramers, and Slater (1924a), was that
light consisted of particles guided by waves (Duncan and Janssen, 2007, sec. 4.2). In this
picture, the waves and the particles presumably give separate contributions to the mean
square energy fluctuation, just as Einstein had envisioned. A derivation of Einstein’s
fluctuation formula based on this picture (and Bose statistics) was given by Walther
Bothe (1927).14 At that point, however, the Dreimännerarbeit, which is not cited in
Bothe’s paper, had already shown that the two terms in the fluctuation formula do not
require separate mechanisms after all, but can be accounted for within a single unified
dynamical framework.15

10.3 Why Is the Solution to Einstein’s Riddle of the
Wave-Particle Duality of Light in the Dreimännerarbeit
Not Nearly as Famous as the Riddle Itself?

10.3.1 One of Jordan’s Most Important Contributions to Physics

The derivation of the fluctuation formula in the Dreimännerarbeit, though presented as
part of a collaborative effort, was actually the work of just one of the authors, namely
Jordan, “the unsung hero among the creators of quantum mechanics” (Schweber, 1994,
p. 5). Today, Jordan is mostly remembered as perhaps the only first-tier theoretical

12 For historical discussion and further references, see (Bach, 1989) and (Kojevnikov, 1990). For some
brief comments, see (Jordan, 1927b, p. 642, note 2), (Born and Jordan, 1930, p. 398, note 1), and
(Jordan, 1936, p. 220).

13This often-quoted passage can be found, for instance, in (Pais, 1980, 211; 1982, p. 414; 1986, p. 248),
(Klein, 1980, p. 182), and (Bach, 1989, p. 182).

14Two earlier papers by Bothe (1923, 1924) and a related paper by Mieczyslaw Wolfke (1921) are cited
in the Dreimännerarbeit (p. 379, notes 2 and 3).

15Independently of full-fledged quantum mechanics and using only Bose’s quantum statistics, Reinhold
Fürth (1928, p. 312) argued that the fluctuation formula was compatible with waves, particles, or a
combination of both. After fleeing Czechoslovakia in 1938, Fürth worked with Born in Edinburgh. In
his memoirs, Born (1978, p. 289) praised Fürth’s work on fluctuations.
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physicist who sympathized strongly and openly with the Nazi ideology.16 It is hard to
say whether this entanglement has been a factor in the neglect of the derivation of the
fluctuation formula in the Dreimännerarbeit. Our impression is that it only played a
minor role. For one thing, it was not until 1930 that Jordan began to voice his Nazi
sympathies in print and then only under the pseudonym of Ernst Domaier (Beyler, 2007,
p. 71). A much more important factor, it seems, was that Jordan’s result immediately
met with resistance, even from his co-authors. Right from the start a cloud of suspicion
surrounded the result and that cloud never seems to have lifted.17 Our paper can be
seen as an attempt to disperse it.

Except for a short period of wavering in 1926, Jordan steadfastly stood by his result
and considered it one of his most important contributions to quantum mechanics. He
said so on a number of occasions. One such occasion was a conference in honor of
Paul A. M. Dirac’s 70th birthday. At the conference, Jordan talked about “the expanding
earth” (Mehra, 1973, p. 822), a topic that apparently occupied him for 20 years (Kundt,
2007, p. 124). For the proceedings volume, however, he submitted some reminiscences
about the early years of quantum mechanics. There he wrote:

Another piece in the ‘Dreimänner Arbeit’ gave a result, which I myself have
been quite proud of: It was possible to show that the laws of fluctuations in
a field of waves, from which Einstein derived the justification of the concept
of corpuscular light quanta, can be understood also as consequences of an
application of quantum mechanics to the wave field (Jordan, 1973, p. 296).

In the early 1960s, Jordan had likewise told Bartel L. van der Waerden that he “was very
proud of this result at the time,” adding that he “did not meet with much approval.”18

In a follow-up letter, Jordan wrote:

What [Born and Jordan 1925] says about radiation is not very profound.
But what the Dreimännerarbeit says about energy fluctuations in a field of
quantized waves is, in my opinion, almost the most important contribution I
ever made to quantum mechanics.19

Jürgen Ehlers (2007), who studied with Jordan, relates: “In the years that I knew him,
Jordan rarely talked about his early work. On a few occasions, however, he did tell
me that he was especially proud of having derived Einstein’s fluctuation formula . . . by
quantizing a field” (p. 28).

In late 1925, when the Dreimännerarbeit was taking shape, Jordan was probably the
only physicist who had done serious work both on the light-quantum hypothesis and

16For a detailed recent discussion of this aspect of Jordan’s life and career, see (Hoffmann and Walker,
2007).

17For criticism see, e.g., (Smekal, 1926), (Heisenberg, 1931), (Born and Fuchs, 1939a), (Gonzalez and
Wergeland, 1973), and (Bach, 1989).

18Jordan to Van der Waerden, December 1, 1961. Transcriptions of correspondence between Jordan and
Van der Waerden in 1961–1962 can be found in the folder on Jordan in the Archive for History of
Quantum Physics, cited hereafter as AHQP (Kuhn et al., 1967). Van der Waerden relied heavily on
this correspondence in editing his well-known anthology (Van der Waerden, 1968).

19 Jordan to Van der Waerden, April 10, 1962 (AHQP), our emphasis. In view of the first sentence, it
is not surprising that Ch. 4 of (Born and Jordan, 1925), “comments on electrodynamics,” was left out
of (Van der Waerden, 1968).
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on the new matrix mechanics. In his dissertation, supervised by Born and published as
(Jordan, 1924), he had criticized the argument for ascribing momentum to light quanta
in (Einstein, 1917). He had “renounced this heresy”20 after Einstein (1925) published
a brief rejoinder. In another paper, Jordan (1925) showed that he was well versed in
the latest statistical arguments concerning light quanta. And in late 1925, Jordan gave
Born a manuscript in which he essentially proposed what is now known as Fermi-Dirac
statistics. Unfortunately, the manuscript ended up at the bottom of a suitcase that Born
took with him to the United States and did not resurface until Born returned from his
trip, at which point Jordan had been scooped (Schroer, 2007, p. 49). In addition to his
work in quantum statistics, Jordan was one of the founding fathers of matrix mechanics.
The Dreimännerarbeit is the sequel to (Born and Jordan, 1925), which greatly clarified
the theory proposed in Heisenberg’s Umdeutung paper. Unfortunately for Jordan, few
if any physicists at the time were primed for his sophisticated combination of these two
contentious lines of research—the statistics of light quanta and matrix mechanics—in
his derivation of Einstein’s fluctuation formula.

10.3.2 The Reactions of Heisenberg and Born to Jordan’s Result

Even Jordan’s co-authors experienced great difficulty understanding his reasoning and
entertained serious doubts about its validity. In the letter cited in note 18, Jordan wrote
that “my reduction of light quanta to quantum mechanics was considered misguided [ab-
wegig] by Born and Heisenberg for a considerable period of time.” In the letter to Van der
Waerden cited in note 19, Jordan, after reiterating that these fluctuation considerations
were “completely mine” (ganz von mir), elaborated on the resistance he encountered
from his co-authors

Later, Heisenberg in fact explicitly questioned whether this application I
had made of quantum mechanics to a system of infinitely many degrees of
freedom was correct. It is true that Born did not second Heisenberg’s opinion
at the time that it was wrong, but he did not explicitly reject Heisenberg’s
negative verdict either.21

Jordan’s recollections fit with statements his co-authors made at various times.
A few weeks before the Dreimännerarbeit was submitted, Heisenberg wrote to Wolf-

gang Pauli: “Jordan claims that the interference calculations come out right, both the
classical [wave] and the Einsteinian [particle] terms . . . I am a little unhappy about it,
because I do not understand enough statistics to judge whether it makes sense; but I
cannot criticize it either, because the problem itself and the calculations look meaning-
ful to me.”22 By 1929, Heisenberg had warmed to Jordan’s fluctuation calculations and
he included them in his book based on lectures that year at the University of Chicago
(Heisenberg, 1930, Ch. V, sec. 7).23 On the face of it, Heisenberg (1931) lost faith again
20P. 13 of the transcript of session 2 of Thomas S. Kuhn’s interview with Jordan in June 1963 for the

AHQP. For further discussion of (Jordan, 1924, 1925), see session 1, pp. 10–11, 15, and session 2, pp.
16–17 of the interview. For discussion of the section on fluctuations in the Dreimännerarbeit, including
Jordan’s views of the work by Bothe (1923, 1924), see session 3, pp. 8–9.

21Jordan to Van der Waerden, April 10, 1962 (AHQP).
22Heisenberg to Pauli, October 23, 1925 (Pauli, 1979, p. 252), quoted (in slightly different translations)

and discussed in (Darrigol, 1986, p. 220) and in (Mehra and Rechenberg, 1982–2001, Vol. 3, p. 149).
23We already quoted Heisenberg’s conclusion in the introduction.
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the following year, when he showed that the mean square energy fluctuation diverges
if we include all possible frequencies, even in a model that avoids the zero-point energy
of the harmonic oscillators of the model used in the Dreimännerarbeit. As we shall
see in sec. 10.4, however, Jordan clearly intended to calculate the mean square energy
fluctuation in a narrow frequency range, even though his notation in various places sug-
gests otherwise. In that case, the result is perfectly finite, regardless of whether we
consider a model with or without zero-point energy. It is true that the mean square
energy fluctuation as calculated by Jordan diverges when integrated over all frequen-
cies. As Heisenberg showed in his 1931 paper, however, this is essentially an artifact of
the idealization that the subvolume for which the energy fluctuations are computed has
sharp edges (which necessarily excite arbitrarily high frequency modes). If the edges are
smoothed out, the mean square energy fluctuation remains finite even when integrated
over all frequencies.24

Jordan included his fluctuation argument in (Born and Jordan, 1930, sec. 73, pp. 392–
400), a book on matrix mechanics. By the early 1930s, anyone who cared to know must
have known that Jordan was responsible for this part of the Dreimännerarbeit. This can
be inferred, for instance, from Pauli’s scathing review of Born and Jordan’s book. The
reviewer wearily informs his readers that the authors once again trot out the “trains of
thought about fluctuation phenomena, which one of the authors (P. Jordan) has already
taken occasion to present several times before” (Pauli, 1930). These considerations can
indeed be found in (Jordan, 1927b, p. 642; Jordan, 1928, pp. 192–196). They also form
the starting point of a review of the current state of quantum electrodynamics at a
conference in Charkow the following year (Jordan, 1929, pp. 700–702). We shall quote
from these texts below.

That these fluctuation considerations make yet another appearance in (Born and Jor-
dan, 1930) would seem to indicate Born’s (belated) approval of Jordan’s argument. In
the late 1930s, however, in a paper written in exile in Edinburgh with his assistant
Klaus Fuchs,25 Born sharply criticizes Jordan’s argument as well as Heisenberg’s 1931
amendment to it. He goes as far as dismissing a central step in the argument in the
Dreimännerarbeit as “quite incomprehensible reasoning,”26 offering as his only excuse
for signing off on this part of the paper “the enormous stress under which we worked in
those exciting first days of quantum mechanics” (Born and Fuchs, 1939a, p. 263).

Born conveniently forgets to mention that he had signed his name to the same argu-
ment in the 1930 book. Stress had been a factor during the writing of that book as well.
In the fall of 1930, still smarting from Pauli’s sarcastic review of the book, Born wrote
to Sommerfeld, Pauli’s teacher:

[B]ecause I think very highly of Pauli’s accomplishments, I am sorry that
our personal relationship is not particularly good. You will probably have
realized that on the basis of his criticism of [Born and Jordan, 1930] . . . I know
full well that the book has major weaknesses, which are due in part to the
fact that it was started too early and in part to the fact that I fell ill during

24See the discussion following Eq. (10.53) in sec. 10.4.2 for further details on Heisenberg’s objection and
its resolution.

25For Born’s reaction to Fuchs’s later arrest as a Soviet spy, see (Born, 1978, p. 288).
26In our reconstruction of Jordan’s argument in sec. 10.4, we shall identify the step that Born and Fuchs

found so objectionable (see note 68).
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the work, a collapse from which unfortunately I still have not fully recovered.
But from Pauli’s side the nastiness of the attack has other grounds, which
are not very pretty.27

Born then explains how he had originally asked Pauli to collaborate with him on the
development of matrix mechanics and how he had only turned to Jordan after Pauli had
turned him down (cf. Born, 1978, pp. 218–219). Ever since, Born continues, Pauli “has
had a towering rage against Göttingen and has wasted no opportunity to vent it through
mean-spirited comments” (Born to Sommerfeld, October 1, 1930). Born eventually came
to agree with the substance of Pauli’s criticism of his book with Jordan. In his memoirs,
in a chapter written in the early 1960s (Born, 1978, p. 225), Born is very dismissive of
the book and concedes that the authors’ self-imposed restriction to matrix methods was
a “blunder” for which they had rightfully been excoriated by Pauli. In his memoirs,
Born’s ire is directed not at Pauli but at Jordan, whom he blames for the Göttingen
parochialism—or “local patriotism,” as he calls it—that led them to use matrix methods
only (ibid., p. 230). It is possible that Born had already arrived at this assessment when
he attacked Jordan’s fluctuation considerations in his paper with Fuchs.

Whatever the case may be, a few months after the publication of their paper, Born
and Fuchs (1939b) had to issue a “correction.” Pauli’s assistant Markus E. Fierz had
alerted them to a serious error in their calculations. The resulting two-page “correction”
amounts to a wholesale retraction of the original paper. The authors explicitly withdraw
their criticism of (Heisenberg, 1931) but do not extend the same courtesy to Jordan. This
same pattern returns in Born’s memoirs, in another chapter dating from the early 1960s,
where Born writes that he and Fuchs “worked on the fluctuations in the black-body
radiation but discovered later that Heisenberg had done the same, and better” (Born,
1978, p. 285). We find it hard to suppress the thought that, starting sometime in the
1930s, Born’s perception of Jordan and Jordan’s work became colored—and who can
blame him?—by his former student’s manifest Nazi sympathies.

10.3.3 Jordan’s Result as an Argument for Field Quantization

As Jordan emphasized, both in the late 1920s and in reflecting on this period later,
behind the initial resistance of Born and Heisenberg to his fluctuation calculation was
a more general resistance to the notion of quantizing the electromagnetic field. As he
told Kuhn: “The idea that from the wave field, i.e., from the electromagnetic field, one
had to take another step to quantum mechanics struck many physicists back then as too
revolutionary, or too artificial, or too complicated, and they would rather not believe
it.”28 The passage from a letter from Jordan to Van der Waerden (see note 21) that we
quoted above already hints at this and it is made more explicit as the letter continues:

I remember that, to the extent that they took notice of these issues at
all, other theorists in Göttingen [i.e., besides Born and Heisenberg], [Yakov]
Frenkel for instance, considered my opinion, expressed often in conversation,
that the electromagnetic field and the Schrödinger field had to be quantized
. . . as a somewhat fanciful exaggeration or as lunacy.29 This changed only

27Born to Sommerfeld, October 1, 1930, quoted in Von Meyenn, 2007, pp. 45-47.
28AHQP interview with Jordan, session 3, p. 8.
29“. . . eine etwas phantastische Uebertreibung oder Verrücktheit.”
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when Dirac [1927] also quantized both the electromagnetic field and the field
of matter-waves. I still remember how Born, who had been the first to re-
ceive an offprint of the relevant paper of Dirac, showed it to me and initially
looked at it shaking his head. When I then pointed out to him that I had been
preaching the same idea all along ever since our Dreimännerarbeit, he first
acted surprised but then agreed.30 Heisenberg then also set aside his tem-
porary skepticism, though it was not until considerably later that he himself
started to work toward a quantum theory of fields (or “quantum electrody-
namics”) in the paper he then published with Pauli,31 which followed up on
my three joint papers with Pauli, [Oskar] Klein, and [Eugene] Wigner.32,33

These and other publications of the late 1920s make Jordan one of the pioneers of
quantum field theory. In his AHQP interview (session 3, p. 9), Jordan told Kuhn the
same story he told Van der Waerden. Kuhn asked him in this context who had coined
the phrase “second quantization.” Jordan told him he had (ibid.). A version of the story
he told Van der Waerden and Kuhn in the early 1960s can already be found in a letter
to Born of the late 1940s:

It has always saddened me somehow that the attack on the light-quantum
problem already contained in our Dreimännerarbeit was rejected by everyone
for so long (I vividly remember how Frenkel, despite his very friendly dis-
position toward me, regarded the quantization of the electromagnetic field
as a mild form of insanity34) until Dirac took up the idea from which point
onward he was the only one cited in this connection.35

Given the resentment one senses in the italicized clause, there is some irony in how
Jordan segues into another version of the same story in the volume in honor of Dirac’s
70th birthday:

I have been extremely thankful to Dirac in another connection. My idea
that the solution of the vexing problem of Einstein’s light quanta might be
given by applying quantum mechanics to the Maxwell field itself, aroused
the doubt, scepticism, and criticism of several good friends. But one day
when I visited Born, he was reading a new publication of Dirac, and he said:
‘Look here, what Mr. Dirac does now. He assumes the eigenfunctions of a
particle to be non-commutative observables again.’ I said: ‘Naturally.’ And
Born said: ‘How can you say “naturally”?’ I said: ‘Yes, that is, as I have
asserted repeatedly, the method which leads from the one-particle problem
to the many-body problem in the case of Bose statistics’ (Jordan, 1973, p.
297; our emphasis).

30Jordan’s text can be read as saying that Born agreed that Jordan had indeed been championing the
same idea, but what he meant, presumably, is that Dirac’s paper convinced Born of the merit of the
idea.

31(Heisenberg and Pauli, 1929, 1930)
32(Jordan and Pauli, 1928; Jordan and Klein, 1927; Jordan and Wigner, 1928).
33Jordan to Van der Waerden, April 10, 1962 (AHQP).
34“. . . eine Art leichtes Irresein” [sic].
35Jordan to Born, July 3, 1948 (AHQP), our emphasis.
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Since this was a conference honoring Dirac, other speakers can be forgiven for declar-
ing Dirac to be the founding father of quantum field theory. Rudolf Peierls (1973, p.
370) set the tone in his talk on the development of quantum field theory and Julian
Schwinger (1973, p. 414) followed suit in his report on quantum electrodynamics the
next day. Gregor Wentzel chaired this session and the conference proceedings also con-
tain a reprint of his review of quantum field theory for the Pauli memorial volume, which
prominently mentions the Dreimännerarbeit and lists the early papers of Jordan and his
collaborators in its bibliography (Wentzel, 1960, p. 49 and pp. 74–75). Neither Wentzel
nor Jordan said anything in the discussions following the talks by Peierls and Schwinger.
One wonders whether these celebratory distortions of history induced Jordan to submit
his reminiscences of the early years of quantum mechanics to the conference proceed-
ings instead of the musings on the expansion of the earth to which he had treated his
colleagues at the conference itself.

More recent histories of quantum field theory—(Weinberg, 1977, pp. 19–20) but espe-
cially (Darrigol, 1986) and, drawing on Darrigol’s work, (Miller, 1994) and (Schweber,
1994)—do full justice to Jordan’s contributions.36 To understand the negative reactions
of his co-authors and contemporaries to his derivation of the fluctuation formula it is
important to keep in mind that Jordan was virtually alone at first in recognizing the
need for the extension of quantum theory to fields.

10.3.4 The 1926 Smekal Interlude

What is suppressed in Jordan’s later recollections is that in 1926 he himself started to
have second thoughts about second quantization and that (Dirac, 1927) also seems to
have been important in dispelling his own doubts.37 In April 1926, Adolf Smekal pub-
lished a paper criticizing the fluctuation calculations in the Dreimännerarbeit. Smekal
argued that, when calculating energy fluctuations in radiation, one should take into ac-
count the interaction with matter emitting and absorbing the radiation. Without such
interaction, he insisted, the radiation would not reach its equilibrium black-body fre-
quency distribution and would not be detectable so that a fortiori fluctuations in its
energy would not be observable.

With the first of these two objections, Smekal put his finger on a step that is missing

36See also (Ehlers, 2007) and (Schroer, 2007), specifically on Jordan, as well as (Weinberg, 1995, sec. 1.2,
pp. 15–31). It is difficult to gauge both how well-known and how well-understood these calculations
have been in the physics community since their publication in 1926. One data point is provided by
(Milonni, 1981, 1984). In 1981, this author derived a formula for energy fluctuations in a box of
black-body radiation (not a subvolume of this box) that has the form of Einstein’s 1909 fluctuation
formula. He interprets the two terms in his fluctuation formula “in terms of the fundamental processes
of spontaneous and stimulated emission, and absorption” and writes that “[t]his interpretation seems
obvious in retrospect but has not, to the author’s knowledge, been discussed previously” (ibid.). He
does not mention the Dreimännerarbeit. In a paper on wave-particle duality three years later in a
volume in honor of Louis de Broglie’s 90th birthday, Milonni (1984, pp. 39–41) does mention the
fluctuation calculations in the Dreimännerarbeit, though he has clearly missed that these calculations,
like Einstein’s, pertain to a subvolume and seems to be under the impression that they are equivalent
to the calculations in (Milonni, 1981). He acknowledges that, when he wrote this 1981 paper, he “was
not aware that the Born-Heisenberg-Jordan paper contained a discussion of the fluctuation formula”
(Milonni, 1984, p. 62, note 27). Neither were the editors and referees of American Journal of Physics
it seems.

37This interlude is also discussed in (Darrigol, 1986, pp. 222–225).
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both in H. A. Lorentz’s (1916) derivation of the classical formula for the mean square
energy fluctuation in black-body radiation, and in Jordan’s derivation of its quantum
counterpart in the simple model of a string. To derive a formula for thermal fluctuations,
one needs to consider a thermal ensemble of states. Both Lorentz and Jordan, however,
only considered individual states and failed to make the transition to an ensemble of
states. A clear indication of the incompleteness of their derivations is that the temper-
ature does not appear anywhere. Smekal is quite right to insist that we consider the
system, be it black-body radiation or oscillations in a string, in contact with an external
heat bath. This does not mean, however, that the interaction with matter needs to be
analyzed in any detail. We can calculate the thermal fluctuations simply assuming that
the system has somehow thermalized through interaction with matter. It should also be
emphasized that the fluctuations in a small subvolume that Lorentz and Jordan were
interested in do not come from the exchange of energy between radiation and matter but
from radiation energy entering and leaving the subvolume. Smekal’s second objection—
that interaction with matter is needed to detect energy fluctuations in radiation—seems
to have gained considerable traction with the authors of the Dreimännerarbeit, as one
would expect given their Machian-positivist leanings.

In response to Smekal’s criticism of their paper, the authors retreated to the position
that their calculation was certainly valid for sound waves in a solid38 and that it was
still an open question whether it also applied to electromagnetic radiation. This is clear
from a paper by Heisenberg (1926, p. 501, note 2) on fluctuation phenomena in crystal
lattices and from a letter he simultaneously sent to Born, Jordan, and Smekal. As he
told these three correspondents:

Our treatment [i.e., in the Dreimännerarbeit] of fluctuation phenomena is
undoubtedly applicable to the crystal lattice . . . The question whether this
computation of fluctuations can also be applied to a radiation cavity can,
as Mr. Smekal emphasizes, not be decided at the moment, as a quantum
mechanics of electrodynamical processes has not been found yet. Because of
the formal analogy between the two problems (crystal lattice–cavity) I am
personally inclined to believe in this applicability, but for now this is just a
matter of taste.39

A more definite stance would have to await the quantum-mechanical treatment of a full
interacting system of radiation and matter. Dirac’s paper provided such a treatment.

The retreat triggered by (Smekal, 1926) and the renewed advance after (Dirac, 1927)
left some traces in Jordan’s writings of this period. Immediately after the discussion of
his fluctuation considerations in his semi-popular history of the light-quantum hypoth-
esis, we read:

For light itself one can look upon the following thesis as the fundamental
result of the investigation of Born, Heisenberg, and Jordan, namely that
(as demanded by Pauli) a new field concept must be developed in which
one applies the concepts of quantum mechanics to the oscillating field. But

38In his lecture on specific heats at the first Solvay conference in 1911, Einstein (1914, p. 342) had
already made it clear that these fluctuation considerations also apply to solids (Bach, 1989, p. 180).

39Heisenberg to Born, Jordan, and Smekal, October 29, 1926 (AHQP).
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this thesis has in a sense shared the fate of the [fluctuation] considerations
by Einstein, the elucidation of which served as its justification: for a long
time—even among proponents of quantum mechanics—one either suspended
judgement or rejected the thesis. It was accepted only when Dirac showed a
year later that Einstein’s [1917] laws for emission and absorption for atoms
in a radiation field also follow necessarily and exactly from this picture [of
quantized fields] (Jordan, 1928, pp. 195–196).

In a footnote appended to the next-to-last sentence, Jordan acknowledges that “this
general rejection” of field quantization had caused him to doubt it himself “for a while”
and that these doubts had found their way into his two-part overview of recent devel-
opments in quantum mechanics (Jordan, 1927a,b). In his presentation of his fluctuation
considerations in the second part, Jordan (1927b, pp. 642–643) indeed accepted Heisen-
berg’s criticism (cf. note 21) that it is unclear whether quantum mechanics as it stands
applies to systems with an infinite number of degrees of freedom and, again following
Heisenberg’s lead, retreated to the claim that the analysis certainly holds for a lattice
with a finite number of particles. In the Dreimännerarbeit, the authors still confidently
asserted that the same considerations that apply to a finite crystal lattice “also apply if
we go over to the limiting case of a system with infinitely many degrees of freedom and
for instance consider the vibrations of an elastic body idealized to a continuum or finally
of an electromagnetic cavity” (p. 375). In a note added in proof to his paper the follow-
ing year, Jordan (1927b, p. 643) announced with obvious relief that Dirac’s forthcoming
paper completely vindicates the original generalization from a lattice to radiation.

10.3.5 Jordan’s Result As Evidence for Matrix Mechanics

The ambivalence of Born and Heisenberg about Jordan’s fluctuation considerations is
reflected in the use that is made of Jordan’s result in the Dreimännerarbeit. Rather than
hailing it as a seminal breakthrough in understanding the wave-particle duality of light,
the authors make it subordinate to the overall aim of promoting matrix mechanics. As
they announce at the end of the introduction, the derivation of the fluctuation formula
“may well be regarded as significant evidence in favour of the quantum mechanics put
forward here” (p. 325). After presenting the result, they comment:

If one bears in mind that the question considered here is actually somewhat
remote from the problems whose investigation led to the growth of quantum
mechanics, the result . . . can be regarded as particularly encouraging for the
further development of the theory (p. 385).

The one other accomplishment the authors explicitly identify as providing “a strong
argument in favour of the theory” is their derivation of the Kramers dispersion formula,
“otherwise obtained only on the basis of correspondence considerations” (p. 333). Since
the new theory grew directly out of such considerations (Duncan and Janssen, 2007),
it is not terribly surprising that it correctly reproduces this formula. The recovery of
the Einstein fluctuation formula, which played no role in the construction of the theory,
constitutes much more striking evidence.

Moreover, as the authors themselves emphasize, the way in which the theory repro-
duces the fluctuation formula is a particularly instructive illustration of the basic idea
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of Umdeutung. Before going into the details of the calculations, the authors already
express the hope “that the modified kinematics which forms an inherent feature of the
theory proposed here would yield the correct value for the interference fluctuations” (p.
377). In the next-to-last paragraph of the paper, they make sure the reader appreciates
that this hope has now been fulfilled:

The reasons leading to the appearance [in the formula for the mean square
energy fluctuation] of a term which is not provided by the classical theory are
obviously closely connected with the reasons for [the] occurrence of a zero-
point energy. The basic difference between the theory proposed here and that
used hitherto in both instances lies in the characteristic kinematics and not in
a disparity of the mechanical laws. One could indeed perceive one of the most
evident examples of the difference between quantum-theoretical kinematics
and that existing hitherto on examining [the quantum fluctuation formula],
which actually involves no mechanical principles whatsoever (p. 385).

With the exception of the final clause, which is best set aside as a rhetorical flour-
ish, the authors’ point is well taken. In the spirit of Heisenberg’s groundbreaking pa-
per, “Quantum-theoretical re-interpretation of kinematic and mechanical relations,” the
fluctuation formula, the Kramers dispersion formula, and other results are obtained not
through a change of the dynamical laws (the q’s and p’s for the oscillators representing
the modes of the field satisfy the usual laws of Newtonian mechanics) but through a
change of the kinematics (the nature of the q’s and p’s is changed). In this particular
case, this means that, although the wave equation for the string—used here as a proxy
for Maxwell’s equations—is taken over intact from the classical theory, the displacement
of the continuous string from its equilibrium state and the time derivatives of that dis-
placement are no longer given by an infinite set of numbers but rather by an infinite set
of infinite-dimensional matrices.

The Hamiltonian for a vibrating string decomposes, both classically and quantum-
mechanically, into a sum over infinitely many uncoupled harmonic oscillators. The oc-
currence of a particle-like term in the quantum formula for the mean square energy
fluctuation in a segment of the string is a direct consequence of the zero-point energy of
these oscillators. The zero-point energy of the harmonic oscillator had already been de-
rived in the Umdeutung paper (Heisenberg, 1925, pp. 271–272; see also Born and Jordan,
1925, pp. 297–300). Stachel (1986, p. 379), in a classic paper on Einstein and quantum
physics, correctly identifies the zero-point energy as the key element in Jordan’s deriva-
tion of the fluctuation formula, but does not mention that the zero-point energy itself
is traced to the central new feature of the new theory, the Umdeutung of position and
momentum as matrices subject to a quantum commutation relation. Without this ad-
ditional piece of information, it looks as if Jordan obtained his result simply by sleight
of hand. Kojevnikov (1990, p. 212) does mention that the zero-point energy is itself
a consequence of the new theory, though the point could have done with a little more
emphasis. Darrigol (1986, p. 222), in his brief characterization of Jordan’s calculation,
stresses the role of non-commutativity and does not explicitly mention the zero-point
energy at all.40

40 Bach (1989, p. 199) acknowledges that “sometimes it is pointed out that the cause of the occurrence
of the two terms [in the fluctuation formula] lies in the non-commutativity of the observables of the
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In 1926, Heisenberg, in the letter from which we already quoted in sec. 10.3.4, made
it clear that the fluctuation calculations were important to him only insofar as they
provided evidence for matrix mechanics and, by this time, against wave mechanics:

For the crystal lattice the quantum-mechanical treatment [of fluctuations]
undoubtedly means essential progress. This progress is not that one has
found the mean square fluctuation; that one already had earlier and is obvi-
ous on the basis of general thermodynamical considerations if one introduces
quantum jumps. The progress, in fact, is that quantum mechanics allows for
the calculation of these fluctuations without explicit consideration of quan-
tum jumps on the basis of relations between q, q′ etc. This amounts to a
strong argument for the claim that quantum-mechanical matrices are the
appropriate means for representing discontinuities such as quantum jumps
(something that does not become equally clear in the wave-mechanical way
of writing things). The calculation of our Dreimännerarbeit thus provided
an element of support for the correctness of quantum mechanics.41

Now that the calculation had served that purpose, Heisenberg clearly preferred to leave
it behind and move on.42 In fact, he closes his letter reminding his correspondents that
“there are so many beautiful things in quantum theory at the moment that it would be
a shame if no consensus could be reached on a detail like this” (eine solche Einzelheit;
ibid.).

10.3.6 Jordan’s Result as Solving the Riddle of the Wave-Particle Duality
of Light

For Jordan, the value of the fluctuation result as solving the riddle of the wave-particle
duality of light was obviously much higher than for Heisenberg. Still, Jordan also had
a tendency to make it subservient to a larger cause, albeit field quantization rather
than matrix mechanics. We already quoted Jordan (1928, pp. 195–196) saying that
the fundamental importance of the result was that it brought out the need to quantize
fields. In this same article, however, as in various subsequent publications, Jordan also
did full justice to the importance of the result as having resolved the conundrum of the
wave-particle duality of light. In his history of the light-quantum hypothesis, he wrote:

[I]t turned out to be superfluous to explicitly adopt the light-quantum hy-
pothesis: We explicitly stuck to the wave theory of light and only changed the
kinematics of cavity waves quantum-mechanically. From this, however, the

quantum theory,” but claims that this is mistaken since the observables relevant to the fluctuation
problem supposedly form an Abelian subalgebra (ibid., pp. 199, 202). This claim is simply false. The
relevant observables, the operator for the energy of the whole system and the operator for the energy
in part of the system in a narrow frequency range, do not commute (see sec. 10.4.2, the discussion
following eq. (10.59)).

41Heisenberg to Born, Jordan, and Smekal, October 29, 1926 (AHQP).
42In the same letter, Heisenberg claimed that he only reluctantly agreed to the publication of the sec-

tion on fluctuation phenomena of the Dreimännerarbeit: “I wanted to give up on publishing our
Dreimännernote, because all polemics are abhorrent to me in the bottom of my soul [weil mir jede
Polemik im Grund meiner Seele völlig zuwider ist] and because I no longer saw any point worth fighting
for.”

180



Jordan’s Resolution of the Conundrum of Wave-Particle Duality of Light

characteristic light-quantum effects emerged automatically as a consequence
. . . This is a whole new turn in the light-quantum problem. It is not necessary
to include the picture [Vorstellung] of light quanta among the assumptions of
the theory. One can—and this seems to be the natural way to proceed—start
from the wave picture. If one formulates this with the concepts of quantum
mechanics, then the characteristic light-quantum effects emerge as necessary
consequences from the general laws [Gesetzmäßigkeiten] of quantum theory
(Jordan, 1928, p. 195).

As Jordan undoubtedly realized, “the characteristic light-quantum effects” referred to in
this passage do not include those that involve interaction between the electromagnetic
field and matter, such as the photoelectric effect or the Compton effect. His argument
only applies to free radiation.43 As such, however, it does explain why the Einstein
fluctuation formula contains both a particle and a wave term and why light quanta are
subject to Bose’s odd new statistics. That the latter also speaks in favor of Jordan’s
approach is explicitly mentioned in the Dreimännerarbeit (pp. 376–379), in (Jordan,
1928, p. 182), and, in more detail, in Jordan’s textbook on quantum mechanics (Jordan,
1936, p. 220).44 The connection with Bose statistics is not mentioned in (Jordan, 1929),
his contribution to the proceedings of the Charkow conference on unified field theory and
quantum mechanics. That is probably because the paper is not about quantum statistics
but about quantum field theory. As such it provides a prime example of Jordan using
his fluctuation result as a means to an end (i.e., the promotion of field quantization), but
it also contains a particularly crisp statement of the value of the result as the solution
to the riddle of the wave-particle duality of light, complete with an uncharacteristically
immodest assessment of its momentous character:

Einstein drew the conclusion that the wave theory would necessarily have
to be replaced or at least supplemented by the corpuscular picture. With
our findings [Feststellungen], however, the problem has taken a completely
different turn. We see that it is not necessary after all to abandon or restrict
the wave theory in favor of other models [Modellvorstellungen]; instead it
just comes down to reformulating [übertragen] the wave theory in quantum
mechanics. The fluctuation effects, which prove the presence of corpuscular
light quanta in the radiation field, then arise automatically as consequences
of the wave theory. The old and famous problem how one can understand
waves and particles in radiation in a unified manner can thus in principle be
considered as taken care of [erledigt] (Jordan, 1929, p. 702)

The strong confidence conveyed by that last sentence probably reflects that with (Dirac,
1927) the tide had decisively turned for Jordan’s pet project of quantizing fields. Jordan’s
language in (Born and Jordan, 1930, pp. 398–399) is admittedly more subdued again,
but that could be because he feared he would not get a more exuberant statement past
his teacher and co-author. As is clear in hindsight (see sec. 10.3.2), Born was not paying
43As mentioned in sec. 10.3.4, Dirac (1927) first developed the theory for the interaction between the

electromagnetic field and matter.
44For discussion of the connection to Bose statistics, see (Darrigol, 1986, p. 221). Darrigol quotes from

a letter from Jordan to Erwin Schrödinger that can be dated to the summer of 1927, in which Jordan
briefly reiterates this point (ibid., p. 224).
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much attention and Jordan need not have worried, but Jordan probably did not know
that in 1930. In any event, the language of the Charkow proceedings, including the
triumphant last sentence, is recycled verbatim in (Jordan, 1936, p. 222).

None of these later texts ever drew anywhere near the attention accorded to the Drei-
männerarbeit. Reading them seriatim, moreover, one can appreciate the complaint by
Pauli (1930) to the effect that Jordan was starting to sound like a broken record (see
sec. 10.3.2). Jordan did himself a disservice not only by agreeing to present his result
merely as a piece of evidence for matrix mechanics in the Dreimännerarbeit, but also
by trying to make up for that mistake too many times. That Jordan routinely pressed
the result into service in his promotion of quantum field theory may also have hurt the
recognition of its significance as solving the riddle of the wave-particle duality of light.

10.3.7 Einstein’s Reaction to Jordan’s Result

As the person responsible for the riddle, Einstein should have been especially interested in
the solution Jordan claimed to have found. As Jordan told Van der Waerden: “Einstein
was really the only physicist from whom I could expect the acknowledgment [Feststellung]
that with this result a big problem in physics had really been brought to its solution.
But, although he reacted very friendly and kindly, Einstein on his part was disinclined
to consider matrix mechanics as trustworthy.”45 He told Kuhn the same thing: “One
might have imagined that Einstein would have been pleased [with Jordan’s result] but
Einstein’s attitude toward matrix mechanics was that he was having none of it” (AHQP
interview with Jordan, session 3, p. 9).46

In late October 1925, as the Dreimännerarbeit was being completed, Jordan wrote
to Einstein enclosing some notes on his fluctuation calculations.47 Einstein’s response
has not been preserved (see note 8), but from Jordan’s next letter a month and a half
later, it can be inferred that Einstein objected to the use of the zero-point energy in the
calculation. In his defense, Jordan wrote:

My opinion of the zero-point energy of the cavity is roughly that it is really
only a formal calculational quantity without direct physical meaning; only
the thermal energy referred to T = 0 is physically definable. The fluctua-
tions, which formally have been calculated as the mean square fluctuation of
thermal energy + zero-point energy, are, of course, identical with the fluctu-
ations of the thermal energy.48

45Jordan to Van der Waerden, December 1, 1961 (AHQP). As the reference to Einstein’s friendliness
suggests, politics did not play a role in Einstein’s negative reaction.

46In a letter to Ehrenfest of September 30, 1925, Einstein ironically referred to Heisenberg’s “large
quantum egg” (Fölsing, 1997, p. 566).

47Jordan to Einstein, October 29, 1925 (AE 13-473), dated by a reference to Born’s departure for the
United States the day before. The enclosed notes, it seems, are no longer extant. In the letter,
Jordan announces that his paper with Born and Heisenberg will be ready in “8 to 14 days.” The
Dreimännerarbeit was received by Zeitschrift für Physik on November 16, 1925.

48Jordan to Einstein, December 15, 1925 (AE 13-474). Jordan inquires whether Einstein had meanwhile
received page proofs of the Dreimännerarbeit, suggesting that Einstein only had Jordan’s notes to go
on at this point. Jordan also writes that he is planning to develop “a systematic matrix theory of
the electromagnetic field” based on the formalism developed by Born and Norbert Wiener. In view
of Jordan’s later assessment of the importance of his fluctuation result (see the passages quoted in
sec. 10.3.6), it is interesting note that he wrote to Einstein that such a theory would “still remain far
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The answer did not satisfy Einstein. He continued to raise objections to the fluctua-
tion calculations, first in letters to Heisenberg49 and Ehrenfest,50 then in a postcard to
Jordan. This is the only contribution from Einstein to the correspondence with Jordan
that has survived. In it, Einstein objects—to use the terminology that Jordan himself
later introduced (see sec. 10.2)—that matrix mechanics can only reproduce his second
fluctuation formula, not the first:

The thing with the fluctuations is fishy [faul]. One can indeed calculate the
average magnitude of fluctuations with the zero-point term 1

2hν, but not the
probability of a very large fluctuation. For weak (Wien) radiation, the prob-
ability, for instance, that all radiation [in a narrow frequency range around
ν] is found in a subvolume V of the total volume V0 is W = (V/V0)E/hν .
This can evidently not be explained with the zero-point term although the
expression is secure [gesichert] on thermodynamical grounds.51

Presumably, Einstein’s problem with the zero-point energy was that, if the energy of each
quantum of frequency ν were 3

2hν rather than hν, the exponent in the expression for W
can no longer be interpreted as the number of light quanta N and black-body radiation
in the Wien regime would no longer behave as an ideal gas of N particles. The zero-point
energy, however, does not come into play here, since the energy E in the exponent of
Einstein’s formula is a thermal average of the excitation energy, the difference between
the full energy and the zero-point energy, which Jordan in the quotation above called
the “thermal energy.”52

In his response, Jordan does not return to the issue of the zero-point energy but
focuses on the question whether matrix mechanics allows one to calculate the probability
of specific fluctuations.53 He explains that the only way to do this in the theory as it
stands is through expansion of such probabilities as power series in the mean square
and higher-order fluctuations ((E − E)2, (E − E)4, etc.; cf. Jordan, 1928, p. 194). In
October 1927, Jordan revisited both objections in another letter to Einstein.54 He
conceded that the treatment of zero-point energy in the theory remained unsatisfactory
and referred Einstein to comments on the issue in a paper he had in the works (Jordan
and Pauli, 1928). However, the problem of arbitrary fluctuations, Jordan claimed, had
been completely resolved. Referring to work soon to be published as (Jordan, 1927c),
received by Zeitschrift für Physik on October 11, 1927, he wrote:

removed from the ideal . . . a more profound light-quantum theory, in which a continuous world and
continuous quantities no longer occur at all.”

49This can be inferred from a letter from Jordan to Einstein that can be dated to February 1926 (AE
13-475), in which Jordan mentions that he has read a letter from Einstein to Heisenberg.

50Einstein to Ehrenfest, February 12, 1926, quoted in (Kojevnikov, 1990, p. 212).
51Einstein to Jordan, March 6, 1926 (AHQP), quoted, for instance, in (Mehra and Rechenberg, 1982–

2001, Vol. 3, p. 156). In a postscript Einstein added somewhat disingenuously: “Other than that,
however, I am greatly impressed with matrix theory.” The objections raised in this postcard can also
be found in the letter to Ehrenfest cited in the preceding note.

52This term is also used in the Dreimännerarbeit (p. 377, p. 384). As we shall argue in sec. 10.4.2, this
terminology is somewhat misleading (see the discussion following Eq. (10.56)).

53Jordan to Einstein (AE 13-472), undated but probably written shortly after Einstein’s postcard of
March 6, 1926.

54This letter (AE 13-478) was dated on the basis of a reference to page proofs of (Jordan and Klein,
1927), which was received by Zeitschrift für Physik on October 4, 1927.
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Following the latest papers by Dirac, I have recently studied somewhat
more closely the correspondence between a quantized wave field and a system
of corpuscular quanta. This closer examination reveals such a perfect inter-
nal equivalence between these two systems that one can make the following
claim: When, without explicitly appealing to the corpuscular representation,
one simply quantizes the oscillations of the radiation field (like I did earlier
for the vibrating string), one arrives in all respects at the same results as
when one proceeds on the basis of the corpuscular representation . . . One
then sees immediately that every lawlike regularity understandable on the
basis of the corpuscular representation (such as, in particular, your formula
W = (V/V0)E/hν) is also a necessary consequence of the representation of
quantized waves.55

Einstein’s response, if there ever was any, has not been preserved. And Jordan never
showed in detail how he could recover Einstein’s first fluctuation formula. Of course, it
is no condemnation of his derivation of the second fluctuation formula that he did not
produce a derivation of the first.

Einstein never accepted Jordan’s results and maintained to the end of his life that the
puzzle of the wave-particle duality of light still had to be solved. As he told Michele
Besso a few years before he died: “All these fifty years of conscious brooding have brought
me no closer to the answer to the question “What are light quanta?” Nowadays every
Tom, Dick, and Harry [jeder Lump] thinks he knows it, but he is mistaken.”56 Einstein
scholars typically quote such pronouncements approvingly in recounting the story of the
light-quantum hypothesis and the wave-particle duality of light.57 Their message, it
seems, is that, as wrong as Einstein turned out to be about other aspects of quantum
mechanics, he was right about the wave-particle duality of light. In our estimation, he
was just stubborn. Quantum electrodynamics provides a perfectly satisfactory solution
to Einstein’s 1909 riddle of the wave-particle duality of light. Jordan was the first to
hit upon that solution. The problem of the infinite zero-point energy, to be sure, is
still with us in the guise of the problem of the vacuum energy, but that is a different
issue.58 Recall, moreover, that Jordan avoided the problem of infinite zero-point energy
altogether by deriving the mean square energy fluctuation in a finite frequency range.

55Jordan to Einstein, October 1927 (AE 13-478). A similar statement can be found in (Jordan, 1927c,
pp. 772–774). This paper cites (Dirac, 1926, 1927). In (Born and Jordan, 1930, p. 399), the authors
promise that it will be shown in a sequel to the book that a theory of quantized waves correctly
reproduces Einstein’s first fluctuation formula. Since (Born and Jordan, 1930) was itself the sequel to
(Born, 1925), Pauli (1930) began his review by pointing out that “[t]his book is the second volume in a
series in which goal and purpose of the nth volume is always made clear through the virtual existence
of the (n + 1)th volume.” The review helped ensure that, for n = 2, the (n + 1)th volume never saw
the light of day.

56Einstein to Besso, December 12, 1951, quoted, for instance, in (Klein, 1979, p. 133, p. 138).
57See, e.g., (Stachel, 1986, pp. 379–380) and (Klein, 1970, pp. 38–39).
58For the free-field limit of quantum electrodynamics needed for the fluctuation calculations at issue

here, a mathematically precise formulation is obtained by shifting the zero point of energy in the
full Hamiltonian to remove the divergent zero-point energy contribution (which is the only divergence
exhibited by a free field theory). Since such a shift clearly does not affect the dispersion in the energy, it
also does not affect the mean square fluctuation in the energy in a subvolume and in a finite frequency
interval.
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10.3.8 Why Jordan’s Result Has Not Become More Famous

In the course of our analysis in secs. 3.1–3.7, we identified several factors that help explain
why Jordan’s derivation of Einstein’s fluctuation formula has not become part of the
standard story of wave-particle duality. Before moving on to the actual calculations, we
collect these factors here. First, there is the cloud of suspicion that has always surrounded
the result. Then there is the tendency, most notably in the case of Heisenberg but also in
the case of Jordan himself, to downplay the value of the result as resolving the conundrum
of the wave-particle duality of light and to present it instead as an argument for either
matrix mechanics or field quantization. This is reflected in the historical literature where
Jordan’s result has meanwhile found its proper place in histories of quantum field theory
but is hardly ever mentioned in histories of the light-quantum hypothesis or wave-particle
duality.

10.4 Reconstruction of and Commentary on Jordan’s
Derivation of Einstein’s Fluctuation Formula

Jordan borrowed a simple model from Ehrenfest (1925, pp. 367–373) to analyze the
problem of energy fluctuations in black-body radiation. He considered a string of length
l fixed at both ends of constant elasticity and constant mass density. This can be
seen as a one-dimensional analogue of an electromagnetic field forced to vanish at the
conducting sides of a box. The wave equation for the string—the analogue of the free
Maxwell equations for this simple model—is:

∂2u

∂t2
− ∂2u

∂x2
= 0, (10.4)

where u(x, t) is the displacement of the string at position x and time t and where the
velocity of propagation is set equal to unity. The boundary conditions u(0, t) = u(l, t) =
0 for all times t express that the string is fixed at both ends. The general solution of
this problem can be written as a Fourier series (Ch. 4, Eqs. (41) and (41′)):

u(x, t) =
∞∑
k=1

qk(t) sin (ωkx), (10.5)

with angular frequencies

ωk ≡
kπ

l
, (10.6)

and Fourier coefficients (Ch. 4, Eq. (44))

qk(t) = ak cos (ωkt+ ϕk). (10.7)

The Hamiltonian for the string is (Ch. 4, Eq. (42) [u2 should be u̇2]):

H =
1
2

∫ l

0
dx
(
u̇2 + u2

x

)
, (10.8)

where the dot indicates a time derivative and the subscript x a partial derivative with
respect to x. The terms u̇2 and u2

x are the analogues of the densities of the electric and
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the magnetic field, respectively, in this simple model of black-body radiation. Inserting
Eq. (10.5) for u(x, t) in Eq. (10.8), we find (Ch. 4, Eq. (41)):

H =
1
2

∫ l

0
dx

∞∑
j,k=1

(q̇j(t)q̇k(t) sin (ωjx) sin (ωkx)

+ ωjωkqj(t)qk(t) cos (ωjx) cos (ωkx)) . (10.9)

The functions {sin (ωkx)}k in Eq. (10.5) are orthogonal on the interval (0, l), i.e.,∫ l

0
dx sin (ωjx) sin (ωkx) =

l

2
δjk. (10.10)

The same is true for the functions {cos (ωkx)}k. It follows that the integral in Eq. (10.9)
will only give contributions for j = k (as can be verified explicitly by substituting l for
a in Eq. (10.18) below). The double sum thus turns into the single sum:

H =
∞∑
j=1

l

4
(
q̇2
j (t) + ω2

j q
2
j (t)

)
=
∞∑
j=1

Hj . (10.11)

With the help of Eqs. (10.6)–(10.7), we find that Hj = (l/4)a2
jω

2
j = j2π2a2

j/4l. It follows
that the total energy in the string is finite as long as the amplitudes aj fall off with j
faster than j−3/2.

Eq. (10.11) shows that the vibrating string can be replaced by an infinite number of
uncoupled oscillators, one for every mode of the string. This shows that the distribution
of the energy over the frequencies of these oscillators is constant in time. Since there is
no coupling between the oscillators, there is no mechanism for transferring energy from
one mode to another. The spatial distribution of the energy in a given frequency range
over the length of the string, however, varies in time. We study the fluctuations of the
energy in a narrow frequency range in a small segment of the string. The total energy
in that frequency range will be constant but the fraction located in that small segment
will fluctuate. Jordan derived an expression for the mean square energy fluctuation of
this energy, first in classical theory, then in matrix mechanics.

10.4.1 Classical Calculation

Changing the upper boundary of the integral in Eq. (10.9) from l to a (a � l) and
restricting the sums over j to correspond to a narrow angular frequency range (ω, ω +
∆ω), we find the instantaneous energy in that frequency range in a small segment (0, a) ⊂
(0, l) of the string. This quantity is simply called E in the paper (cf. Ch. 4, Eq. (43)).
We add the subscript (a, ω):

E(a,ω)(t) =
1
2

∫ a

0
dx
∑
j,k

(q̇j(t)q̇k(t) sin (ωjx) sin (ωkx)

+ ωjωkqj(t)qk(t) cos (ωjx) cos (ωkx)) , (10.12)

where the sums over j and k are restricted to the finite range of integers satisfying
ω < j(π/l) < ω+ ∆ω and ω < k(π/l) < ω+ ∆ω. Unless we explicitly say that sums run
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from 1 to ∞, all sums in what follows are restricted to this finite range. This restriction
also appears to be in force in many summations in this section of the Dreimännerarbeit
even though they are all written as infinite sums. The sums in Eqs. (43), (45), (46′),
(46′′), and (47) in the paper (pp. 381–382) should all be over this finite rather than over
an infinite range of integers.

There are several clear indications in this section of the paper that the authors are in
fact considering a small frequency range. The clearest statement is their description of
the situation with black-body radiation which the string is supposed to represent:

If there is communication between a volume V and a very large volume
such that waves which have frequencies which lie within a small range ν to
ν + dν can pass unhindered from one to the other, whereas for all other
waves the volumes remain detached, and if E be the energy of the waves
with frequency ν in V , then according to Einstein the mean square deviation
. . . can be calculated (p. 379, our emphasis).

Two pages later, in Eq. (43), the same symbol E is used for what we more explicitly
write as E(a,ω). Immediately below this equation it says in parentheses: “under the
explicit assumption that all wavelengths which come into consideration are small with
respect to a” (p. 381, our emphasis).

The functions {sin (ωkx)}k and the functions {cos (ωkx)}k are not orthogonal on the
interval (0, a), so both terms with j = k and terms with j 6= k will contribute to the
instantaneous energy E(a,ω)(t) in Eq. (10.12). First consider the (j = k) terms. On the
assumption that a is large enough for the integrals over sin2 (ωjx) and cos2 (ωjx) to be
over many periods corresponding to ωj , these terms are given by:

E
(j=k)
(a,ω) (t) ≈ a

4

∑
j

(
q̇2
j (t) + ω2

j q
2
j (t)

)
=
a

l

∑
j

Hj(t). (10.13)

Since we are dealing with a system of uncoupled oscillators, the energy of the individual
oscillators is constant. Since all terms Hj(t) are constant, E(j=k)

(a,ω) (t) is constant too and
equal to its time average:59

E
(j=k)
(a,ω) (t) = E

(j=k)
(a,ω) (t). (10.14)

Since the time averages q̇j(t)q̇k(t) and qj(t)qk(t) vanish for j 6= k, the (j 6= k) terms in
Eq. (10.12) do not contribute to its time average:

E
(j 6=k)
(a,ω) (t) = 0. (10.15)

The time average of Eq. (10.12) is thus given by the (j = k) terms:

E
(j=k)
(a,ω) (t) = E(a,ω)(t). (10.16)

Combining Eqs. (10.13) and (10.16), we see that the time average of the energy in the
frequency range (ω, ω+ ∆ω) in the small segment (0, a) of the string is just the fraction
(a/l) of the (constant) total amount of energy in this frequency range in the entire string.
59A bar over any quantity denotes the time average of that quantity. The argument that follows, leading

to Eqs. (10.14) and (10.17) can also be made in terms of averages over the phases ϕk in the Fourier
coefficients in Eq. (10.7).
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From Eq. (10.16) it follows that the (j 6= k) terms in Eq. (10.12) give the instantaneous
deviation ∆E(a,ω)(t) of the energy in this frequency range in the segment (0, a) of the
string from its mean (time average) value:

∆E(a,ω)(t) ≡ E(a,ω)(t)− E(a,ω)(t) = E
(j 6=k)
(a,ω) (t). (10.17)

We now integrate the (j 6= k) terms in Eq. (10.12) to find ∆E(a,ω). From now on, we
suppress the explicit display of the time dependence of ∆E(a,ω), qj and q̇j .

∆E(a,ω) =
1
4

∫ a

0
dx
∑
j 6=k

(q̇j q̇k [cos ((ωj − ωk)x)− cos ((ωj + ωk)x)]

+ ωjωkqjqk [cos ((ωj − ωk)x) + cos ((ωj + ωk)x)])
(10.18)

=
1
4

∑
j 6=k

(
q̇j q̇k

[
sin ((ωj − ωk)a)

ωj − ωk
− sin ((ωj + ωk)a)

ωj + ωk

]

+ ωjωkqjqk

[
sin ((ωj − ωk)a)

ωj − ωk
+

sin ((ωj + ωk)a)
ωj + ωk

])
.

Defining the expressions within square brackets as (cf. Ch. 4, Eq. (45′))

Kjk ≡ sin ((ωj − ωk)a)
ωj − ωk

− sin ((ωj + ωk)a)
ωj + ωk

,

(10.19)

K ′jk ≡ sin ((ωj − ωk)a)
ωj − ωk

+
sin ((ωj + ωk)a)

ωj + ωk
,

we can write this as (cf. Ch. 4, Eq. (45)):

∆E(a,ω) =
1
4

∑
j 6=k

(
q̇j q̇kKjk + ωjωkqjqkK

′
jk

)
. (10.20)

Note that both Kjk and K ′jk are symmetric: Kjk = Kkj and K ′jk = K ′kj . We now
compute the mean square fluctuation of the energy in the segment (0, a) in the frequency
range (ω, ω + ∆ω). Denoting the two parts of the sum in Eq. (10.20) as ∆E1(a,ω)

and
∆E2(a,ω)

, respectively, we find (Ch. 4, Eq. (46)):

∆E2
(a,ω) = ∆E2

1(a,ω)
+ ∆E2

2(a,ω)
+ ∆E1(a,ω)

∆E2(a,ω)
+ ∆E2(a,ω)

∆E1(a,ω)
. (10.21)

Classically, the last two terms are obviously equal to one another. In quantum mechanics
we have to be more careful. So it is with malice of forethought that we wrote these last
two terms separately. The first two terms are given by (Ch. 4, Eq. (46′))

∆E2
1(a,ω)

+ ∆E2
2(a,ω)

=
1
16

∑
j 6=k

∑
j′ 6=k′

(
q̇j q̇kq̇j′ q̇k′KjkKj′k′

+ qjqkqj′qk′ωjωkωj′ωk′K
′
jkK

′
j′k′
)

; (10.22)
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the last two by (Ch. 4, Eq. (46′′))

∆E1(a,ω)
∆E2(a,ω)

+ ∆E2(a,ω)
∆E1(a,ω)

=
(10.23)

1
16

∑
j 6=k

∑
j′ 6=k′

(
q̇j q̇kqj′qk′ωj′ωk′KjkK

′
j′k′ + qjqkq̇j′ q̇k′ωjωkK

′
jkKj′k′

)
.

Since qk(t) = ak cos (ωkt+ ϕk) and ωk = k(π/l) (see Eqs. (10.6) and (10.7)), it would
seem that the time averages of the products of four q’s or four q̇’s in Eq. (10.22) vanish
unless (j = j′, k = k′) or (j = k′, k = j′). This is not strictly true. Writing cosωkt =
1
2

(
eiωkt + e−iωkt

)
, we see that there will in principle be non-vanishing contributions

whenever ±ωj ± ωk ± ω′j ± ω′k = 0.60 In the real physical situation, however, the
string will not be exactly fixed at x = 0 and x = l, which means that the ω’s will not
exactly be integral number times (π/l). This removes accidental degeneracies of the
form ±j ± k ± j′ ± k′ = 0 and leaves only the index combinations (j = j′, k = k′) and
(j = k′, k = j′). These both give the same contribution. Hence (Ch. 4, Eq. (47)):

∆E2
1(a,ω)

+ ∆E2
2(a,ω)

=
1
8

∑
j 6=k

(
q̇2
j q̇

2
kK

2
jk + q2

j q
2
kω

2
jω

2
kK
′2
jk

)
, (10.24)

where we used that, for j 6= k, averages of products such as q̇2
j q̇

2
k are products of the av-

erages q̇2
j and q̇2

k. The time averages in Eq. (10.23), with two q’s and two q̇’s rather than
four q’s or four q̇’s, vanish even if (j = j′, k = k′) or (j = k′, k = j′). These index com-
binations produce time averages of expressions of the form sin (ωjt+ ϕj) cos (ωjt+ ϕj)
and these vanish. So, in the classical theory, Eq. (10.24) gives the total mean square
fluctuation.

To evaluate the mean square averages of the q’s and q̇’s in Eq. (10.24), we use the
virial theorem, which says that the time average of the kinetic energy of any one of the
oscillators in Eq. (10.11) is equal to the time average of its potential energy:

l

4
q̇2
j (t) =

l

4
ω2
j q

2
j (t) =

1
2
Hj . (10.25)

It follows that
∆E2

(a,ω) =
1

2l2
∑
j 6=k

HjHk

(
K2
jk +K ′ 2jk

)
. (10.26)

We now assume that the energies Hj of the oscillators of characteristic frequency ωj vary
smoothly with j.61 This assumption, which is not made explicit in the Dreimännerarbeit,
does not hold for arbitrary distributions of the total energy over the various frequencies,

60This problem does not arise if we consider phase averages instead of time averages. Since the phases
ϕj , ϕk, ϕj′ , and ϕk′ in the q’s and q̇’s are statistically independent, the only contributions to Eqs.
(10.22) and (10.23) with time averages replaced by phase averages come from terms in the quadruple
sum over (j 6= k, j′ 6= k′) with either (j = j′, k = k′) or (j = k′, k = j′).

61What we mean by ‘smooth’ here is that, if the integers j are replaced by real numbers x in the
expression for Hj , the result of integrating the function H(x) over some interval of the real numbers
is negligibly different from the result of taking the discrete sum of terms Hj over the corresponding
range of integers.
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but it does hold for many of them. As long as Hj varies smoothly with j, we can replace
the double sum over j and k by a double integral over the continuous variables ω and ω′.
Since ωj = (π/l)j (see Eq. (10.6)), a sum over j turns into (l/π) times an integral over ω.
Next, we introduce the continuous counterparts Kωω′ and K ′ωω′ of Kjk and K ′jk. They
are obtained by changing ωj and ωk in Eq. (10.19) into ω and ω′. When we integrate
over the square of Kωω′ , the contribution coming from the square of second term, which
has ω + ω′ in the denominator, is negligibly small compared to the contribution coming
from the square of the first term, which has ω−ω′ in the denominator (the integral over
the product of the first and the second term vanishes). The same is true for integrals
over the square of K ′ωω′ .

62 In such integrals K2
ωω′ and K ′ 2ωω′ can thus be replaced by

the squares of their (identical) first terms. Moreover, if a is very large compared to the
wavelengths associated with the frequencies in the narrow range (ω, ω+ ∆ω), we can set
(cf. Ch. 4, Eq. (48)):∫

dω′f(ω′)
sin2 ((ω − ω′)a)

(ω − ω′)2
=
∫
dω′f(ω′)πaδ(ω − ω′) = πaf(ω), (10.27)

where δ(x) is the Dirac delta function and f(x) is an arbitrary function. When we make
all these substitutions, Eq. (10.26) turns into:

∆E2
(a,ω) =

1
2l2

∫
dω

∫
dω′

(
l

π

)2

2πaδ(ω − ω′)HωHω′ =
a

π

∫
dωH2

ω, (10.28)

where the integrals are over the interval (ω, ω + ∆ω).63 Instead of integrating we can
multiply the integrand by ∆ω = 2π∆ν. If, in addition, we replace functions of ω by
functions of ν, we can write Eq. (10.28) as:

∆E2
(a,ν) = 2a∆νH2

ν . (10.29)

Finally, we replace Hν by the average energy in the frequency range (ν, ν + ∆ν) in the
segment (0, a) of the string, using the relation

E(a,ν) = Nν

(a
l
Hν

)
, (10.30)

where Nν is the number of modes in the interval (ν, ν + ∆ν). Eq. (10.6) tells us that
πNν/l = 2π∆ν, so

Nν = 2l∆ν. (10.31)

It follows that

Hν =
E(a,ν)

2a∆ν
. (10.32)

62It can be shown that neglecting the terms with (ωj + ωk) in the denominator in these integrals causes

a relative error of order
∆ω

ω

1

aω
, a product of two factors much smaller than 1.

63The corresponding integrals in Eqs. (47′), (49), and (50) are written as integrals from 0 to ∞, just
as the sums in Eqs. (43), (45), (46′), (46′′), and (47). After Eq. (49), equivalent to our Eq. (10.28),
and Eq. (50) for what in our notation would be Ea, the authors write: “In order to obtain [the
thermodynamical mean square energy fluctuation and the mean energy] we have merely to extract
those parts referring to dν = dω/2π” (p. 383, our emphasis). This is another clear indication that the
authors intended to compute the mean square energy fluctuation in a narrow frequency range.
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Inserting this into Eq. (10.29), we arrive at

∆E2
(a,ν) =

E(a,ν)
2

2a∆ν
(10.33)

for the mean square energy fluctuation in the small segment (0, a) of the string in the
narrow frequency range (ν, ν + ∆ν). This is the analogue of the formula for the mean
square energy fluctuation in a narrow frequency range in a small part of a larger volume
containing black-body radiation. Eq. (10.33) shows that the mean square fluctuation in
the energy is proportional to the mean energy squared.

Eq. (10.33) holds for any state of the string in which there is a smooth distribution
of the total energy over the various modes. However, Eq. (10.33) is not the formula for
the thermal mean square energy fluctuation, the quantity that should be compared to
Einstein’s fluctuation formula of 1909. A clear indication of this is that the temperature
T does not appear anywhere in its derivation. What we need is not a formula for
∆E2

(a,ν) in an individual state but a formula for the average 〈∆E2
(a,ν)〉 in a thermal

ensemble of states. Without this extra step, the derivation is incomplete. Neither in
the classical nor in the quantum-mechanical version of the calculation, did the authors
of the Dreimännerarbeit take this extra step.64 In their defense, we note that when
Lorentz (1916) derived his formula for the mean square fluctuation of the energy in a
small subvolume of a box with classical electromagnetic radiation, he derived only the
analogue of Eq. (10.33) for that system and likewise did not calculate the average of this
quantity in a thermal ensemble of states.

Unlike the authors of the Dreimännerarbeit, we shall calculate the thermal average of
the mean square energy fluctuation formulae they derived, both for the classical formula
(10.33) and, at the end of sec. 10.4.2, for the quantum formula (10.59). Classically, a state
of the string is fully specified by the amplitudes ak and phases ϕk of the infinite number
of modes of the string. The thermal average of any observable O(a1, a2, . . . ϕ1, ϕ2, . . .)
of the system, which will be some function of these amplitudes and phases, is given by
the average over a canonical ensemble of such states:65

〈O(a1, a2, . . . ϕ1, ϕ2, . . .)〉 =

∑
{a1,a2,...ϕ1,ϕ2,...}

O(. . .)e−βE{a1,a2,...ϕ1,ϕ2,...}

∑
{a1,a2,...ϕ1,ϕ2,...}

e−βE{a1,a2,...ϕ1,ϕ2,...}
. (10.34)

The underlying physical picture is that we imagine the string to be coupled to an infinite
heat bath at temperature T , with Boltzmann factor β ≡ 1/kT . We compute the ensemble
average of the expression for ∆E2

(a,ω) in Eq. (10.26). The only part that we need to be
careful about is the product HjHk. So we set O in Eq. (10.34) equal to:

O(a1, a2, . . . ϕ1, ϕ2, . . .) = Hj(aj , ϕj)Hk(ak, ϕk). (10.35)

64This omission was also noted by Wightman (1996, p. 150).
65Given that the amplitudes and the phases are continuous quantities, the sums in this equation are

symbolic representations of integrals with a measure determined by the transformation from {qi, pi}
to {ai, ϕi}.

191



Anthony Duncan and Michel Janssen

The energy of the string in a given state is just the sum of the Hamiltonians for all the
different modes in that state:

E{a1,a2,...ϕ1,ϕ2,...} =
∞∑
i=1

Hi(ai, ϕi). (10.36)

It follows that the denominator in Eq. (10.34) can be rewritten as:

∑
{a1,a2,...ϕ1,ϕ2,...}

e

−β
∞∑
i=1

Hi(ai, ϕi)
=
∞∏
i=1

 ∑
{ai,ϕi}

e−βHi(ai, ϕi)

 . (10.37)

For all but the jth and the kth mode, the ith factor in the denominator of Eq. (10.34)
with O = HjHk cancels against an identical factor in the numerator. Eq. (10.34) thus
reduces to the product of two factors of the exact same form, one for the jth and one for
the kth mode. The jth mode gives:∑

{aj ,ϕj}

Hj(aj , ϕj)e−βHj(aj , ϕj)

∑
{aj ,ϕj}

e−βHj(aj , ϕj)
. (10.38)

This is just the ensemble average 〈Hj〉 of the jth mode. The same is true for the kth

mode. The equipartition theorem tells us that the average energy of a one-dimensional
simple harmonic oscillator at temperature T is equal to kT . The modes of the string
thus satisfy the analogue of the classical Rayleigh-Jeans law for black-body radiation.
Using that 〈HjHk〉 = 〈Hj〉〈Hk〉, we see that the ensemble average of Eq. (10.26) is given
by:

〈∆E2
(a,ω)〉 =

1
2l2
∑
j 6=k
〈Hj〉〈Hk〉

(
K2
jk +K ′ 2jk

)
. (10.39)

Repeating the steps that got us from Eq. (10.26) to Eq. (10.33), we arrive at:

〈∆E2
(a,ν)〉 =

〈E(a,ν)〉2

2a∆ν
. (10.40)

This is the classical formula for the thermal mean square fluctuation of the energy in
a narrow frequency range in a small segment of the string. Note that in this case the
assumption we need to make to replace sums by integrals is that 〈Hi〉 varies smoothly
with i, which will certainly be true. In fact, it is a constant: 〈Hi〉 = kT . At first sight,
it may be surprising that Eq. (10.40) for the thermal average of the mean square energy
fluctuation has the same form as Eq. (10.33) for the mean square energy average in
an individual state. The reason for this can be gleaned from Eq. (10.26). The entire
contribution to the mean square energy fluctuation comes from off-diagonal (i.e., j 6= k)
terms involving the product of two distinct, and therefore thermally uncorrelated, modes.
This is true for the set of uncoupled oscillators that replaces the string. It is not true
for arbitrary systems.
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10.4.2 Quantum-Mechanical Calculation

In the Dreimännerarbeit (pp. 383–384), the classical calculation covered in sec. 10.4.1
is translated into a quantum-mechanical one with the help of Heisenberg’s Umdeutung
procedure. The q’s and the q̇’s thus become matrices that do not always commute.
The zero-point energy of the harmonic oscillator is a direct consequence of this feature.
Another consequence is that the terms in Eq. (10.23), which vanished in the classical
case, do contribute to the mean square energy fluctuation in the quantum case. Both
this contribution and the zero-point energy of the modes of the string, it turns out,
are essential for correctly reproducing the analogue of the particle term in Einstein’s
fluctuation formula in the simple model used in the Dreimännerarbeit.

As we mentioned in the introduction, the key point of Heisenberg’s Umdeutung paper
is that the new quantities representing position and momentum in the new theory still
satisfy the classical equations of motion. So the solution for the harmonic oscillator is
just the solution of the classical equation of motion for the harmonic oscillator, q̈k(t) =
−ω2

kqk(t), but now reinterpreted as an equation for matrices. This solution is given by
(Baym, 1969, p. 139, Eq. (530)):66

qk(t) = qk(0) cosωkt+
2pk(0)
lωk

sinωkt. (10.41)

Differentiating this equation, we find:

q̇k(t) =
2pk(0)
l

cosωkt− ωkqk(0) sinωkt. (10.42)

In these equations, qk(t), q̇k(t), qk(0), and pk(0) are all matrices, satisfying the canonical
equal-time commutation relations [qj(t), qk(t)] = 0, [pj(t), pk(t)] = 0, and [qj(t), pk(t)] =
i~δjk.

An energy eigenstate of the system is given by specifying the values of the infinite
set {nk} of excitation levels of all the modes of the string. The total energy E of the
system in the state {nk} is the expectation value of the Hamilton operator H for the
whole system in that state. This is the diagonal matrix element H({nk}, {nk}) (which
in modern notation would be 〈nk|H|nk〉):

H({nk}, {nk}) =
∞∑
k=1

(
nk +

1
2

)
~ωk. (10.43)

The zero-point energy in Eq. (10.43) is clearly infinite. However, as long as we continue
to restrict ourselves to a narrow frequency range, the contribution to the zero-point
energy will be perfectly finite.
66Setting qk(0) = ak cosϕk and pk(0) = −(lωkak/2) sinϕk in Eq. (10.41), and interpreting qk(t), q̇k(t),
qk(0), and pk(0) as ordinary numbers, we recover Eq. (10.7):

qk(t) = ak (cosϕk cosωkt− sinϕk sinωkt) = ak cos (ωkt+ ϕk).

In the quantum case, we no longer have the freedom to choose arbitrary phases ϕk that we had in the
classical case. Accordingly, we can no longer average over such phases. In the Dreimännerarbeit phase
averages are simply defined as the diagonal part of the quantum-theoretical matrix for the relevant
quantity in a basis of energy eigenstates (p. 383).
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To find such quantities as the mean energy and the mean square energy fluctuation in
a small part of the string and in a narrow frequency range, we first retrace our steps in
the classical calculation given above, keeping in mind that q’s, p’s, and q̇’s are no longer
numbers but—in modern terminology—operators. We then evaluate the expectation
values of the resulting operators in an energy eigenstate of the full system, specified by
the excitation levels {nk}. As in Eq. (10.43), these expectation values are the diagonal
matrix elements of the operators in a basis of energy eigenstates. In the Dreimännerarbeit
the argument is formulated entirely in terms of such matrix elements, but it becomes
more transparent if we phrase it in terms of operators and their expectation values. In
Ch. 3 of the Dreimännerarbeit, on “the connection with the theory of eigenvalues of
Hermitian forms,” the authors get close to the notion of operators acting on a state
space but they do not use it in the more physical sections of the paper. They clearly
recognized, however, that the matrix elements they computed are for states specified
by excitation levels of the infinite set of oscillators. The final step, which is not in the
Dreimännerarbeit, is to compute the average of the quantum expectation value of the
relevant operator in a canonical ensemble of energy eigenstates.

Most of the intermediate results in the classical calculation can be taken over un-
changed with the understanding that we are now dealing with operators rather than
numbers. Replacing the q’s and q̇’s (or, equivalently, the p’s) in Eq. (10.12) for E(a,ω)

by the corresponding operators and renaming the quantity H(a,ω), we find the Hamilton
operator for the small segment (0, a) of the string in the narrow angular frequency range
(ω, ω + ∆ω). This is a perfectly good Hermitian operator, which corresponds, at least
in principle, to an observable quantity. We want to emphasize that this is true despite
the restriction to a narrow frequency range.

Our first goal is to find the operator ∆H2
(a,ω) for the mean square fluctuation of

H(a,ω). Eqs. (10.16) and (10.17) for the (j = k) terms and the (j 6= k) terms in E(a,ω),
respectively, remain valid for the (j = k) terms and the (j 6= k) terms of H(a,ω). The
(j = k) terms give the operator for the time average of the energy in the segment (0, a)
in the frequency range (ω, ω + ∆ω):

H
(j=k)
(a,ω) = H(a,ω). (10.44)

The (j 6= k) terms give the operator for the instantaneous energy fluctuation in this
segment and in this frequency range:

H
(j 6=k)
(a,ω) = ∆H(a,ω) = H(a,ω) −H(a,ω). (10.45)

This quantity is still given by Eq. (10.20) as long as the q’s and q̇’s are read as operators
rather than numbers. As before, we split it into two parts, ∆H(a,ω) = ∆H1(a,ω)

+∆H2(a,ω)
.

Thus, as in Eq. (10.21), the operator ∆H2
(a,ω) for the mean square fluctuation of the

energy in the small segment (0, a) in the frequency range (ω, ω + ∆ω) is given by four
terms. The first two terms are still given by Eq. (10.26),67 the last two by Eq. (10.23)
(with E replaced by H). The latter vanished in the classical case but not in the quantum

67As the authors explicitly note, the virial theorem, which was used to get from Eq. (10.24) to Eq.
(10.26), remains valid in matrix mechanics (pp. 343 and 383).
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case (p. 384).68 These terms now give identical contributions for the index combinations
(j = j′, k = k′) and (j = k′, k = j′) with j 6= k and j′ 6= k′. The quadruple sum in Eq.
(10.23) reduces to the double sum:

∆H1(a,ω)
∆H2(a,ω)

+ ∆H2(a,ω)
∆H1(a,ω)

(10.46)

=
1
8

∑
j 6=k

(
q̇jqj q̇kqk + qj q̇j qkq̇k

)
ωjωkKjkK

′
jk,

where we used that qj commutes with q̇k as long as j 6= k. The two terms in Eq. (10.46),
it turns out, give identical contributions. We focus on the first. We compute the time
average q̇jqj . Using Eqs. (10.41) and (10.42), we find that

q̇jqj =
(

2pj(0)
l

cosωjt− ωjqj(0) sinωjt
)(

qj(0) cosωjt+
2pj(0)
lωj

sinωjt
)
,

which reduces to
q̇jqj =

1
l

(pj(0)qj(0)− qj(0)pj(0)) . (10.47)

Classically, p and q commute, but in quantum theory we have [qj(0), pj(0)] = i~, so that

q̇jqj = − i~
l
. (10.48)

The time average qj q̇j is likewise given by i~/l. Inserting these results into Eq. (10.46),
we find

∆H1(a,ω)
∆H2(a,ω)

+ ∆H2(a,ω)
∆H1(a,ω)

= − ~2

4l2
∑
j 6=k

ωjωkKjkK
′
jk. (10.49)

When we add the contributions to ∆H2
(a,ω) coming from Eq. (10.49) to those coming

from Eq. (10.26), we find

∆H2
(a,ω) =

1
l2

∑
j 6=k

(
HjHk

1
2

(
K2
jk +K

′ 2
jk

)
− ~2

4
ωjωkKjkK

′
jk

)
. (10.50)

68This is the step that Born and Fuchs (1939a, p. 263) complained involved “quite incomprehensible
reasoning” (cf. note 26). They wrote: “The error in the paper of Born, Heisenberg, and Jordan is
in the evaluation of the terms ∆1∆2 + ∆2∆1 (see formula (46′′) [p. 382; our Eq. (10.23)]). On [p.
382] it is correctly stated that in the classical calculation the mean value of this quantity over all
phases vanishes. This is also true in the quantum mechanical calculation as is apparent from formula
(46′′). [On the bottom half of p. 384], however, ∆1∆2 + ∆2∆1 reappears again with a non-vanishing
value [cf. our Eq. (10.49)] and it is shown that it gives rise to an additional term by means of quite
incomprehensible reasoning. It is just this term which transforms the correct formula (2.1) [the mean
square energy fluctuation for classical waves; cf. our Eq. (10.33)] into the thermodynamical formula
(1.6) [Einstein’s fluctuation formula]. But from the standpoint of wave theory this formula (1.6) is
certainly wrong” (ibid.). As we shall see, there is nothing wrong with this step in the argument in the
Dreimännerarbeit. We suspect that what tripped up Born in 1939 was the distinction between phase
averages and time averages in the Dreimännerarbeit.
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Replacing both 1
2

(
K2
jk +K

′ 2
jk

)
and KjkK

′
jk by sin2 ((ωj − ωk)a)/(ωj − ωk)2 (cf. the

paragraph before Eq. (10.27)), we can rewrite Eq. (10.50) as

∆H2
(a,ω) =

1
l2

∑
j 6=k

(
HjHk −

~2

4
ωjωk

)
sin2 ((ωj − ωk)a)

(ωj − ωk)2
. (10.51)

The next step—and the final step in the Dreimännerarbeit—is to evaluate the expectation
value of the operator ∆H2

(a,ω) in the state {ni}. This is the diagonal matrix element,

∆H2
(a,ν)({ni}, {ni}).

69 Using that

Hj({ni}, {ni}) =
(
nj +

1
2

)
~ωj , (10.52)

we find that

∆E2
(a,ω) ≡ ∆H2

(a,ω)({ni}, {ni})

=
1
l2

∑
j 6=k

((
nj +

1
2

)(
nk +

1
2

)
− 1

4

)
~2ωjωk

sin2 ((ωj − ωk)a)
(ωj − ωk)2

=
1
l2

∑
j 6=k

(
njnk +

1
2

(nj + nk)
)

~2ωjωk
sin2 ((ωj − ωk)a)

(ωj − ωk)2
. (10.53)

We thus see that the contribution to the mean square fluctuation coming from the second
term in Eq. (10.50), which comes from the non-commutativity of q and p, cancels the
square of the zero-point energy in the contribution coming from the first term.

Eq. (10.53) also illustrates the problem that Heisenberg (1931) drew attention to a
few years later (see sec. 10.3.2). If we let j and k run from 1 to ∞ instead of restricting
them to some finite interval, the double sum in Eq. (10.53) diverges. The problem
comes from the terms with (nj +nk); the contribution coming from the terms with njnk
will still be perfectly finite, at least after we have made the transition from individual
states to a thermal ensemble of states. In that case, the excitation level ni drops off
exponentially with i (see Eq. (10.60)), so the double sum over the terms with njnk will
quickly converge. This is not the case for the terms with just nj or just nk. For a fixed
value of j, for instance,70 the double sum over the term with nj in Eq. (10.53) will reduce
to the single sum:

nj~2ωj
2l2

∞∑
k=1 (k 6=j)

ωk
sin2 ((ωj − ωk)a)

(ωj − ωk)2
. (10.54)

69We remind the reader that the authors of the Dreimännerarbeit do not explicitly distinguish between
operators and their expectation values. This is a source of possible confusion at this point. The
authors write: “we denote those parts of ∆2 [rendered in bold] which belong to a given frequency ν
as ∆2 [not rendered in bold]” (p. 384). Without any further information, one can read this either as

a restriction (in our notation) of the operator ∆H2
a to the operator ∆H2

(a,ω) or as a restriction of the

states {ni} in the matrix element ∆H2
a({ni}, {ni}) to states in which only modes in the frequency

interval ω < i(π/l) < ω + ∆ω are present (i.e., ni = 0 for all frequencies i(π/l) outside that narrow
range). Since the latter reading makes no sense (we are interested in states with excitations over the
whole frequency spectrum), we assume that the former reading is what the authors had in mind. We
are grateful to Jürgen Ehlers for alerting us to this ambiguity.

70For fixed values of k, we run into the same problem.
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This sum is logarithmically divergent. Following Heisenberg’s suggestion in 1931, we
can remedy this divergence if we replace the sharp edge of the segment of the string
at a by a smooth edge. Integration over the segment (0, a) of the string is equivalent
to integration over the whole string if we multiply the integrand by the theta-function
ϑ(a−x) (defined as: ϑ(ξ) = 0 for ξ < 0 and ϑ(ξ) = 1 for ξ ≥ 0). The Fourier coefficients
for this theta-function do not fall off fast enough if j or k go to infinity. This is why
the factors Kjk and K ′jk in Eq. (10.19) do not fall off fast enough either if j or k go to
infinity. If we replace the theta-function by a smooth, infinitely differentiable function,
the problem disappears, since in that case the Fourier transform will fall off faster than
any power of the transform variables j or k. We emphasize that as long as the sums in
Eq. (10.53) are restricted to a finite frequency interval, the result is finite without any
such remedy.

As in the classical calculation (cf. Eqs. (10.26)–(10.29)), we make the transition from
sums to integrals. We can do this as long as the excitation levels nj vary smoothly with j.
We can then replace the double sum over j and k by (l/π)2 times a double integral over
ω and ω′ and nj and nk by nω and nω′ . We can also replace sin2 ((ω − ω′)a)/(ω − ω′)2

by πaδ(ω − ω′) (see Eq. (10.27)). Eq. (10.53) then turns into:

∆E2
(a,ω) =

a

π

∫
dω

∫
dω′ δ(ω − ω′)

(
nωnω′ +

1
2

(nω + nω′)
)

~2ωω′

(10.55)

=
a

π

∫
dω
(
n2
ω + nω

)
~2ω2.

Replacing integration over the interval (ω, ω + ∆ω) by multiplication by ∆ω = 2π∆ν
and writing all quantities as functions of ν rather than ω, we find:

∆E2
(a,ν) ≡ ∆H2

(a,ν)({nν}, {nν}) = 2a∆ν
(
(nνhν)2 + (nνhν)hν

)
. (10.56)

We now introduce the excitation energy, the difference between the total energy and
the zero-point energy. Jordan and his co-authors call this the “thermal energy” (p.
377, p. 384). Although the intuition behind it is clear (cf. note 73), this terminology
is misleading. The term ‘thermal energy’ suggests that the authors consider a thermal
ensemble of energy eigenstates, what we would call a mixed state, while in fact they are
dealing with individual energy eigenstates, i.e., pure states. We therefore prefer the term
‘excitation energy’. The excitation energy Eν in the narrow frequency range (ν, ν+ ∆ν)
in the entire string in the state {nν} is:

Eν = Nν(nνhν) = 2l∆ν(nνhν), (10.57)

where we used that Nν = 2l∆ν is the number of modes between ν and ν + ∆ν (see Eq.
(10.31)). On average there will be a fraction a/l of this energy in the small segment
(0, a) of the string (p. 384, equation following Eq. (54)):71

E(a,ν) =
a

l
Eν = 2a∆ν(nνhν). (10.58)

71The time average E(a,ν) of the excitation energy in the narrow frequency range (ν, ν+∆ν) in the small

segment (0, a) of the string in the state {nν} is the expectation value of the operator H(a,ν) − 1
2
hν in

that state.
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Substituting E(a,ν)/2a∆ν for nνhν in Eq. (10.56), we arrive at the final result of this
section of the Dreimännerarbeit (Ch. 4, Eq. (55)):

∆E2
(a,ν) =

E(a,ν)
2

2a∆ν
+ E(a,ν)hν. (10.59)

Like Eq. (10.33) in the classical case, Eq. (10.59) holds for any state with a smooth
distribution of energy over frequency. Unlike the classical formula, however, Eq. (10.59)
has exactly the same form as Einstein’s fluctuation formula of 1909 (see the third line
of Eq. (10.3)). The first term has the form of the classical wave term (cf. Eq. (10.33));
the second term has the form of a particle term.

As in the classical case, however, we are not done yet. Eq. (10.59), like Eq. (10.33),
is for individual states, whereas what we need is a formula for a thermal ensemble of
states. In quantum mechanics, this transition from an individual state (a pure state) to
an ensemble of states (a mixed state) is a little trickier than in classical theory. Before we
show how this is done, we want to make some comments about the interpretation of Eq.
(10.59) to make it clear that this formula does not give the thermal mean square energy
fluctuation. In modern terms, the formula is for the mean square quantum uncertainty
or quantum dispersion in the energy in a narrow frequency range in a small segment of
the string when the whole string is in an energy eigenstate {nν}. The operators H and
H(a,ν) do not commute. The system is in an eigenstate of the full Hamiltonian H but in
a superposition of eigenstates of the Hamiltonian H(a,ν) of the subsystem. Eq. (10.59)
is a measure for the spread in the eigenvalues of the eigenstates of H(a,ν) that make up
this superposition rather than a measure of the spread in the value of the energy in the
subsystem in an thermal ensemble of eigenstates of the system as a whole. It is that
latter spread that gives the thermal mean square energy fluctuation.

Proceeding as we did in the classical case (see Eqs. (10.34)–(10.40)), we make the
transition from the formula for the mean square quantum uncertainty of the energy of
the subsystem in an energy eigenstate of the whole system to the formula for the mean
square fluctuation of this quantity in an ensemble of such states. As in the classical case,
it turns out that these two formulae have the same form. The reason for this is once again
that the entire contribution to the mean square energy fluctuation in Eq. (10.59) comes
from off-diagonal (i.e., j 6= k) terms involving the product of two distinct, and therefore
thermally uncorrelated, modes, as can clearly be seen, for instance, in Eq. (10.51). The
thermal average of the product HjHk is the product of the thermal averages of Hj and
Hk. This is a special feature of the system of uncoupled harmonic oscillators that we are
considering and will not hold in general. In this special case, it turns out, we get from
the formula for a single state to the formula for a thermal ensemble of states simply by
replacing the excitation levels ni in Eq. (10.53) by the thermal excitation levels given by
the Planck function.72

n̂j ≡
1

ekT/hνj − 1
, (10.60)

and repeat the steps that took us from Eq. (10.53) to Eq. (10.59).

72The criticism at this point in the Dreimännerarbeit (p. 379) of the statistics that Debye (1910) used to
recover the Planck function (see also Jordan to Einstein, October 29, 1925 [AE 13-473]) is retracted
in (Jordan, 1928, p. 182, note).
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We now show this in detail, taking Eq. (10.51) as our starting point. We imagine the
string to be coupled to an infinite external heat bath at temperature T . The value of
some observable in thermal equilibrium is given by the canonical-ensemble expectation
value of the diagonal matrix elements of the corresponding operator O in eigenstates
{ni} of the Hamiltonian for the system as a whole:

〈O({ni}, {ni})〉 =

∑
{ni}

O({ni}, {ni})e−βE{ni}

∑
{ni}

e−βE{ni}
, (10.61)

where E{ni} =
∑

ni

(
ni + 1

2

)
~ωi (see Eq. (10.43)).73 We calculate the thermal average of

the diagonal matrix elements of the operator ∆H2
(a,ω) in the state {ni}: 〈∆H2

(a,ω)({ni}, {ni})〉.
The only non-trivial part of this calculation is to determine the thermal average of the
matrix elements HjHk({ni}, {ni}) (with j 6= k). These matrix elements are given by (cf.
Eq. (10.53)):

HjHk({ni}, {ni}) =
(
nj +

1
2

)
~ωj

(
nk +

1
2

)
~ωk. (10.62)

For the thermal average of this expression, we find, using Eq. (10.61):

〈HjHk({ni}, {ni})〉 =

∑
{ni}

(
nj +

1
2

)
~ωj

(
nk +

1
2

)
~ωke−βE{ni}

∑
{ni}

e−βE{ni}
. (10.63)

The sum over all possible states {ni} in the denominator can be written as a product of
sums over all possible values of the excitation level ni for all modes i:

∑
{ni}

e−βE{ni} =
∞∏
i=1

 ∞∑
ni=1

e
−β
(
ni +

1
2

)
~ωi
 . (10.64)

For all but the jth and the kth mode the ith factor in the denominator cancels against an
identical factor in the numerator. Eq. (10.63) thus reduces to a product of two factors
of the same form, one for the jth mode and one for the kth mode. Consider the former:∑

nj

(
nj +

1
2

)
~ωje−β(nj+

1
2

)~ωj

∑
nj

e−β(nj+
1
2

)~ωj
=

1
2

~ωj +

∑
nj

nj~ωje−βnj~ωj∑
nj

e−βnj~ωj
. (10.65)

73It does not matter for the ensemble average whether or not we include the zero-point energy in E{ni},
since the contributions from the zero-point energy to numerator and denominator are the same and
cancel. This clearly is what Jordan was getting at when he introduced the term ‘thermal energy’ for
what we proposed to call the excitation energy (see the passage from his letter to Einstein of December
15, 1925, quoted in sec. 10.3.7).
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The expression in the denominator in the second term on the right-hand side is a geo-
metric series, which we shall call Z:

Z ≡
∑
nj

e−βnj~ωj =
1

1− e−β~ωj
. (10.66)

The fraction of the two sums in Eq. (10.65) is just minus the derivative of lnZ with
respect to β. Eq. (10.66) allows us to write this as:

− d

dβ
lnZ = − 1

Z

dZ

dβ
= −

(
1− e−β~ωj

) −~ωje−β~ωj(
1− e−β~ωj

)2 =
~ωj

eβ~ωj − 1
, (10.67)

which is equal to n̂j~ωj , where we used Eq. (10.60) for the thermal excitation levels.
The right-hand side of Eq. (10.65) thus becomes

(
n̂j + 1

2

)
~ωj . Using this result for the

jth mode and a similar result for kth mode, we can write Eq. (10.63) as

〈HjHk({ni}, {ni})〉 = 〈Hj({ni}, {ni})〉〈Hk({ni}, {ni})〉
(10.68)

=
(
n̂j +

1
2

)
~ωj

(
n̂k +

1
2

)
~ωk.

Using this result, we calculate the thermal average of the diagonal matrix elements in
the state {ni} of the operator in Eq. (10.51) for the mean square energy fluctuation in
a narrow frequency interval in a small segment of the string:

〈∆E2
(a,ω)〉 ≡ 〈∆H2

(a,ω)({ni}, {ni})〉
(10.69)

=
1
l2

∑
j 6=k

(
n̂jn̂k +

1
2

(n̂j + n̂k)
)

~2ωjωk
sin2 ((ωj − ωk)a)

(ωj − ωk)2
.

The right-hand side has exactly the same form as Eq. (10.53), except that the n’s are
replaced by n̂’s. Eq. (10.60) tells us that n̂j and n̂k vary smoothly with j and k, so we can
make the transition from sums to integrals in this case without any further assumptions.
Proceeding in the exact same way as we did to get from Eq. (10.53) to Eq. (10.56), we
arrive at:

〈∆E2
(a,ν)〉 = 2a∆ν

(
(n̂νhν)2 + (n̂νhν)ν

)
. (10.70)

The thermal average of the mean excitation energy in a narrow frequency interval in a
small segment of the string is given by (cf. Ch. 4, Eq. (39))

〈E(a,ν)〉 =
a

l
(n̂νhν)Nν = 2a∆ν (n̂νhν) . (10.71)

This is just Eq. (10.58) with n̂ instead of n. With the help of this expression we can
rewrite Eq. (10.70) as:

〈∆E2
(a,ν)〉 =

〈E(a,ν)〉2

2a∆ν
+ 〈E(a,ν)〉hν. (10.72)
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This formula for the canonical-ensemble average of the mean square fluctuation of the
energy in a narrow frequency range in a small segment of the string has exactly the
same form as Eq. (10.59) for the mean square quantum uncertainty in the energy of this
subsystem in an energy eigenstate of the system as a whole.

Our final result, Eq. (10.72), is the analogue of Einstein’s famous 1909 formula for the
mean square fluctuation of the energy in a narrow frequency range in a subvolume of a
box with black-body radiation. That Eq. (10.72) emerges from the quantum-mechanical
treatment of the modes of a string shows that the fluctuation formula, contrary to what
Einstein thought, does not call for two separate mechanisms, one involving particles and
one involving waves. In matrix mechanics, both terms arise from a unified dynamical
framework. In the Dreimännerarbeit this unified mechanism is described in terms of
quantized waves. If we focus on the occupation levels ni rather than on the field u(x, t),
however, we see that the same mechanism can also be described in terms of particles,
quanta of the field, satisfying Bose’s statistics.

10.5 Assessment of the Validity and the Importance of
Jordan’s Argument

The main conclusion we want to draw from our reconstruction of the fluctuation con-
siderations in the Dreimännerarbeit is that they support the authors’ claim—or rather
Jordan’s claim—that a straightforward application of the new matrix mechanics to a
simple model of black-body radiation, viz. oscillations in a string fixed at both ends,
leads to an expression for the mean square energy fluctuation in a narrow frequency
range in a small segment of that string that has exactly the same form as the formula
Einstein derived from statistical mechanics and Planck’s black-body radiation law for
the mean square energy fluctuation in a narrow frequency range in a subvolume of a box
filled with black-body radiation. We also noted, however, that the authors use a sloppy
notation and that the argument they present is incomplete.

At various points, the notation fails to reflect the crucial restriction to a narrow
frequency range. We drew attention to a couple of passages in the text that clearly
indicate that such a restriction is nonetheless in effect throughout the calculation. Since
the entire derivation is for a finite frequency range, there are no problems with infinities
(pace Ehlers, 2007, pp. 28–29). Another problem is that the authors do not distinguish in
their notation between (in modern terms) operators and expectation values of operators
in energy eigenstates. Here we have to keep in mind that this distinction had not fully
crystalized when the paper was written. The authors had no clear notion yet of operators
acting on states. They did not even have the general concept of a state (Duncan and
Janssen, 2007, sec. 3).

In the absence of the general state concept, they did not distinguish between pure
states and mixed states either. This did trip them up. The formula they derived is for the
mean square quantum uncertainty in the energy of a subsystem in an energy eigenstate
of the system as a whole, which is a pure state. What they should have derived to recover
Einstein’s fluctuation formula is a formula for the thermal mean square fluctuation in
the energy of the subsystem, i.e., a canonical-ensemble average over energy eigenstates
of the whole system, which is a mixed state. We showed in detail how to make this
transition from quantum uncertainty to thermal fluctuations. Given the preliminary
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character of the theory he was working with, Jordan can be forgiven for the omission of
this step in the Dreimännerarbeit, though he probably should have known better when
he presented his result again in later publications. In Jordan’s defense, we noted that
Lorentz likewise omitted the corresponding step in the classical calculation.

With our admittedly not unimportant emendation, Jordan’s result resolves Einstein’s
conundrum of the wave-particle duality of light, even though the treatment of such
phenomena as the photoelectric effect and the Compton effect had to await the work
of Dirac (1927), who developed the theory for the interaction between the quantized
electromagnetic field and matter. As we saw in sec. 10.3.6, Jordan emphasized his
resolution of the wave-particle conundrum in a number of publications. The main reason
for the lukewarm reception of this result in the physics community of his day seems to
have been that it looked suspicious because of the infinities one already encounters in
this simple example of a quantum theory of free fields. This suspicion has lingered, even
though, as we saw, Jordan managed to steer clear of infinities by focusing on a narrow
frequency range.

The less than enthusiastic reaction of the physicists no doubt partly explains why
Jordan’s result has not become a staple of the historical literature on the wave-particle
duality of light. Another factor responsible for its neglect in this context, as we suggested
in sec. 10.3, may have been that Jordan’s result was too many things at once. It was
the resolution of the conundrum of the wave-particle duality of light but it was also a
striking piece of evidence for matrix mechanics and a telltale sign that a quantum theory
of fields was needed. Given how strongly Jordan felt about this last use of his result, it
is perhaps only fitting that his derivation of Einstein’s fluctuation formula has found its
place in the historical literature not toward the end of histories of wave-particle duality
but at the beginning of histories of quantum field theory. Still, the result only played a
relatively minor role in the early stages of quantum mechanics and quantum field theory.
By contrast, it is the denouement of the early history of the wave-particle duality of light.
Regrettably, it has either been ignored in that context or doubts have been cast upon
it. We hope that our paper will help remove those doubts so that Jordan’s result can
finally be given its rightful place in the heroic tale of Einstein, light quanta, and the
wave-particle duality of light.
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Einstein, A. (1909a). Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische
Zeitschrift 10: 185–193. Reprinted in facsimile as Doc. 56 in (Einstein, 1987–2006,
Vol. 2).
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11 Why Were Two Theories Deemed
Logically Distinct, and Yet, Equivalent
in Quantum Mechanics?

Slobodan Perovic

A recent rethinking of the early history of Quantum Mechanics deemed the late 1920s
agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by
Schrödinger’s 1926 proof, a myth. Schrödinger supposedly failed to achieve the goal
of proving isomorphism of the mathematical structures of the two theories, while only
later developments in the early 1930s, especially the work of mathematician John von
Neumman (1932) provided sound proof of equivalence. The alleged agreement about the
Copenhagen Interpretation, predicated to a large extent on this equivalence, was deemed
a myth as well.

If such analysis is correct, it provides considerable evidence that, in its critical mo-
ments, the foundations of scientific practice might not live up to the minimal standards
of rigor, as such standards are established in the practice of logic, mathematics, and
mathematical physics, thereby prompting one to question the rationality of the practice
of physics.

In response, I argue that Schrödinger’s proof concerned primarily a domain-specific
ontological equivalence, rather than the isomorphism. It stemmed initially from the
agreement of the eigenvalues of Wave Mechanics and energy-states of Bohr’s Model
that was discovered and published by Schrödinger in his First and Second Communica-
tions of 1926. Schrödinger demonstrated in this proof that the laws of motion arrived
at by the method of Matrix Mechanics could be derived successfully from eigenfunctions
as well (while he only outlined the reversed derivation of eigenfunctions from Matrix
Mechanics, which was necessary for the proof of isomorphism of the two theories). This
result was intended to demonstrate the domain-specific ontological equivalence of Matrix
Mechanics and Wave Mechanics, with respect to the domain of Bohr’s atom. And al-
though the full-fledged mathematico-logical equivalence of the theories did not seem out of
the reach of existing theories and methods, Schrödinger never intended to fully explore
such a possibility in his proof paper. In a further development of Quantum Mechan-
ics, Bohr’s complementarity and Copenhagen Interpretation captured a more substantial
convergence of the subsequently revised (in light of the experimental results) Wave and
Matrix Mechanics.

I argue that both the equivalence and Copenhagen Interpretation can be deemed myths
if one predicates the philosophical and historical analysis on a narrow model of physical
theory which disregards its historical context, and focuses exclusively on its formal aspects
and the exploration of the logical models supposedly implicit in it.
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Introduction1

Recently, based on a careful scrutiny of the key arguments pursued by physicists at the
beginning of the Quantum Revolution, several philosophers have characterized some of
the essential agreements between these physicists as unsubstantiated and unjustified.

To cite perhaps the most notable example, in the late 1920s, the community of quan-
tum physicists agreed on the equivalence of the two competing formal accounts of quan-
tum phenomena, namely, V. Heisenberg’s Matrix Mechanics and E. Schrödinger’s Wave
Mechanics.

Early on, these accounts had been perceived to be substantially different in terms of
the mathematical techniques they employed. The Matrix Mechanics was an algebraic
approach employing the technique of manipulating matrices. The Wave Mechanics,
in contrast, employed differential equations and had a basic partial differential wave
equation at its heart.

In addition, the formalisms were initially applied to two distinct sets of experimental
results. The Matrix Mechanics was deemed successful in treating the appearance of
spectral lines and later was found to be successful (to some extent) in experiments with
electron scattering. For the Wave Mechanics, its initial applicability to light interference
experiments was extended to include the account of the energy values in experiments
with hydrogen atoms.

And finally, the ontological commitments arising from the formalisms were at odds
with each other. Heisenberg’s approach stressed the discrete properties of the observed
phenomena, such as the occurrence of spectral lines of different intensities, and attempted
to reduce them to essentially corpuscular properties. Schrödinger perceived the field-like
continuity of some key micro-physical phenomena (e.g., those related to the double-slit
experiments), as they were accounted for by Wave Mechanics, as its main advantage
over the old quantum mechanics.

It is not easy to determine to what extent each of these contrasting aspects was
responsible for the general understanding that the two theories were irreconcilable. Be
that as it may, because of this widespread belief, when the argument for their supposed
equivalence was first conceptualized and published by Schrödinger in 1926, it was seen
as a major breakthrough—it predicated the development of quantum mechanics.

Recently, however, F.A. Muller (1997a, 1997b) has deemed this equivalence a myth.
Muller argues that the initial agreement concerning the equivalence was based on the mis-
conception that both empirical and mathematical equivalence were successfully demon-
strated, and that only later developments in the early 1930s, especially the work of
mathematician John von Neumann (1932), provided sound proof of the mathematical
equivalence, as opposed to the more famous proof provided by Schrödinger or similar
attempts by others (Eckart; Dirac; Pauli).

If this re-evaluation tells the true story, it implies that the wide agreement among
physicists on the equivalence of two formalisms in the 1920s, on which further develop-
ments of the theory were critically predicated, was an unjustified, indeed, an irrational
act of faith (or myth, as Muller labels it) on the part of the physics community.

Even the so-called Copenhagen Interpretation of Quantum Mechanics, which has dom-

1A revised version of this work is forthcoming in the 2008 April volume of Studies in History and
Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.
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inated the field since the 1930s, and which stemmed from the new Quantum Mechanics,
largely predicated on the alleged equivalence, was debunked by the same rethinking of
the history of the debate over the foundations of quantum theory (Beller, 1999), and
was deemed another myth (Howard, 2004). Thus, presumably, the agreement on the
interpretation that argued for the synthesis predicated on both the Wave Mechanics and
Matrix Mechanics (initially Niels Bohr’s interpretation), and which was thought to have
had successfully countered the arguments for the exclusive commitment to continuity
based on Wave Mechanics on the one hand, and the discontinuity based on Matrix Me-
chanics on the other, was forced on the community by the Göttingen group (Beller, 1999)
and/or constructed as a myth by subsequent deliberate or semi-deliberate misinterpre-
tations of the history (Howard, 2004). In any case, focusing on the agreement on the
mathematico-logical equivalence favors such views. If the mathematico-logical equiva-
lence (i.e., isomorphism) of the two theories was proved in the 1920s, then the physical
theory as such did not favor Copenhagen Interpretation over the other two interpreta-
tions (Schrödinger’s and Heisenberg’s), at least not in any straightforward way. But
then it becomes rather puzzling how could have such a wide agreement on the Copen-
hagen Interpretation been justified (if the agreement was reached at all). And if the
agreement on the mathematico-logical equivalence was unjustified, as Muller claims, the
distinctness of the competing theories could hardly offer a powerful argument for the
Copenhagen Interpretation, that won overwhelmingly against the arguments for both
wave-mechanical and matrix mechanical approach.

If such analysis is correct, it provides considerable evidence that, in its critical mo-
ments, the foundations of scientific practice might not live up to even minimal standards
of rigor, as such standards are established in the practice of logic, mathematics, and
mathematical physics, thereby prompting one to question the rationality of the practice
of physics. Following Muller’s line of attack, one might argue that only the efforts of
a few able logicians, mathematicians, and mathematical physicists, keen on developing
rigorous mathematical models of phenomena, and logical analysis of such models, have
a chance of saving science from this charge of (possibly unavoidable) malpractice and
messy development predicated on myths and unjustified agreements. Perhaps only in
rare moments of lucidity, thanks to these champions of rationality, can we find commend-
able rational principles at work in science. Furthermore, those pursuing philosophical
concerns about the nature of the physical world should draw their insights exclusively
from the theory as it is defined at such rare moments.

So did the philosophers finally get it right, or have they missed something crucial in
their analysis of scientific practice in the case of Quantum Mechanics? I will argue the
latter.

More specifically, I will argue that rationality in physics, and possibly in science more
generally, appears elusive in the key moments (and consequently, the rational pursuit
essentially is exclusively reserved for the abstraction of logical modeling and the analysis
of natural phenomena), only if we premise our analysis of actual scientific practice on
narrow models of scientific knowledge. These models, such as that of P. Suppes (1957,
1960), used in the above-outlined analysis of the equivalence case, reduce the conceptual
and historical analysis to the aspects of scientific knowledge having to do with the
mathematical-logical analysis of the formalisms (such as Matrix Mechanics and Wave
Mechanics), which, although indispensable in some aspects of scientific practice, may not
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be necessary in the establishment of its rational procedures. Such a narrowly-focused
analysis is bound to miss some key aspects of the physicists’ arguments, embedded as
they are in historical and philosophical contexts, contexts which must be unraveled if
one is to do justice to the physicists’ thinking.

With respect to equivalence, I will argue that the kind of equivalence pursued at a
later stage by Von Neumann, and which allegedly represents a moment of lucidity in
the overwhelming messiness of the development of Quantum Mechanics, was a very nar-
rowly focused refinement of the previous agreement on the initial concept of equivalence.
Although it is true that Schrödinger failed to provide a full-fledged proof of logical equiv-
alence, for the reasons that Muller points out, his paper contained only a preliminary
attempt to do so.

Judging by its structure, its content, and the historical context in which it appeared,
Schrödinger’s proof concerned a domain-specific ontological equivalence, the domain be-
ing Bohr’s atom. Bohr’s complementarity and Copenhagen Interpretation captured a
more substantial convergence of, the subsequently revised (in light of the experimental
results), theories. Furthermore, even the full-fledged logical equivalence of the theories
did not seem out of the reach of the existing theories and methods, although Schrödinger
never intended to fully explore such a possibility in his proof paper.

The Alleged Myth of the Equivalence

Muller (1997a, 36) argues, “The Equivalence Myth is that matrix mechanics and wave
mechanics were mathematically and empirically equivalent at the time when the equiv-
alence proofs appeared and that Schrödinger (and Eckart) demonstrated their equiva-
lence” (although Schrödinger’s proof was more elaborate and influential than Eckart’s).
Thus, the argument goes, Schrödinger (1926a) attempted to prove the mathematical
equivalence of Matrix Mechanics and Wave Mechanics by demonstrating their isomor-
phism (the explananas of Schrödinger’s overall argument), in order to explain their al-
legedly established empirical equivalence (explanandum) (Muller 1997a, 49). Yet, Muller
argues, contrary to the widespread belief at the time (and subsequently), Wave Mechan-
ics and Matrix Mechanics were neither proven mathematically equivalent by Schrödinger,
nor were they empirically equivalent.

The incorrect view that Wave Mechanics and Matrix Mechanics were empirically
equivalent, Muller argues, stems from an overlooked fact that the two could and should
have been treated as empirically distinct in light of the available knowledge. That the
electron charge densities were smeared was overlooked, and this “made it conceivable
to perform an experimentum crucis by charge density measurements” (Muller 1997a,
38) Moreover, the empirical agreement between Wave Mechanics and Matrix Mechanics
hinted at by Schrödinger (1926a) on the first page of his paper concerns two cases that
are insufficient as evidence of the purported empirical equivalence. The first case was a
rather tenuously relevant (to the empirical equivalence thesis) case of coinciding energy
values for the hydrogen atom and “the few toy systems” (Muller 1997a, 49), and the
second was the quantisation of orbital angular momentum. I will say more about both
cases shortly.

If Schrödinger’s goal was to prove isomorphism of Wave Mechanics and Matrix Me-
chanics, the equivalence at stake should be characterized as mathematico-logical equiva-
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lence, since labeling it merely ‘mathematical equivalence’ could refer to the employment
of mathematical techniques have no clear logical pretensions or consequences.2 Muller’s
idea of the equivalence at stake is much stronger than this. He states that since “the
essence of a physical theory lies in the mathematical structures it employs, to describe
physical systems, the equivalence proof, including part of Schrödinger’s intentions, can
legitimately be construed as an attempt to demonstrate the isomorphism between the
mathematical structures of matrix mechanics and wave mechanics” (Muller 1997a, 38).

There are three different reasons for the supposed failure of the mathematico-logical
(or let us call it simply logical) equivalence. The first reason is that the absence of a
state-space in Matrix Mechanics prevented the direct mutual translation of sentences of
Wave Mechanics and Matrix Mechanics. A related second reason is that the language of
Matrix Mechanics could not refer to space, charge-matter densities, or eigenvibrations,3

“because Matrix Mechanics did not satisfy (in the rigorous model-theoretic sense) any
sentence containing terms or predicates referring to these notions” (Muller 1997a, 39).
Finally, the most substantial reason was the failure of what Muller labels “Schrödinger-
equivalence”—an attempted (Muller believes) proof of a “softer” equivalence than the
related one which required a full-fledged logical proof—a failure which was due to the un-
justified assumptions regarding the so-called “the problem of the moments” of a function
(and this was allegedly resolved in Von Neumann’s proof). (Muller 1997b)

The Empirical Evidence in Early Quantum Mechanics

But was there really a myth of empirical equivalence? If so, was it an explanandum of
Schrödinger’s overall argument?

It is hard to argue for the existence of such a myth without assuming an oversimplified
portrayal of the relevance of empirical evidence in the early days of Quantum Mechanics.
Schrödinger’s (1926a, 45) expression concerning the agreement “with each other” of
Wave Mechanics and Matrix Mechanics “with regard to the known facts,” employed at
the beginning of his proof paper, reflects, at least in Muller’s view, the claim of the
full-blown empirical agreement.4 This is a convenient characterization if one aims at
constructing the full-fledged empirical equivalence as an explanandum of Schrödinger’s
(supposed) overall explanation. It is then easy to demonstrate its failure, as Muller does,
for example, by pointing to the incapability of Wave Mechanics to account for the line
intensities. (Muller 1997a, 54)

But the expression could also reflect the view that although there was some compelling
agreement between the two, it was not firmly established. As such, it was not the only, or
perhaps the decisive motive for devising the proof. In fact, Schrödinger never committed
himself to a strong view of empirical equivalence, and it is actually very unlikely that

2Schrödinger’s statements about “mathematical equivalence” are ambiguous. See footnote 10.
3See the explanation of eigenvibrations on pp. 16–17.
4It turns out, as I will argue later on, that in order to properly analyze this Schrödinger’s statement,
the passage should be read in its entirety. “Considering the extraordinary differences between the
starting-points and the concepts of Heisenberg’s quantum mechanics and of the theory which has been
designated “undulatory” or “physical” mechanics, and has lately been described here, it is very strange
that these two new theories agree with one another with regard to the known facts, where they differ
from the old quantum theory. I refer, in particular, to the peculiar “half-integralness” which arises in
connection with the oscillator and the rotator.” (1926a, 45)
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anybody else believed in the full-blown empirical equivalence at the time.
As a matter of fact, some experiments were considered crucial, as they were conceived

and performed to decide between the opposing views of micro-physical systems. A set
of such experiments concerned the problem of smeared charge densities, the (alleged)
lack of which is cited by Muller as evidence of unjustified agreement on the empirical
equivalence.

Schrödinger’s early wave-mechanical treatment of the atom as a charge cloud (instead
of an electron as a particle, orbiting around the nucleus—Bohr’s early model) did not
at first accurately account for radiation of the atom (while Bohr’s model did), given
that only certain energy states were observed in spectroscopic experiments. The electric
density of the cloud differed from place to place but remained permanent. Thus, in order
to account for the radiation in corresponding energy states of the atom, Schrödinger
introduced the idea of vibrations of the charge cloud in two or more different modes
with different frequencies (i.e., the eigenvibrations accounted for by eigenvalues of the
wave equation). As a consequence, the radiation is emitted in the form of wave-packets of
only certain energies, corresponding to Bohr’s frequency conditions. Since Schrödinger
assumed that the classical electromagnetic theory accounts for the atom radiation, a
number of different radiations could be emitted by the atom as the wave-packet of
certain energy expands in space.5 In the introduction to his proof, Schrödinger (1927a,
45) refers to the case of the oscillator, a special case of this Wave Mechanics treatment
of radiation.6

The consequences of Schrödinger’s theory, which contradicted Bohr’s early view of
radiation, were probed experimentally by a series of crucial experiments (Compton and
Simon, 1925; Bother and Geiger, 1926).7 Thus, at the time of writing the proof paper,
Schrödinger, as well as others, knew that despite the initial agreement of his theory
with Bohr’s results with respect to the energy states and radiation, the issue could
be addressed further by directly probing “individual radiation processes” that would,
in turn, indirectly test the plausibility of the assumption about the vibrations of the
atom. Schrödinger was cautioned but was not entirely convinced until 1927 (Mehra
and Rechenberg 1982, 138) that the results of these new experiments unequivocally
demonstrated the discontinuous nature of matter-energy micro-interactions, as Bohr had
claimed. Thus, the issue had been addressed experimentally but remained unresolved
at the time of the appearance of the proof.

Nor could the experiments concerning the related issue of quantisation of the orbital
angular momentum (referred to as the ‘rotator case’ by Schrödinger at the beginning
of the paper (1927a, 45)) have contributed to the presumed (by Muller) agreement on
the empirical equivalence. By introducing the quantised angular momentum of electron,
Bohr’s model predicted correctly the spectral lines (i.e., Balmer lines) that corresponded
to the allowed rotational frequencies of the electron. Heisenberg started with the discrete
values of the spectral lines and developed matrices accounting for them. Schrödinger
admitted (1926b, 30) that his Wave Mechanics was not capable of accounting for Balmer
lines as straightforwardly as Matrix Mechanics did. Yet he presumed this to be a mere
5Perhaps surprisingly, this assumption was not at odds with what Bohr believed shortly before Schrödin-
ger developed his own view, as Bohr was advocating the Bohr-Kramers-Slater theory that made a very
similar assumption about the way the atom radiated energy.

6See footnote 3.
7See also (Stuewer, 1975) and (Perovic, 2006).
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technical advantage (Schrödinger 1926a, 57), and the equivalence proof set out to demon-
strate this. Schrödinger doubted (and offered his reasons in the proof for this doubt) that
this particular success of Heisenberg’s approach necessarily reflected a substantial (epis-
temological or ontological) advantage of Matrix Mechanics, as it was not clear whether
the spectral lines indicated the nature of individual corpuscular-like interactions of radia-
tion with the matter (i.e., with the spectroscope), or whether they were the consequence
of the way wave-packets, not individual corpuscles, interacted with the matter. This
issue was also addressed by the above-mentioned scattering experiments and earlier by
Ramsauer’s (1921) experiments.

The experiments in these two cases, although perceived to be crucial by both the
experimentalists (Compton) and those interested in their theoretical implications, did
not immediately prompt discarding either approach, if for no other reason than the
physicists were simply unsure at the time, how exactly to apply the newly developed
formalisms to particular experiments (Heisenberg in Mehra and Rechenberg, 1982, 151).
Even a superficial look at the correspondence among them shows that they continued
discussing the application of the formalisms and the meaning of such application well
into the late 1920s.

Also, it is misleading to say that the coinciding energy values for the hydrogen atom
and “a few toy systems,” as Muller calls them, were perceived as key evidence of the
empirical equivalence of Matrix Mechanics and Wave Mechanics. In fact, these “toy
systems” were directly based on Bohr’s model of the atom, and Schrödinger’s initial
major interest concerned the agreement between energy values arrived at by Wave Me-
chanics (Schrödinger, 1926b; 1926c) and those predicted by Bohr’s theory. (Jammer,
1989, 275) This agreement prompted Schrödinger to think about the connection with
Heisenberg’s Matrix Mechanics. Therefore, the initial agreement between Bohr’s model
and Schrödinger’s Wave Mechanics, that I will discuss shortly, is an essential element of
the motivation for the proof.

All these considerations were on going while Schrödinger and others were devising their
proofs. More importantly, neither Schrödinger nor anybody else was certain whether or
to what extent either of the two formalisms fully accounted for the observed properties
of micro-physical processes, nor whether either was indispensable. As Jammer (1989,
210) puts it, Matrix Mechanics and Wave Mechanics were “designed to cover the same
range of experiences” but it was not firmly established in 1926 that either did so.

Thus, there was considerable agreement with the facts of Wave Mechanics and Matrix
Mechanics. This prompted the question about the possibility of a substantial equivalence
(both empirical and mathematical). This, in turn, encouraged the construction of new
crucial experiments, pushing the limits of the applicability of existing formalisms to
them. Given this, the use of the phrase “the two new theories agree with one another
with regard to the known facts” was a conditional statement—as both the continuation
of the sentence (“where they [Wave Mechanics and Matrix Mechanics] differ from the old
quantum theory”), and the subsequent sentence (which tempers the claim by revealing a
clearly theoretical consideration behind the mention of the factual connection)8 indicate.9

The intention was much more tenuous than the full-fledged empirical evidence demands.
And the motivation for the proof (or explanandum) should not be reduced to the meaning

8See footnote 14.
9See the entire sentence in the footnote 3.
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of the phrase treated independently from the context of both the proof paper and the
experimental and theoretical knowledge of the time. What Schrödinger had in mind was
not a ‘myth’ of full-fledged empirical equivalence that should be explained. Rather, he
wished to show that the factual state of affairs indicated the possibility of domain-specific
equivalence, stemming from the agreement of eigenvalues and Bohr’s energy levels, as we
will see shortly, which could be revealed by fairly simple manipulations of both methods.

Was Schrödinger’s Proof a Proof of Logical Equivalence?

It is tempting to define the goal of Schrödinger’s proof as a single goal. Although there
might be a single most important goal, the text reveals the complexity and hierarchy of
Schrödinger’s intentions.10

In a passage that precedes the actual proof, Schrödinger states that “[i]n what follows
the very intimate inner connection between Heisenberg’s quantum mechanics and my
wave mechanics will be disclosed” (Schrödinger, 1926a, 46). He continues, “From the
formal mathematical standpoint, one might well speak of the identity of the two theories”
and concludes the paragraph by saying, “The train of thought in the proof is as follows.”

An initial reading of this passage might suggest that the author is about to provide a
full-blown mathematico-logical proof and that one should judge the effort based on this
assumption. Even if Schrödinger’s intentions were different, or at least diverse in terms
of the proof’s goals, the mention of the equivalence from “the mathematical standpoint”
might urge one to accept such a narrow interpretation. It is possible, however, and
as I will argue, quite likely that a rather different key goal is referred to by another
phrase used in the passage, namely, the reference to “the intimate connection” between
Matrix Mechanics and Wave Mechanics, and that the subsequent phrase, “mathematical
standpoint,” refers to a distinct issue treated separately in the proof.

We should certainly not rely on this one passage. It does not help, though, that another
passage that mentions the goals and the nature of the proof is also quite ambiguous
(Schrödinger 1926a, 57–58).11 Nor does it help that Schrödinger’s attitude with regards
to proving the equivalence appears to change significantly over time. In a letter to
Wien, dated March 1926, he writes that “both representations are—from the purely
mathematical point of view—totally equivalent.” (Mehra and Rechenberg, 1982, 640)
Yet in his second Communication, he states that Matrix Mechanics and Wave Mechanics
“will supplement each other” (Schrödinger, 1926c, 30)12 pointing out the advantages of
each over the other, rather than noting their similarities. Moreover, as Jammer (1982,
273) points out, the physical and mathematical equivalences that Schrödinger (1926a,
58) mentions, are quite possibly distinct, although we can hardly determine, based on

10A similar complexity can be revealed in other proofs devised at the time as well.
11His adamant statement that “they are completely equivalent from the mathematical point of view,

and it can only be a question of the subordinate point of convenience of calculation” (p. 57) certainly
overstates the case as the passages that follow this sentence suggest a much more moderate discussion
of the formalisms and only a preliminary discussion of logical equivalence. In this context, it is hard
to see how the phrase could be interpreted to refer to the isomorphism.

12“I am distinctly hopeful that these two advances will not fight against one another, but on the con-
trary, just because of the extraordinary difference between the starting-points and between methods,
that they will supplement one another and that the one will make progress where the other fails.”
(Schrödinger, 1926c, 30)
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the text of the proof alone, whether or to what extent Schrödinger believed this and
what exactly such a view would imply.

A textual analysis of the relevant passages that explicitly state the goals of the proof,
although necessary, can go only so far. In order to determine, first, what the real
intentions, and possible achievements, of the proof were, and second, how they were
perceived by others, we must judge the text within the historical context in which it was
written.

The proof was not motivated by empirical considerations alone. Possibly more impor-
tant was agreement with Bohr’s model of the atom. It prompted articulation of the key
step in the proof: the construction of matrices based on the eigenfunctions. As Gibbins
says, “Schrödinger in 1926 proved the two theories. . . equivalent,” albeit ontologically,
not empirically, “at least as far as the stationary, or stable-orbit, values for dynamical
variables were concerned” (Gibbins, 1987, 24).

As a matter of fact, both Matrix Mechanics and Wave Mechanics were constructed
against the background of Bohr’s model and were attempts to improve and, finally, to
replace it. While Bohr’s model had been changing since its inception, the importance
of stationary (permitted) energy states in understanding quantum phenomena remained
intact.13 And as we will see, it became clear to what extent this core of the model
remained insightful once Matrix Mechanics and Wave Mechanics were fully developed
and the proofs of their equivalence devised.

Bohr’s correspondence rules were indispensable guidelines for the construction of Ma-
trix Mechanics in its early phase. As a matter of fact, Matrix Mechanics was envisioned
as an improved version of Bohr’s method. From Heisenberg’s point of view, after he
developed Matrix Mechanics, Bohr’s method was a useful, albeit rough, first approx-
imation. Matrix Mechanics emerged as a fully independent method once Heisenberg
joined efforts with Born and Jordan (Born, Heisenberg, and Jordan, 1926; Jammer,
1989, 221). Commenting on this, Lorentz optimistically notes in 1927, “The fact that
the coordinates, the potential energy, etc., are now represented by matrices shows that
these magnitudes have lost their original meaning, and that a tremendous step has been
taken towards increasing abstraction.” (Lorentz in D’Abro, 1951, 851)

Pauli’s application of Matrix Mechanics to the hydrogen atom illustrated the inde-
pendence of the method in a similar fashion. (Mehra and Rechenberg, 1982, 656–657)
Yet Pauli realized that the fundamental assumptions concerning quantum phenomena,
as approached from the point of view of Matrix Mechanics, are in agreement with Bohr’s
model and that, in this sense, the two might not be as different as they are in terms of
methodology.

An insight concerning the relation of Wave Mechanics and Bohr’s model, very similar
to that of Pauli’s concerning Matrix Mechanics, motivated Schrödinger to write the proof
paper. In order to understand this, it is critical to take into account that the agreement
of Wave Mechanics and Bohr’s model (i.e., its core concerning stationary states) precedes
the agreement of Wave Mechanics and Matrix Mechanics.

If one replaces the parameter E in Schrödinger’s equation

∆ψ +
8π2mo

h2
[E − Epot(x, y, z)] ψ = 0

13According to Bohr’s early model (Bohr, 1913) electrons of the atom can occupy only certain orbital
states characterized by appropriate energy levels.
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with one of the so-called eigenvalues, En, the equation will have a solution (thus be-
coming one of the eigenfunctions for a given eigenvalue).14 The solution determines the
amplitude of the de Broglie wave (stemming from his compromise between corpuscular
mechanics and the theory involving continuity), while the eigenvalue (i.e., the energy) de-
termines the frequency of the wave−that is, the chosen eigenvalue and the corresponding
eigenfunction determine the mode of (eigen) vibration.

Now, Schrödinger’s solution of the hydrogen atom eigenvalue equation of his first and
second communication of 1926 (Schrödinger, 1926b, 1926c) resulted unexpectedly in
Bohr’s energy levels. Or more precisely, as Bohr, who understood the importance of the
insight, stated in 1927, “The proper vibrations of the Schrödinger wave-equation have
been found to furnish a representation of electricity, suited to represent the electrostatic
properties of the atom in a stationary state” (Bohr, 1985, V.6, 96).15

This insight made a great impression on Schrödinger. The newly discovered agreement
raised a deeper question concerning an apparently discontinuous nature of the system im-
posed on an essentially continuous approach of Wave Mechanics by quantum conditions.
Others were equally impressed: Wentzel immediately set out to examine this agreement
with a new Wave Mechanics approximation method (Jammer, 1989, 275–276).

Wave Mechanics had already emerged as methodologically independent from Bohr’s
account, and Schrödinger states this explicitly in the first section of the proof: “. . . we
have a continuous field-like process in configuration space, which is governed by a single
partial differential equation, derived from a principle of action. This principle and this
differential equation replace the equations of motion and the quantum conditions of the
older ‘classical quantum theory’.”(1926a, 45). However, in light of this newly obtained
agreement, it was not obvious that Wave Mechanics’s independence, like that of Matrix
Mechanics, was not merely a methodological independence.

Schrödinger was well aware of all this, and it guided the development of the equivalence
proof. The central issue of the proof was ontological, rather than the logical. Arguably,
it was an attempt, motivated by Wave Mechanics’s agreement with Bohr’s model, to
demonstrate the ontological significance of Wave Mechanics’s assumptions (i.e., their
non-ad hoc nature), and its epistemological significance, doubted (by Heisenberg and
others in the Göttingen school, and perhaps Schrödinger himself at first) because of its
inapplicability to the spectral line intensities. In other words, given that Wave Mechanics
and Bohr’s model agreed with respect to the eigenvalues and stationary energy states, the

14Mathematically speaking, if a differential equation (such as Schrödinger’s equation) contains an unde-
termined parameter, and it admits solutions only when particular values (eigenvalues or proper values)
are assigned to the parameter, the solutions of the equation are called eigenfunctions.

15In (1926b, 8) Schrödinger starts from the wave mechanical assumptions and derives the expression

−E1 = m(e2)2

2K2l
where “the well known Bohr energy-levels, corresponding to the Balmer lines, are ob-

tained, if the constant K, introduced in for reasons of dimensions, we give the value K = h
2π

, from

which comes −E1 = 2π2m(e2)2

h2l2
.” In (1926c, 27–28), at the end of the discussion of the case of the rota-

tor, Schrödinger generalizes the expression of an earlier derived wave function (div grad ψ− 1
u2 ψ

′′) in
the following way: “For it is possible to generalize by replacing div grad ψ by f(qk) div{[ 1

f(qk)
] grad ψ},

where f may be an arbitrary function of the q′s, which must depend in some plausible way on E, V (qk),
and the coefficients of the line elements.” Later on, he comments on the agreement between energy val-
ues in Bohr’s theory and eigenvalues (discussed on p. 26), emphasizing the advantage of his approach:
“. . . the quantum levels are at once defined as the proper values of equation (18) [wave equation],
which carries in itself its natural boundary conditions.” (p. 29) The entire argument for the advantage
of the wave-mechanical approach in the second Communication was predicated on this agreement.
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question was whether Wave Mechanics and Matrix Mechanics agreed with respect to
eigenvalues and, thus, to stationary states as well.

The Proof of the Domain-Specific Ontological Equivalence—as
Far as Eigenvalues/Stationary States Go

Although the above-stated central goal of Schrödinger’s proof may seem disappointingly
modest, one should bear in mind that the importance of elucidating the nature of the
“intimate connection” between Matrix Mechanics and Wave Mechanics was only superfi-
cially apparent at the time, and might have been unsuccessful, as the independence of the
two theories could have turned out to be more fundamental.16 In any case, Schrödinger’s
expression of the “intimate connection” between Matrix Mechanics and Wave Mechan-
ics, rather than his reference to the “mathematical equivalence” of the two, indicates
the central goal of the proof. That Schrödinger “compared Wave Mechanics and Matrix
Mechanics,” as M. Bitbol (1996, 68) labels the endeavor, was far more important than
his attempted mathematico-logical proof.

The very structure of the proof is best explained if the proof were intended to offer
further insight into the agreement between Bohr’s model and Wave Mechanics, by con-
structing suitable matrices from eigenfunctions, thereby demonstrating the “intimate
connection” between Wave Mechanics and Matrix Mechanics, and thus, indirectly show-
ing the (ontological) significance of their agreement with Bohr’s (revised) model.17

Schrödinger’s paper can be divided into four parts—the introduction, which I have
just discussed, and the three parts of the actual proof.18

Part 1 of the proof establishes the preliminary connection between Matrix Mechanics
and Wave Mechanics. Very early on, Schrödinger emphasizes the limitations placed on
his attempt (i.e., quantum conditions). And he explicates the background conditions of
the Matrix Mechanics that originate from Bohr’s model (i.e., with stationary states and
the correspondence rules). He states: “I will first show how to each function of the posi-
tion and momentum-co-ordinates there may be related a matrix in such a manner, that
these matrices, in every case, satisfy the formal calculating rules of Born and Heisenberg
(among which I also reckon the so-called ‘quantum condition’ or ‘interchange rule’)”
(1926a, 46). (Briefly stated, the idea was that the interchange rules—that were, initially
at least, a condition that stemmed from Bohr’s model—correspond to the analysis of
the linear differential operators used in Wave Mechanics.)

Thus, since Born-Heisenberg’s matrix relation pq - qp = ( h
2πi)1 corresponds to the

Wave Mechanics relation [( h
2π )( ∂∂q )]qψ − q[( h

2πi)(
∂
∂q )]ψ = ( h

2πi)ψ, a differential operator
F [( h

2πi)(
∂
∂q ), q] can be associated with the function of momentum and position F =

16Already in (1926c) while discussing the rotator case, he notes the agreement between Matrix Mechanics
and Wave Mechanics, with respect to the quantum energy levels: “Considering next the proper values,
we get . . . En = (2n+1)

2
hνo; n = 0, 1, 2, 3, . . . Thus as quantum levels appear so-called “half-integral”

multiples of the “quantum of energy” peculiar to the oscillator, i.e. the odd multiples of hν0
2

. The
intervals between the levels, which alone are important for the radiation, are the same in the former
theory. It is remarkable that our quantum levels are exactly those of Heisenberg’s theory.” (p. 31)

17It was almost certainly understood by others this way, as I will argue shortly.
18Parts 1 and 2 do not correspond exactly to the original paragraphs of the paper, whereas Part 3 pretty

much corresponds to the last paragraph.
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F (p, q). If the phase velocity functions, uk = uk(q), in the configuration space of the
position q form a complete orthonormal set, then an equation Fjk =

∫
u∗j[F, uk] dq,

can be derived that determines the elements of the matrix Fjk. Thus, as this argument
goes, in this very particular sense, any equation of Wave Mechanics can be consistently
translated into an equation of Matrix Mechanics.

Part 2 addresses the pressing issue of whether it is possible to establish the “inner con-
nection” between Matrix Mechanics and Wave Mechanics and, hence, the agreement of
both with Bohr’s model. This part of the text is the key to the proof, as Schrödinger and
others saw it, as it provides the unidirectional argument for the ontological equivalence
as far Bohr’s atom goes—by constructing suitable matrices from eigenfunctions.

Relying on the insights of Part 1, Schrödinger replaces the ui of the uk = uk(q)
with the eigenfunctions of his wave equation. Thus, he obtains an operator function:
[H,ψ] = Eψ. The operator’s eigenvalues Ek satisfy the equation [H,ψk] = Ekψk. As it
turns out, solving this equation is equivalent to diagonalizing the matrix H.19

In the final and decisive step of Part 2, Schrödinger demonstrates that the matrices
constructed in accordance with the elements of matrix Fjk given by the above-stated
equation, with the help of some auxiliary theorems, satisfy the Born-Jordan-Heisenberg
laws of motion. More precisely, the Heisenberg-Born-Jordan laws of motion (Born,
Heisenberg and Jordan, 1926)—the laws initially derived purely from Matrix Mechanics
point of view (Jammer, 1989, 221)—are satisfied by (as Schrödinger characterizes the
decisive step in the Introduction) “assigning the auxiliary role to a definite orthogonal
system, namely to the system of proper functions [Schrödinger’s italics] of that partial
differential equation which forms the basis of my wave mechanics” (1926a, 46).

The first indication that Schrödinger believes that the main goal was already achieved
in Part 2 with the construction of matrices from eigenfunctions, is his claim at the
beginning of Part 3 that he “might reasonably have used the singular” when speaking of
Matrix Mechanics and Wave Mechanics. Yet if we believe that providing a logical proof
of the isomorphism between Matrix Mechanics and Wave Mechanics was the central goal
of the proof, Part 3 of the text must be at least as essential as Part 2, as it tries (and
ultimately fails) to establish the reciprocal equivalence required by such a goal.

Unlike the pressing issue dealt with in Part 2, the issue addressed in Part 3 is an
‘academic’ (in a pejorative sense of the word) one of logical isomorphism requiring the
proof of reciprocal equivalence. Schrödinger states that “the equivalence actually exists,
and it also exists conversely.” But he never fully demonstrates this, nor does he make
an outstanding effort to do so. Instead, he provides a vague idea of how one might
proceed in proving this sort of logical equivalence.20 More precisely, as Muller (1997a,
56) correctly pointed out, Schrödinger does not prove the bijectivity of the Schrödinger-

19In other words, the H turned out to be diagonal with respect to the specified basis (diagonalization of
a matrix is a particular orthogonal transformation of the so-called quadratic form, i.e., its rotation).

20Muller’s view of what he calls “Schrödinger equivalence” is misleading—Schrödinger ended the proof
vis à vis eigenvalues in Part 2, contrary to what Muller believes. The “moments problem” of a
function issue referred to in Part 3, has to do with the preliminary discussion of the full-fledged logical
proof and an attempt to argue for epistemological advantage of Wave Mechanics. Thus, Schrödinger
promises “[t]he functions can be constructed from the numerically given matrices.” (p. 58) If so, “the
functions do not form, as it were, an arbitrary and special “fleshly clothing for the bare matrix skeleton,
provided to pander to the need of the intuitiveness.” In order to show this, he invokes the totality of
the “moments” of a function.
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Eckart mapping, necessary for isomorphism.21

However, Muller (1997a, 55) misses the bigger picture when he reduces the proof to the
narrow model of mathematical equivalence that could be implicit in Part 3 (as well as in
his brief discussion of the possibility of Schrödinger’s proof being a proof of ontological
equivalence in (Muller 1997b)). He leaves out the agreement with Bohr’s model of the
atom, not realizing that the failure of Part 3 concerning the reciprocal equivalence is
not alarming, as it is irrelevant to the central goal. (This is why Muller puzzles over
Schrödinger commenting on the subject of bijectivity and reciprocal equivalence in a
footnote (Muller, 52).)22

In general terms, the constructing of matrices from eigenfunctions in Part 2 becomes
meaningful in itself, independently of the reciprocal connection, in light of the final
ontological goal of providing a plausible big picture (i.e., Bohr’s model). There might be
an alternative explanation of the proof’s goal23, but such an explanation would have to
take into account that Schrödinger (and others in their proofs) insisted on the derivation
in Part 2 as central. Also, the insistence on the derivation in this direction made sense
especially because Matrix Mechanics was not suitable to account for single states.24

Moreover, the isomorphism of Matrix Mechanics and Wave Mechanics would have
made sense as the explanans and as the key, and perhaps, the only goal of the proof,
only if a full-blown empirical equivalence was established. Otherwise, given that the
ontological and methodological status of Wave Mechanics and Matrix Mechanics was
tentative, the more pressing issue of the relation between Matrix Mechanics, Wave Me-
chanics, and Bohr’s model could have been resolved with a “softer” derivation (or, rather,
the “construction” of matrices from eigenfunctions)—the kind of derivation devised in
Part 2.

The key to the proof, then, is its purported demonstration of the formalisms as es-
sential only through their coherence with Bohr’s model. It is not clear why Schrödinger
might have insisted on a more demanding and what, at the time, seemed a rather
academic and esoteric issue, namely, the logical equivalence of possibly dispensable for-
malisms. Taken in historical context, the more tangible demonstration was more de-
sirable, especially because establishing Bohr’s model as an acceptable “big picture” did
not require the logical equivalence (i.e., bi-directional derivation to prove isomorphism).
Although ambiguous in his statement of the central goal of the proof, then, Schrödinger
likely gave priority to the ontological goal.

A debate with Bohr that immediately resulted in doubts and later led to even more
devastating doubts concerning the applicability of Wave Mechanics, took place around
the time of writing the proof paper. As expressed in a letter to Wien shortly be-
fore the debate, Schrödinger’s optimism was diminishing (also reflected in his second

21Moreover, Part 3 seems to have a further, arguably more important, ontological rather than logical,
goal of demonstrating that Wave Mechanics was more than merely an ad hoc convenient tool, a sort of a
shorthand for the superior Matrix Mechanics, as it was, in Schrödinger’s view, perceived by Heisenberg
and others (Bitbol, 1996, 68).

22It should be noted that despite warning his readers about the danger of reading in Von Neumann’s
terminology into Schrödinger’s text that was developed much later, he does not seem to avoid it entirely
himself (Muller, 1997a, 57; Muller 1997b, Section IIIa).

23E.g., the equivalence could have be seen as a precursor to the relativistic version of Schrödinger’s
account, especially because, otherwise, his brief discussion of this issue at the very end of last paragraph
seems inserted. Even so, this might not be a competing but rather supplementary goal of the proof.

24See quote of Bohr’s account on p. 17.
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Communication—1926c). This ultimately led him to refocus and to use the soft deriva-
tion in Part 2.

Were this not the case, it would be hard to explain the closing passage in the intro-
ductory section of the proof, where Schrödinger apparently gets his priorities straight.
Although he explicitly emphasizes the construction of matrices from eigenfunctions at
the beginning of the paragraph, he only vaguely hints at offering only “a short pre-
liminary sketch” (1926a, 47) of a derivation in the opposite direction as well as the
relativistic context of the wave-equation in the last section of the paper. Does this mean
that Schrödinger was not keen on the (supposed) main goal of his proof? Or could the
passage indicate that he perceived the issue as rather academic?

His characterization of the reversed “construction”25 would be even more surprising
if one believed that Part 3 was the key to the proof. Schrödinger tentatively says, “The
following supplement [Schrödinger’s italics] to the proof of equivalence given above is
interesting” (Schrödinger 1926a, 58), before going on to discuss the possibility of the
construction of Wave Mechanics from Matrix Mechanics and its implications for the
epistemological status of Wave Mechanics.26

The assertive tone and the insistence on the exclusiveness and superiority of Wave
Mechanics over both old quantum theory and Heisenberg’s approach, very explicit in
his first Communication (Schrödinger 1926b), and somewhat toned down in the second
(Schrödinger 1926c), does not characterize the proof paper. In fact, quite the contrary:
the tone of the proof paper is defensive. In Part 3, Schrödinger rather cautiously argues
that Wave Mechanics may have the same epistemological significance as Matrix Mechan-
ics does, and, judging by the above-cited passage, treats this portion of the paper as
secondary. That Schrödinger set out to, first and foremost, demonstrate the significance
of Wave Mechanics (motivated by its agreement with Bohr’s model), a significance which
was doubted because of its failure to account for the spectral line intensities, is in keeping
with such a tone.

Even if, despite the above-presented indications to the contrary, Schrödinger were at
first undecided as to the main goal of the proof, soon after publishing it and his four
Communications, he and the quantum physics community embraced it and its limited
ontological goal.

Thus, two years after the publication of his seminal work, in his correspondence with
others, he continued to discuss the application of the Wave Mechanics and its meaning.
Moreover, judging from the following excerpt from Bohr’s 1928 letter to Schrödinger, the
key issue was still the nature of the agreement of Wave Mechanics and Matrix Mechanics
with Bohr’s (revised) model. Bohr is still concerned with an (implicit) assumption of
Matrix Mechanics regarding stationary states as a limitation on the applicability of Wave
Mechanics:

In the interpretation of experiments by means of the concept of stationary
states, we are indeed always dealing with such properties of an atomic system
as dependent on phase relations over a large number of consecutive periods.
The definition and applicability of the eigensolutions of the wave equation are

25“Construction” is a better word choice than “derivation” in this case, given that the latter might
indicate the purely logical nature of the proof.

26See footnote 18 for the continuation of Schrödinger’s discussion.
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of course based on this very circumstance. (emphasis added; Bohr’s letter to
Schrödinger (May 23, 1928), in Bohr, 1985, V. 6, 49)

It is also important to compare Schrödinger’s effort with similar efforts by others. For
instance, in his letter to Jordan (12 April 1926), Pauli talks about “a rather deep con-
nection between the Göttingen mechanics and the Einstein-de Broglie radiation field.”
(Mehra and Rechenberg, 1982, 656) He thinks he has found “a quite simple and gen-
eral way [to] construct matrices satisfying the equations of the Göttingen mechanics,”
a description of the proof’s goal which is analogous to the moderate goal of Schrödin-
ger’s proof. It is also striking to what extent the use of Bohr’s model was critical in
constructing the proofs.27

The Moral of the Story

Thus, the 1920s agreement on equivalence appears to be an agreement on a ‘myth’ only
if we leave out the ontological goal of providing a coherent overall model of the atom,
and focus solely on the purely formal goal. However, only at a later stage of development
was the proof worked out in the terms which Muller’s historical and conceptual analysis
takes to be central to the 1920s agreement. And although the equivalence of the 1920s
was perhaps more provisional than that of the 1930s, it was justified by virtue of its
ontological aim.

It is not at all clear, however, that the proof of the equivalence provided by Von
Neumann in the 1930s could have settled the issue at the time of the appearance of
Schrödinger’s proof, given the tentative standing of the formalisms. As Hanson notes,
“Von Neumann’s theory was a splendid achievement. But it was also a precisely defined
mathematical model, based on certain arbitrary, but very clearly stated assumptions
concerning quantum theory and it physical interpretation” (Hanson, 1963, 124). In
particular, the well-known scattering phenomena could not be formulated in a satisfying
way within the limitations of his approach at the time.28

In the stage of the development of Quantum Mechanics at which the first set of equiv-
alence proofs was provided, the community of quantum physicists was keen on severe
experimental testing of the corpuscular and wave mechanical hypothesis concerning the
microphysical processes and their implications. Only after the experiments were judged
to have provided satisfying results with respect to the available theoretical accounts
(Bohr’s model, Matrix Mechanics and Wave Mechanics) did the development of the the-
ory enter the next stage, where an answer to the question of logical equivalence of the
two formalisms became significant.

Later commentators understood Schrödinger’s proof in the same spirit as Von Neu-
mann (and Muller is right in claiming this) because of the changing tide in quantum
physics. The second stage of the quantum revolution had already begun, and physicists
concentrated their efforts on the formal aspects of research, grounded on firmly estab-
lished experimental results. But we should not confuse the subsequent equivocation with
the actual understanding of the goals in the 1920s quantum physics community. It is a

27See (Mehra and Rechenberg, 1982, 657) on Pauli’s proof, (D’Abro, 1951, 874) on Dirac’s, (Mehra and
Rechenberg, 1982, 150) on Heisenberg’s and (Scott, 1967, 57) on the proof of Eckart’s.

28Jammer (1989, 335) also points out some of the difficulties with Von Neumann’s approach.
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mistake to judge these two stages of the development of quantum theory by a criterion
that applies only to the second stage.

Assuming that the proof was justifiably perceived as a breakthrough, what is the
moral of the story? How did this affect the understanding of quantum phenomena at
the time? What was the importance of the proof, given its domain-specific ontological
goal?

Here, Pauli’s attitude regarding the results of his own proof are informative. After
presenting the relation between Matrix Mechanics and Wave Mechanics in his letter to
Jordan, he concluded that, “from the point of view of Quantum Mechanics the contradis-
tinction between ‘point’ and ‘set of waves’ fades away in favor of something more general”
(Mehra and Rechenberg, 1982, 657). This is strikingly similar to the complementarity
view devised by Bohr in response to the same developments.

Also, although at the time there was still a lack of the agreement on the full-fledged
empirical equivalence, the proofs demonstrated that the two approaches added up to a
coherent account of the atom—at least as far as the known facts went.

In order to appreciate the relevance of this point, it is important to understand that
interpretations, formalisms, and the relevant experiments were closely related aspects
of the same endeavor. Disentangling them by introducing rigid distinctions might mis-
guide us in our attempts to reconstruct the relevant views and arguments. Both the
development of quantum mechanics and its interpretation were closely dependent on the
experimental results: the view of the interpretation(s) arising from the theory, and the
theory arising from the experiments, is misleading. It is more accurate to say that all
three components informed each other.

Thus, the roots of what has become the Copenhagen Interpretation might be found, to
a great extent, in the domain-specific ontological equivalence of Matrix Mechanics and
Wave Mechanics, not in the manufacturing of consent among physicists and philosophers.
If we leave out Bohr’s model as the background to the proof(s) and concentrate on the
equivalence as a purely mathematico-logical issue, the loose agreement represented by
the Copenhagen Interpretation seems to have been enforced. In other words, if we take
the background into account, the agreement seems to be a reasonable step forward.
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12 Planck and de Broglie in the Thomson
Family

Jaume Navarro

Introduction

The 1927 Solvay Conference is usually regarded as one of the central moments in the
history of the development and acceptance of the new quantum physics. In that meeting,
the latest developments in both wave and matrix mechanics were publicly discussed by
the main characters of this drama. In the years after the Great War, German and
Austrian scientists had been banned from international meetings, a fact that eventually
helped Bohr’s institute, in neutral Copenhagen, to become the focal point of international
discussions on the new physics. The fifth Solvay conference was the first to waive the
boycott that had been in place in the two previous councils (the ones of 1921 and 1924),
and thus it became a unique opportunity to gather all the major actors of quantum
physics under the same roof.1

Only a month before the Solvay meeting in Brussels, a huge international event gath-
ered hundreds of physicists in Como, Italy, in a celebration of Alessandro Volta and
Italian science. There, Niels Bohr was invited to open a discussion on quantum physics
by giving an overview of the latest developments in the new science. Werner Heisenberg,
Wolfgang Pauli, Enrico Fermi and Max Born were among the participants in the dis-
cussion. But others were missing: Albert Einstein and Erwin Schrödinger were absent,
probably for political reasons. Louis de Broglie, whose contribution had been so crucial
in the last three years, was also absent in Como.

At one point of his speech in Como, Bohr signalled that “recent experience, above
all the discovery of the selective reflection of electrons from metal crystals, requires the
use of the wave theoretical superposition principle in accordance with the original ideas
of L. de Broglie”,2 better known as the principle of wave-particle duality. Bohr was
referring here to the experiments reported by American physicists Clinton J. Davisson
and Lester H. Germer. Oblivious to the intricacies of the new quantum physics, Davisson
and Germer were working on the scattering of electrons on metallic surfaces, as part of
their research in the industrial Bell Laboratories. The anomalous results they had been
obtaining since 1923 only made sense after a young student of Max Born in Göttingen,
Walter M. Elsasser, suggested in 1925 that they could be interpreted in terms of electron
diffraction. In early 1927, Davisson and Germer reported final evidence of the diffraction
of electrons in their scattering by metal plates, thus proving the wave behaviour of the
1See Pierre Marage and Gregoire Wallenbron, eds., The Solvay Conferences and the Birth of Modern
Physics (Basel; Boston, Mass : Birkhäuser Verlag, 1999).

2Niels Bohr, “The quantum postulate and the recent development of atomic theory”, in Atti del Con-
gresso Internationale dei Fisici, vol. 2, (Bologna : N. Zanichelli, 1928), 568.
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electrons.

When, a month later, Louis de Broglie presented his paper at the Solvay Conference,
he made a serious effort to update on the experimental results that might support his
theory of wave-particle duality. Together with the experiments of Davisson and Germer,
to which he devoted thorough attention, he also mentioned the latest observations of
George Paget Thomson and his student, Alexander Reid, only recently published as a
preliminary note in Nature. In that note, Thomson and Reid published a photograph
obtained after “a beam of homogeneous cathode rays is sent through a thin celluloid
film”, in which “the central spot formed by the undeflected rays is surrounded by rings,
recalling in appearance the haloes formed by mist round the sun”.3 In de Broglie’s
words, “these observations are very interesting and they confirm, although only roughly,
the new conceptions”.4

Ten years later, in 1937, Davisson and Thomson shared the Nobel Prize for their
experimental confirmation of the undulatory nature of the electrons and, therefore, the
principle of duality wave-particle put forward by de Broglie. Their experimental paths
were largely distinct, and this helped to have two independent confirmations of the
radical principle of wave-particle duality. Historical analysis on the work of Davisson
and Germer was done by historian of science Arturo Russo more than 25 years ago.5

On the contrary, the work of G. P. Thomson has never received sufficient attention by
historians of quantum physics. This neglect can be partly due to the fact that British
physicists played but a minor role in the theoretical developments of quantum physics
and, therefore, are of little significance in a whiggish history of science. However, the
current project in the analysis of the early developments of quantum physics opens the
door to the study of what one might be tempted to call ‘the losers’, i.e., those who didn’t
fully accept the radical changes of the new physics.

In this paper I want to discuss the intellectual setting in which G.P. Thomson de-
veloped his early career, a career that was boosted by the experiments of 1927. As
I shall argue, the influence of his father, Sir Joseph John Thomson, proved to be a
crucial factor in the way G.P. received quantum physics. As most Victorian scientists,
J.J. was not prepared to accept the quantum of action as a metaphysical principle: his
world was a world of ether and, therefore, essentially continuous. Any discreteness in
physical theories was only phenomenological. This worldview was preserved within the
Thomson family and this explains G.P’s difficulties in understanding the relevance of
the new physics. Far from becoming an experimentum crucis, electron diffraction was a
proof, to J.J.’s eyes, of the correctness of his worldview of ether. Only partly did G.P.
manage to cut the umbilical cord that had kept him tied to his father’s metaphysics in
the beginning of his career.

3George P. Thomson and Andrew Reid, “Diffraction of Cathode Rays by a Thin Film”, Nature 119
(1927), 890.

4Louis de Broglie, “La Nouvelle Dynamique des Quanta”, in Electrons et photons. Rapports et discussions
du cinquieme conseil de physique tenu a Bruxelles du 24 au 29 Octobre 1927 sous les auspices de l’Institut
International de Physique Solvay (Paris, 1928), 130.

5See Arturo Russo “Fundamental research at Bell Laboratories: The discovery of electron diffraction”
Historical Studies in the Physical Sciences 12 (1981), 117–160.
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J.J. and the quantum of light (c. 1925)

J.J. Thomson’s world was a world of ether. Ever since his work for the 1881 Adams
Prize, Thomson had attempted to understand matter as an epiphenomenon of the ether.
First, it was the vortex-ring theory, which had it origins in Helmholtz and Kelvin;6 and
then, around 1891, he shifted to the notion of Faraday tubes of force, a theoretical tool
he kept, in different formats, all his life.7 Faraday tubes were bundles of lines of force in
the ether, acting as the channels of energy between charged bodies. In 1891 he defined
them in the following way:

“. . .the electric field is full of tubes of electrostatic induction, that these are
all of the same strength, and that this strength is such that when a tube falls
on a conductor it corresponds to a negative charge on the conductor equal in
amount to the charge which in electrolysis we find associated with an atom
of a univalent element. These tubes must either form closed circuits, or they
must end on atoms, any unclosed tube being a tube connecting two atoms”.8

Always eager to promote mental images in the development of physical theories, Thom-
son rejected the interpretation of Maxwell’s theories only in terms of dimensional equa-
tions.9 Eventually, however, the tubes of force ceased to be only a mental image and
became a physical reality. In 1925, he explained: “I suppose that these lines are not
merely geometrical figments, but that they, or rather the groups of them forming tubes
of force (. . .), are physical realities, and that the energy in the electric field is bound up
with these tubes”.10

Since the tubes of force were real physical entities, and not merely ideal devices, this
meant that there should be an actual physical limit to their divisibility.11 This idea
opened the door to a quantification of energy and charge within the framework of a
continuous ether. Continuity and discreteness were, in this way, aspects of nature which
were not mutually exclusive.

The tubes of force were instrumental in the experiments that led J.J. to the discovery
of the electron; and he retrieved them in the early 1900s to give a particular account that
would explain the structure of light. Ever since the discovery of X-rays, the old problem
of explaining light in terms of either waves or particles gained particular momentum.
J.J. was no alien to this problem. As an expert on the interaction between electricity and
matter in discharge tubes, Thomson became increasingly aware of the discrete behaviour

6See Helge Kragh, “The Vortex Atom: A Victorian Theory of Everything” Centaurus 44 (2002), 32–126;
and Jaume Navarro, “J.J. Thomson on the nature of matter: corpuscles and the continuum” Centaurus
47 (2005), 259–282.

7For the reasons why he shifted from vortex rings to Faraday tubes, see Isobel Falconer, “Corpuscles,
Electrons and Cathode Rays: J.J. Thomson and the ‘Discovery of the Electron’” British Journal for
the History of Science 20 (1987), 241–276.

8Joseph J. Thomson, “On the Illustration of the Properties of the Electric Field by Means of Tubes of
Electrostatic Induction” Philosophical Magazine 31 (1891), 149–171, 150.

9See David Topper, “‘To reason by means of images’: J.J. Thomson and the mechanical picture of
Nature” Annals of Science 37 (1980), 31–57.

10Joseph J. Thomson, The Structure of Light (Cambridge: Cambridge University Press, 1925), 20.
11Joseph J. Thomson, Notes on recent researches in electricity and magnetism: intended as a sequel to

Professor Clerk-Maxwell’s Treatise on electricity and magnetism (Oxford: The Clarendon press, 1893),
3.
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of both matter and light. Being one of the first researchers in Britain to use X-rays in
his laboratory work (an innovation that was, by the way, instrumental to his discovery of
the corpuscle-electron), he soon engaged in efforts to explain the apparently dual nature
of Röntgen rays and, by extension, of any light wave. The properties of the photoeffect
confirmed Thomson in his intuition that there was a certain discreteness in the wave
front of electromagnetic waves.

His idea that the tubes of force, the carriers of electromagnetic energy, were both
continuous and discrete led him to suggest a theory of light in which the wave front was
discontinuous:

“This view of light as due to the tremors in tightly stretched Faraday tubes
raises a question which I have not seen noticed. The Faraday tubes stretching
through the ether cannot be regarded as entirely filling it. They are rather
to be looked upon as discrete threads embedded in a continuous ether, giving
to the latter a fibrous structure; but if this is the case, then on the view we
have taken of a wave of light the wave itself must have a structure, and the
front of the wave, instead of being, as it were, uniformly illuminated, will be
represented by a series of bright specks on a dark ground, the bright specks
corresponding to the places where the Faraday tubes cut the wave front”.12

This theory was, however, never developed beyond the realm of ideas and suggestions.
There was never a complete mathematical development that would validate the theory
or, otherwise, point at its limitations.

It was not until 1909 that Thomson publicly gave his opinion on what he called the
“light-quantum hypothesis” of Planck. It was the beginning of his long controversy
with the increasingly popular quantum theory, a controversy in which “Thomson’s basic
position was that energy itself has no coherence, or inherent structure, but rather that
the carriers of the energy—Faraday tubes, electrons, etc.—are the permanent, indivisible
entities”.13 This was, however, already an advanced mentality compared to most British
physicists in the first decade of the 20th century. J.J. was, at least, ready to accept a
certain discontinuity in the electromagnetic waves and the ether, as his early theory on
the structure of light shows.

J.J. could not accept Planck’s theory basically for two reasons. First, because the way
he read Planck (closer to Einstein’s interpretation of the quantum) involved a quantifi-
cation of energy itself. Thomson was ready to accept a quantification of the carriers
of energy (as he had accepted a quantification of the carriers of charge), but nothing
beyond this point. And second, because Planck’s theory, while explaining the discrete
phenomena in radiation was not able to explain the wave characteristics of light such as
diffraction. Not that his models could, but preserving the ether was a way to keep the
door open to both discrete and undulatory characteristics.

The following quotation helps us to illustrate the grounds of his opposition to Planck’s
hypothesis while, at the same time, accepting the possibility of a certain quantification:

“Again, if all the atoms were made of vortices of the same ‘strength’, we
should find that certain mechanical quantities would all be integral multiples

12Joseph J. Thomson, Electricity and Matter (London: Archibald Constable & Co, 1906), 62–63.
13Russell McCormmach, “J.J. Thomson and the Structure of Light” British Journal for the History of

Science 3 (1967), 362–387, 375.
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of a definite unit, i.e. these dynamical quantities, though not matter, would
resemble matter in having an atomic constitution, being built of separate
indivisible units. The quantity known as ‘circulation’ is proportional to its
moment of momentum, and we see that in a theory of this kind the moment
of momentum of particles describing circular orbits would always be an in-
tegral multiple of a definite unit. We see from this example that when we
have a structure as fine as that associated with atoms, we may find dynam-
ical quantities such as moment of momentum, or it may be kinetic energy,
assuming the atomic quality and increasing or decreasing discontinuously
by finite jumps. In one form of a theory which has rendered great service
to physical science—I mean Planck’s theory of the ‘quantum’—the changes
from radiant to kinetic energy are supposed to occur not continuously, but
by definite steps, as would inevitably be the case if the energy were atomic
in structure. I have introduced this illustration from the vortex atom theory
of matter, for the purpose of showing that when we have a structure as fine
as that of atoms we may, without any alteration in the laws of dynamics,
get discontinuities in various dynamical quantities, which will give them the
atomic quality. In some cases it may be that the most important effect of the
fineness of the atomic quality in some dynamical quantity such as the kinetic
energy. If then we postulate the existence of this propriety for the energy,
it may serve as the equivalent of a detailed consideration of this structure
itself. Thus, for many purposes (. . .) Planck’s quantum theory serves as the
equivalent of a knowledge of the structure of the atom”.14

In 1910, J.J. introduced a new modification in his theory of light which is relevant
for the purposes of this paper. He suggested that every single electron was the origin of
only one Faraday tube of force and, therefore, each of the electrons exercised its influence
only in one direction.15 This enabled him to visualize better the concentration of energy
in apparently corpuscular form: the impulse produced by a rapid displacement of an
electron would be represented as a kink in the Faraday tube, a kink that would not
spread but only travel in the direction of the tube.16 In this way he had no need to
postulate a quantum of light, since the apparent quantification was only a consequence
of the way energy spread within a physical tube of force.

With these elements in mind, and with a growing interest to disprove Planck’s notion
that energy was essentially discrete, J.J. kept presenting different modifications to his
theory of light. The one that interests me for the argument of this paper is a mechanism
he presented in 1924 to account for the apparent discrete behaviour of light. Based, yet
again, on the Faraday tubes of force, J.J. suggested that,

“on this view the mutual potential energy of an electron E and a positive
charge P is located in the tube of force stretching between E and P . If the
electron falls from E to E′ this potential energy is diminished by the energy

14Joseph J. Thomson, The Atomic Theory. The Romanes Lecture (Oxford: The University Press, 1914),
26–27.

15Joseph J. Thomson, “On a Theory of the Structure of the Electric Field and its Application to Röntgen
Radiation and to Light” Philosophical Magazine 20 (1910), 301–313.

16See Bruce R. Wheaton, The Tiger and the Shark: Empirical roots of wave-particle dualism (Cambridge:
Cambridge University Press, 1983), 140–142 for an analysis of this theory.
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Figure 12.1: Bending of the Faraday tube

in the portion EE′ of this tube of force; for the energy in this portion to get
free and travel out as light, the piece EE′ of the tube must get into a state
where it can travel freely with the velocity of light and not be associated
with a charge of electricity whether positive or negative”.17

As illustrated in Fig. 12.1, when an electron jumped from a certain energy state to a
lower one, the Faraday tube would bend. If the bent was big enough as to create a closed
loop of tube of force, this would disassemble from the main body of the tube, giving rise to
a “closed ring, which rapidly becomes circular and travels with the velocity of light. (. . .)
The energy of this ring, (. . .) remains constant as long as the ring is unbroken”.18 That
would be, in the terminology of quantum physics, the quantum of light. Analogously,
the reverse process would explain the absorption of light and the jumping of the electron
to a level of higher energy.

“Thus we see that the death of a ring means either the birth of a high-
speed electron or the emission of a unit of characteristic radiation. (. . .)
The rings are the centres in which the energy from light to matter involves
the destruction of these rings; thus the amount of energy transferred from a
beam of monochromatic light or homogenous Röntgen radiation must be an
integral multiple of a unit”.19

This unit was, of course, Planck’s constant.
A last aspect to point at is the way J.J. was trying not only to account for discrete

phenomena but also for the continuous aspects of light, especially diffraction. The
process of creation and emission of a ring of Faraday tube is such that before and after
the emission of the ring the ether around the vibrating electron is set in motion. The ring
itself, when liberated, is also vibrating. This gives us the picture of a ring which “will be
17Joseph J. Thomson, “A suggestion as to the Structure of Light” Philosophical Magazine 48 (1924),

737–746.
18Ibid., 738.
19Ibid., 739.
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the centre of a system of electrical waves of the normal type, and predominant among
these are those which have the same periodicity as the vibrations of the ring”.20 If the
ring is assimilated to a unity of light, we find that this is accompanied by an extended
wave. Thus, Thomson gets a picture in which discrete entities go hand in hand with
undulatory characteristics, by which he aimed at an understanding of the dual nature
of light and radiation.

The occurrence of diffraction in the passage of light through a slit would be explained
in the following terms:

“If the waves surrounding the ring fall on a narrow slit in a metal plate
parallel to the plane of the ring, the electric and magnetic forces in the
parts of the wave in the slit are much greater than they were before the
wave reached the slit. The directions of these forces change as well as their
intensities, so that the Poynting vector, i.e. the direction of the flow of energy,
will change in direction from place to place in the neighbourhood of the slit.
Thus the flow of energy gets diverted when the wave passes through the slit;
it is no longer always in one direction, but spreads out fanwise after leaving
the slit”.21

In a famous statement in 1925, J.J. referred to the tension between discrete and un-
dulatory conceptions of light as the battle between a tiger and a shark: “the position
is thus that all optical effects point to the undulatory theory, all the electrical ones to
something like the corpuscular theory; the contest is something like one between a tiger
and a shark, each is supreme in its own element but helpless in that of the other”.22

His mental model was a step towards solving this entanglement; and it was a model
that predisposed him favourably towards de Broglie’s ideas. Furthermore, his theory
of light was, in J.J.’s mind, more powerful than the, by then, “universally accepted”
law of Planck. The latter was giving a good account of discrete phenomena in light,
but “it is quite foreign to the undulatory theory which postulates a continuous and not
an atomic distribution of energy”.23 Thus, J.J. always considered Planck’s law as an
incomplete theory that was solving the corpuscular aspects of light without explaining
its undualtory properties.

G.P. and de Broglie’s Principle

George Paget Thomson belongs to that special brand of British physicists whose entire
life evolves around the University of Cambridge. Born in that university town in 1892,
G.P. was the first and only son of J.J. who subtly led him into a career in physics. He
was prepared by private coaching even before his enrolment in the university and, as a
result, he was able to sit for both the Mathematical Tripos and the Natural Sciences
Tripos in the three customary years that people took for only one degree. This gave
him a special training in which both theoretical and experimental aspects of physics

20Ibid., 740.
21Ibid., 741.
22J. J. Thomson, op. cit. (10), 15.
23Ibid.
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were present. Nevertheless, the particular training G.P. received in pre-World War I
Cambridge was totally oblivious to the new developments in quantum theory.

In Cambridge, quantum physics and relativity were not formally taught until after the
Great War, and even then only in the form of ‘special courses’: Charles Galton Darwin
gave a course on spectra and quantum physics, and Arthur Eddington a course on
relativity. Darwin was, together with Ralph Fowler, one of the first to introduce the new
quantum physics in Cambridge.24 A good life-long friend of G.P., Darwin became very
critical of “the deficiencies of the syllabus [in Cambridge] which was disconnected from
the subjects then coming into importance”.25 After graduating in Cambridge, Darwin
moved to Manchester, where he met Niels Bohr in the crucial years of the development of
his atomic model. This was his first real contact with the new physics and, after the war,
when he returned to Cambridge as fellow of Christ’s College, he was ready to embrace
and work on quantum physics. Fowler’s engagement with the new science was more
independent than Darwin’s. It was during the war, after being wounded in Gallipoli,
that Fowler could study quantum physics from German scientific journals. Both Darwin
and Fowler were Cambridge contemporaries and good friends of G.P., and he relied on
them to get introduced into the new quantum physics in the late 1920s. During his
formative years, quantum principles were rarely mentioned at home or in the university,
and when they were, it was with high doses of contempt.

A faithful and devoted son of his father, G.P. relied on the advice of J.J. who became
his mentor and supervisor in his first research work at the Cavendish. This is the reason
why G.P. started his career as a researcher in the Cavendish laboratory on a project
to study the nature and behaviour of positive rays. This project would eventually lead
J.J.’s other assistant, F.W. Aston, to the manufacturing of the mass spectrometer and
the discovery of isotopes. For J.J., however, as much as for G.P., this project had a
different interest: first, the study of positive electricity emulating J.J.’s early work on
cathode rays, and later, in the 1920s, as an instrument for chemical analysis. And the
latter was the project that G.P. took with him to Aberdeen when he was appointed
Professor of Natural Philosophy, in 1923.

While he was working with valves, sealing glass tubes, and pursuing the fine tuning of
the vacuum pump in Aberdeen, G.P. was not oblivious to the theoretical developments
of physics. His very good friends from the days of Cambridge—Darwin, Fowler and
Bragg—would keep him up-to-date on their respective researches. It thus comes as
no surprise that G.P. was well aware of de Broglie’s principle, recently translated into
English with the backing of Fowler.26 In that paper, de Broglie was presenting the
results of his recent PhD dissertation, from which he was “inclined to admit that any
moving body may be accompanied by a wave and that it is impossible to disjoin motion
of body and propagation of wave”.27 This is what soon came to be understood as the

24See the Cambridge University Reporter. In 1919 Darwin offered a course on ‘Quantum Theory and
Origin of Spectra’. This course changed to ‘Recent Developments on Spectrum Theory’ the following
year, and a joint course on isotopes with Aston in 1921. In 1922 Fowler gave his first special course
on ‘The Theory of Quanta’.

25George P. Thomson, J.J. Thomson and the Cavendish Laboratory in his Day (London and Edinburgh:
Thomas Nelson and Sons, 1964), 70.

26Louis de Broglie, “A tentative theory of Light quanta” Philosophical Magazine 47 (1924), 446–458.
This paper was communicated by Ralph Fowler.

27Ibid., 450.
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principle of duality wave-particle, and which Schrödinger eventually turned into a full
formulation of a wave quantum mechanics.28

De Broglie’s English paper was entitled “A Tentative Theory of Light Quanta”, a title
which had very strong resonances in the Thomson family. As seen above, the nature of
light and the other radiations had been a topic of heated debates for the past twenty
years; a debate in which J.J. had been one of the main actors. This paper by de Broglie
was an attempt to design a new theory of light, as much as J.J.’s 1924 paper was.
Both were published in the same year and G.P. tried to unite them in a paper in the
Philosophical Magazine. In retrospect, G.P. would regret publishing this paper, calling
it “an example of a thoroughly bad theoretical paper”,29 even though it was proof, in
his reconstructions of history, that he had paid attention to de Broglie’s theory as soon
as it was published in the British milieu: “I think in retrospect I was in advance of my
time, I think I paid more attention to de Broglie than probably anybody else in this
country on the whole. Some people thought it was just nonsense”.30

The point to stress here is that G.P. knew of de Broglie’s theory as a theory of light
and electronic orbits, not as a theory of electron diffraction.31 As we shall see, the
idea of electron diffraction as an experimental application of de Broglie’s theory came
to him only some time in the summer of 1926, not in 1924. The title of his 1925
paper is “A Physical Interpretation of Bohr’s Stationary States”, and in it he tries to
dismiss de Broglie’s radical hypothesis as unnecessary. If the trajectories of electrons
were understood in terms of waves as much as of particles, only those orbits in which
the path is a multiple of the wavelength can be stable orbits around the nucleus, a
suggestion that was totally in tune with Bohr’s quantification. G.P.’s suggestion was
that these stationary states could be equally achieved following his father’s 1924 atomic
model explained above. If proton and electron were united by a Faraday tube of force, “it
will thus be able to transmit waves, and the condition that will be taken as determining
the possible states is that the vibrations in this tube shall be in tune with the period of
the orbit”.32 In this manner, G.P. Thomson was doing away with the main characteristic
of de Broglie’s hypothesis—the fact that electrons were actually waves—by ascribing the
wave motion to the tube of force outside the electron.

28For this process, see Varadaraja V. Raman and Paul Forman, “Why was it Schrödinger who developed
de Broglie’s ideas?” Historical Studies in the Physical Sciences 1 (1969), 291–314.

29George P. Thomson, “Early Work in Electron Diffraction” American Journal of Physics 29 (1961),
821–825, 821.

30Oral interview with George P. Thomson, Archive for the History of Quantum Physics, Tape T2, side
2, 8.

31In his reconstruction of the events, G.P. presented a different version of the facts. G.P. Thomson, op.
cit., (29), 821: “At that time we were all thinking of the possible ways of reconciling the apparently
irreconcilable. One of these ways was supposing light to be perhaps particles after all, but particles
which somehow masqueraded as waves; but no one could give any clear idea as to why this was done.
The first suggestion I ever heard which did not stress most of all the behaviour of the radiation came
from the younger Bragg, Sir Lawrence Bragg, who once said to me that he thought the electron was
not so simple as it looked, but never followed up this idea. However, it made a considerable impression
on me, and it pre-disposed me to appreciate de Broglie’s first paper in the Philosophical Magazine of
1924”.

32George P. Thomson, “A physical interpretation of Bohr’s stationary states” Philosophical Magazine 1
(1925), 163–164, 163.
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G.P.’s experiments on electron diffraction

“By 1926 I was feeling depressed by having failed to produce anything of real note. In
fact, positive rays, as distinct from the study of isotopes, were nearly worked out, at
least for the time”.33 Looking at his laboratory notebooks, however, no hint of G.P.’s
disappointment is evident: in the first half of the year he keeps accumulating data and
changing the experimental conditions in his work on positive rays. The last entry before
the summer break is from June 23rd, in which he is testing the scattering of positive
rays in Argon; the next entry, on August 23rd, clearly signals a shift of research project:
“Alteration to apparatus. A slip of gold leaf mounted on brass carrier + partly covering
aperture in camera”.34 His quest for electron diffraction had started.

The different autobiographical notes by G.P. on the events leading up to his measure-
ment of electron diffraction are a bit hazy. They all coincide, however, as does all other
evidence, in assigning a central role to the month of August 1926, both in Oxford and
in Cambridge. From the 4th to the 11th the British Association for the Advancement
of Science held its annual meeting in Oxford; and it became the forum in which many
British and American physicists learnt about the latest developments in wave quantum
mechanics. During the spring that year Erwin Schrödinger, based on de Broglie’s ideas,
had reinterpreted wave mechanics from a quantum perspective. Max Born, present at
the meeting, explained these developments to the participants, and the topic became
one of the highlights in the informal discussions in the meeting.35

Straight after the Oxford meeting G.P. stopped over in Cambridge, where he could
continue discussions on electron diffraction. Actually, in the Cavendish he must have
met with Charles D. Ellis, who had, as early as 1924, unsuccessfully tried to convince
Rutherford to allow him to look for electron diffraction in the Cavendish.36 The case
is that be it in conversations in Oxford or in Cambridge, G.P. saw—or was led to
understand—that his experimental device in Aberdeen was all that was needed to try
electron diffraction through solids and that he was in the best of conditions to give it
a try. And that’s what he did, first with his research student Andrew Reid, and then,
after the unfortunate death of the latter in a motorcycle accident, on his own. The first
tentative results were published in a note in Nature in June 1927,37 and this was followed
by a full account of his work in several articles later that year and the following one.38

33George P. Thomson Archives, Trinity College, Cambridge, A6, 7.
34Ibid., C24, 13.
35Born’s paper had a strong impact on many of the present, but especially on the American physicist

working at the Bell laboratories, Clinton J. Davisson, when he heard that the anomalous results he
had been obtaining in experiments on electron dispersion with his colleague Lester H. Germer might
be signs of electron diffraction. That branch of the story, which was studied in detail by historian
of science Arturo Russo, ends with the confirmation of electron diffraction in the Bell laboratories
and the sharing of the Nobel Prize with G.P. Thomson for their experimental proof of de Broglie’s
principle. Born also mentioned the experiments of the young German physicist, Walter M. Elsasser,
who had unsuccessfully tried to detect diffraction patterns in the passage of an electron beam through
a metallic film. See Arturo Russo, op. cit. (5).

36Ibid., 141.
37George P. Thomson and Andrew Reid, “Diffraction of Cathode Rays by a Thins Film” Nature 119

(1927), 890.
38George P. Thomson, “The Diffraction of Cathode Rays by Thin Films of Platinum” Nature 120 (1927),

802; “Experiments on the Diffraction of Cathode Rays” Proceedings of the Royal Society 117 (1928),
600–609; “Experiments on the Diffraction of Cathode Rays. II” Proceedings of the Royal Society 119
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Figure 12.2: Experimental Arrangement

A quick comparison between the experimental arrangement he had so far used for
his experiments on positive rays (Fig. 12.2) with the one he used in his work of 1926–
1927 clearly shows that few changes were needed for the new measurements. His original
display provided positive rays using a cathode rays tube; and now, the same tube could be
the source of a beam of electrons. The “apparatus for studying the scattering of positive
rays (. . .) could be used for this experiment with little more change than reversing the
current in the gaseous discharge which formed the rays”.39 The rest of the arrangement
only varied in the fact that instead of scattering the positive rays in a gas, he would
attempt their diffractive dispersion through a thin metallic plate. The latter was, in a
way, the only real experimental change, one in which he depended on the good skills of
his assistant C.G. Frazer, who succeeded in obtaining the extremely thin metallic films
that were needed.

The aim of this paper is not to give a detailed account of G.P.’s work in the period
1926–1928. But one element needs to be highlighted: the close connection between
his experiments and the long tradition in research on X-ray diffraction, to which G.P.
was certainly no stranger. After the discovery of X-ray diffraction by Planck’s protégé
Max von Laue in Munich in 1912, G.P.’s life-long friend Lawrence Bragg had modified
his father’s research project on X-rays and understood that X-ray diffraction could be
used as a tool to determine the crystalline structure of metals. This other father-son
story culminated in the shared Nobel Prize that both Braggs received in 1915 and, most
importantly, consolidated the emergence of the new science of X-ray crystallography in
Britain. G.P. certainly followed closely these developments due to his friendship with

(1928), 651–663; “Experiments on the Diffraction of Cathode Rays. III” Proceedings of the Royal
Society 125 (1929), 352–370.

39
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the young Bragg with whom he spent summer holidays in G.P.’s boat, the Fortuna.40

His other life-long friend, C. G. Darwin, was responsible for the formulation of the most
successful theory of X-ray diffraction between 1913 and 1922.41

The parallelism between G.P.’s experiments and X-ray diffraction was almost com-
plete, since the order of energy of the waves de Broglie was talking about was the same
as that of hard X-rays. The only real difference between X-rays and the waves of cathode
rays was that the latter could be deflected with electric and magnetic fields due to their
electric charge, a difference that proved essential in order to make sure that the diffracted
patterns were not due to secondary X-rays but to the cathode rays themselves.42 Again,
this was a feature that the experimental arrangement for G.P.’s project on positive rays
already included: like the experiment that had led to the hypothesis of the corpuscle
in 1897, the Thomsons’ study on positive rays involved their deflection by electric and
magnetic fields in the glass tube.

The pictures G.P. obtained were powerful enough to convince his audience (Fig. 12.3).
The circular halos were widely recognised as the Hull-Debye-Scherrer patterns of diffrac-
tion, already known for X-ray diffraction. Therefore, if those pictures were really ob-
tained from dispersed cathode rays, there was no other way out but to accept that the
electrons behaved like waves: “The detailed agreement shown in these experiments with
the de Broglie theory must, I think, be regarded as strong evidence in its favour”.43

If the period between the summer of 1926 and the spring of 1928 required only a few
changes in the experimental culture of G.P. Thomson, it did however involve a radical
change in his conceptual framework. Distancing himself from his classical tradition, he
was suddenly coming to terms with the fact that, as he said in his November 1927 pa-
per, his experiments involved “accepting the view that ordinary Newtonian mechanics
(including the relativity modifications) are only a first approximation to the truth, bear-
ing the same relation to the complete theory that geometrical optics does to the wave
theory”.44 This statement strongly suggests a connection with Niels Bohr’s correspon-
dence principle, formulated in 1923, by which it is assumed that classical physics is the
limit of quantum physics for large quantum numbers. If that is so, that would mean a
first abandonment of the classical mechanics he had thus far been immersed in, and one

40See Graeme K. Hunter, Light is a Messenger: The life and science of William Lawrence Bragg (Oxford:
Oxford University Press, 2004), 70 and 104.

41Darwin came back to Cambridge after the war and was made a fellow of Christ’s College while G.P. was
a fellow in Corpus Christi. On Darwin, see George P. Thomson, “Charles Galton Darwin” Biographical
Memoirs of Fellows of the Royal Society 9 (1963), 69–85.

42The following anecdote helps to illustrate the importance of electromagnetic deflection. Probably
around the beginning of March 1928, he also had the opportunity to discuss his experimental results
with Schrödinger himself as the latter recalled in 1945: “After mentioning briefly the new theoretical
ideas that came up in 1925/26, I wish to tell of my meeting you in Cambridge in 1927/28 (I think it
was in 1928) and of the great impression the marvellous first interference photographs made on me,
which you kindly brought to Mr Birthwistle’s house, where I was confined with a cold. I remember
particularly a fit of scepticism on my side (“And how do you know it is not the interference pattern
of some secondary X-rays?”) which you immediately met by a magnificent plate, showing the whole
pattern turned aside by a magnetic field.” Schrodinger to G.P. Thomson, 5th February 1945, George P.
Thomson Archives, Trinity College, Cambridge, J105, 4. The exact date can be traced by the minutes
of the Kapitza Club, which says that Schrödinger gave a paper to the Club on March 10th, 1928. See
Churchill Archives, CKFT, 7/1.

43George P. Thomson, op. cit. (38), I, 608.
44Ibid., 608–609.
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Figure 12.3: Pictures from G.P.’s experiments on electron diffraction.

might want to consider when and how G.P. got in touch with the latest developments
going on in Copenhagen.

Besides the impetus that the BAAS Oxford meeting of 1926 meant for many British
physicists, G.P. benefited, once again, from his close friendship with C. G. Darwin who,
since 1924 the Tait Professor of Natural Philosophy in Edinburgh, spent two months in
Copenhagen in the spring of 1927, where he learned about the latest developments in
quantum physics and complementarity from Bohr and Heisenberg themselves. On his
way back, Darwin spent some time in Aberdeen, in G.P.’s home. This way, G.P. learned
all about it from Darwin’s explanations: “we had long talks about all this, and really
began to get an idea about it”.45 The timing was just right. As G.P. was seeing with his
own eyes the diffraction patterns of cathode rays, he understood their importance in the
context of the latest theoretical developments of quantum mechanics from possibly the
British physicist best suited for understanding them at the moment. In his biographical
memoir on Darwin, G.P. said that “I am inclined to think that his most useful work
was as an interpreter of the new quantum theory to experimental physicists. (. . .) I
should like to record my great debt to him for the many ideas in physics he helped me
to understand”.46

The pictures convinced G.P. of the validity of de Broglie’s principle. But contrary
to what had happened in 1925 when he first learnt about the new theory, G.P. was no
longer interpreting it in terms of his father’s metaphysical framework. In the last section
we will explore the change of mindset that can be perceived in the early explanations
about electron diffraction that G.P. gave, and the uses he made of it. However, let’s
45Oral interview with G.P. Thomson, Archive for the History of Quantum Physics, Tape T2, side 2, 15.
46George P. Thomson, op. cit. (41), 81.
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pause for a moment before that and look at the reaction of his father, J.J., in the face
of the unavoidable experimental evidence.

J.J.’s reaction

The father saw, in the experiments of his son, the final proof of his life-long metaphysical
project and a clear sign of the invalidity of quantum physics as an ultimate explanation.
His world had always been, and still was, a world of ether, in which discrete entities,
including the electrons, were but epiphenomena in the ether. Now, in 1928, J.J. Thom-
son felt his metaphysical idea had proved true and that electron diffraction was a sign
that discrete models of matter were only rough approximations to reality. In his mind,
the “very interesting theory of wave dynamics put forward by L. de Broglie”, and ex-
perimentally proved by his son, was not in contradiction with classical mechanics. In
the first of a series of papers he would publish in Philosophical Magazine, J.J. tried to
show that “the waves are also a consequence of classical dynamics if that be combined
with the view that an electric charge is not to be regarded as a point without structure,
but as an assemblage of lines of force starting from the charge and stretching out into
space”.47

Thomson had never accepted the idea put forward by Larmor and Lorentz at the turn
of the century of an electron being a point charge of electricity in the ether. Now, the
detection of a train of waves associated with the movement of electrons was proof that he
had been right: Maxwell’s equations had not predicted such a wave for a point electron,
and therefore such a view of the electron had to be wrong. On the other hand, de
Broglie’s wave could be obtained on purely classical grounds if he assumed the electron
to be a two-part system: a “nucleus which (. . .) is a charge e of negative electricity
concentrated in a small sphere”,48 and a sphere surrounding it “made up of parts which
can be set in motion by electric forces (. . .) consist[ing] either of a distribution of discrete
lines of force, or of a number of positively- and negatively-electrified particles distributed
through the sphere of the electron”.49 With this ad hoc structure J.J. deduced the
relationship between the speed of an electron and the wavelength of its sphere to be the
same as that expected by de Broglie and measured by G.P.

In a conference given in Girton College, Cambridge, in March 1928 entitled Beyond the
Electron, J.J. argued that talking about a structure for the electron was not ludicrous.
Thirty years earlier, when he first suggested that corpuscles would be constituents of all
atoms, thus initiating the exploration of the structure of the atom, he had been accused
of being an alchemist. The developments of the physics of the electron had dismissed
that accusation. Now he felt justified to talk about the structure of the electron in the
light of the latest developments by his son. “Is not going beyond the electron really
going too far, ought one not draw the line somewhere?”, he would ask rhetorically. To

47Joseph J. Thomson, “Waves associated with Moving Electrons” Philosophical Magazine 5 (1928),
191–198, 191.

48Joseph J. Thomson, “Electronic Waves and the Electron” Philosophical Magazine 6 (1928), 1254–1281,
1259.

49Ibid., 1254. J.J.’s model for the electron sphere would soon be expressed in terms only of what he
came to call “granules”, particles “having the same mass µ, moving with the velocity of light c, and
possessing the same energy µc2”. See Joseph J. Thomson, “Atoms and Electrons” Manchester Memoirs
75 (1930–31), 77–93, 86.
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which he would reply that “It is the charm of Physics that there are no hard and fast
boundaries, that each discovery is not a terminus but an avenue leading to country as yet
unexplored, and that however long the science may exist there will still be an abundance
of unsolved problems and no danger of unemployment for physicists”.50

The diffraction experiments showed that “we have energy located at the electron itself,
but moving along with it and guiding it, we have also a system of waves”.51 Following
the similarities with his structure of light of 1924, he supposed that the electron “had a
dual structure, one part of this structure, that where the energy is located, being built
up with a number of lines of electric force, while the other part is a train of waves in
resonance with the electron and which determine the path along which it travels”.52

For him, the association of a wave with an electron was not a new phenomenon. It had
already happened when, in the late 18th century, the corpuscles of light that Newton had
postulated needed to be complemented by wave explanations. It was not so strange to see
that the new corpuscles, the electrons, had to undergo a similar process. Furthermore,
discussions on the nature of light in the previous two decades had paved the way for the
acceptance of the duality of the electron.

In the world of J.J, electron diffraction brought with it the possibility of challenging,
rather than accepting, the new quantum physics. A continuous metaphysics in which
all phenomena and entities could be seen as structures of the ether was, in his view,
still possible. Furthermore, J.J. felt that at last electron diffraction provided the final
argument to defend the old worldview, something that the developments of the previous
two decades had, only apparently, jeopardised. Electron diffraction was proof of the
complexity of the electron and, therefore, of the validity of classical mechanics. Quan-
tification of magnitudes such as momentum or energy “is the result and expression of
the structure of the electron; only such motions are possible, or at any rate stable, as
are in resonance with the vibrations of the underworld of the electron”.53

At the root of his models there was a metaphysical problem as much as an episte-
mological one. As already stated, J.J.’s metaphysics involved a continuum in terms of
which all discrete phenomena could, and should, be explained. Parallel to that was an
epistemological problem: for Thomson, de Broglie’s and Schrödinger’s theories, as much
as Planck’s, were valid only from a mathematical point of view. Their results were valid,
but they did not entail real, true physics. And that was the strength J.J. saw his the-
ory had over de Broglie’s: “The coincidences are remarkable because two theories could
hardly be more different in their points of view. M. de Broglie’s theory is purely analyt-
ical in form; the one I have brought before you (. . .) is essentially physical”.54 It comes
to no surprise that, true to the spirit in which he was educated in the old Mathematical
Tripos, physical meant mechanical.

In an ironical remark on the situation of physics in previous years he would state in
1930 that “when the waves are taken into account, the classical theory of dynamics gives
the requisite distribution of orbit [of the electrons] in the atom, and as far as these go
the properties of the atom are not more inconsistent with classical dynamics than are
the properties of organ pipes and violin strings, in which, as in the case of the electron,
50J.J. Thomson, Beyond the Electron (Cambridge: Cambridge University Press, 1928), 9.
51Ibid., 22.
52Ibid., 23.
53Ibid., 31.
54Ibid., 34.
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waves have to be accommodated within a certain distance. It is too much to expect
even from classical dynamics that it should give the right result when supplied with the
wrong material”.55 Obviously, the fact that the proof had come in the family was only
an added reason to rejoice.56 In the decade between these events and his death in 1940,
J.J. did not change his mind. The last paper he ever published, sent in October 1938 at
age 81, still reclaimed his son’s experiments as proof of the validity of the old classical
mechanics.

G.P.’s evolution

G.P. presented his first preliminary results in a short note in Nature dated May 1927
and in a presentation at the Kapitza Club, in Cambridge, on the 2nd of August.57

In November he was ready to publish a long and detailed paper in the Proceedings of
the Royal Society preceded by another short note in Nature.58 Although these papers
are basically a cold description of the experimental methods and results, some distance
from his father’s metaphysics is already apparent. As noted above, G.P. realised that
his experiments meant a proof of de Broglie’s principle and, therefore, undermined the
validity of classical mechanics. In his words, his experiments involved “accepting the
view that ordinary Newtonian mechanics are only a first approximation to the truth
(. . .). However difficult it may seem to accept such a sweeping generalisation, it seems
impossible to explain the results obtained except by the assumption of some kind of
diffraction”.59

For the first time in his career we can see a strong contrast between his and J.J.’s
position. Both father and son accepted the law of de Broglie, but in different terms.
The father wanted to obtain the same relationship between speed, mass and wavelength
of the electron by creating an ad hoc mechanical model; the son saw the incompatibility of
both approaches and opted for a correspondence between the old and the new, between
Newton and de Broglie, in terms advocated by Bohr and the school of Copenhagen.
G.P. was cutting the umbilical cord that had kept him tied to his father and to the old
worldview for far too long.

But this change was no easy business. Two basic questions were at stake: the relation-
ship between the particle and the wave associated with it, and the nature of the medium
in which these waves propagate. Before turning to his answer to these questions, we
should reflect on G.P.’s attitude towards experimental and theoretical science. A quo-
tation from his Friday speech at the Royal Institution of 1929 describes his approach
to theoretical speculation in this period of his life. After explaining with full detail the
experiments on electron diffraction he would venture into trying to answer the “great
difficulties of interpretation. What are these waves? Are they another name for the
electron itself? (. . .) Some of these questions I should like very briefly to discuss, but
we now leave the sure foothold of experiment for the dangerous but fascinating paths
55Joseph J. Thomson, Tendencies of recent investigations in the field of Physics, (London: British

Broadcasting Corporation, 1930), 26–27.
56Oral interview with G.P. Thomson, Archive for the History of Quantum Physics, Tape T2, side 2, 9:

“Well, I think he was very pleased [with my developments], largely because it was in the family”.
57Thomson and Reid, op. cit. (37), and Churchill Archives, CKFT 7/1.
58George P. Thomson, op. cit. (38).
59George P. Thomson, op. cit. (38), I, 608–609.
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traced by the mathematicians among the quicksands of metaphysics”.60 The contrast
between the security of experimental data and the uncertainty of theorising is, in this
quotation, very strong, and shows how G.P. was sticking to what he considered to be
the facts, and distrusting unnecessary speculation.

This speech is also the first time in which he publicly and explicitly distances himself
from his father’s ideas. Contrary to J.J.’s explanation of the electron waves in terms of
a modification of the ether, G.P. dismisses the need of an ether and takes, for the first
time, a pragmatic and positivistic stand. “Personally—he says—I see no necessity for
there to be any vibration of a material or quasi-material object. (. . .) The easiest way of
looking at the whole thing seems to be to regard the waves as an expression of the laws
of motion”.61 And to give authority to his point of view, he finished his speculations by
quoting Newton’s famous ‘hypothesis non fingo’.

The best and most exhaustive document we have to understand G.P.’s views at the
time of his experiments is a series of lectures he gave at the University of Cornell the last
term of 1929, and immediately published in the form of a book, The Wave Mechanics
of Free Electrons. Here we find a thorough explanation of the reasons why he wanted
to avoid the question of the ether. The wave-lengths of electron waves and X-rays are
in the same range, but they clearly behave differently, for the first can be deflected, and
the second can’t. If that is the case, one might need to assume two different media to
account for the different behaviour of the two waves, “but it is not a very attractive idea
to have two ethers filling the space, especially as the waves of protons—if they exist—
would demand yet a third. Space is becoming overcrowded”.62 G.P.’s decision was to
apply Ockham’s razor, to do away with the ether and stick to the information given
by the wave formulation, and “perhaps simple physicists may be content as long as the
waves do their job guiding the electron, and it is possible that, after all, the question
will ultimately be seen to be meaningless”.63 G.P. seems to be here in close agreement
with the spirit of the Copenhagen Interpretation, mixing epistemology and metaphysics,
and reducing what there is to what can be described.

One of G.P.’s most surprising speculations in these years was his adherence to the
possibility, put forward by Bohr, that energy conservation might have to be abandoned
in order to explain beta radioactive decay.64 Closely following calculations made by his
friend Darwin on his way back from Copenhagen, G.P. suggested a mechanism to ac-
count for the dispersion of energy. Essentially, G.P. was suggesting that the actual beta
emission did conserve energy, only that the huge acceleration suffered by the electron
in its ejection from the nucleus involved the creation of an energetic wave, like “the
sound produced by the firing of an atomic gun whose bullet is the electron”.65 Such
a wave could be supposed to “possess energy when highly concentrated which it loses
on spreading out,”66 giving rise to an indeterminacy in the energy of the electron. The

60George P. Thomson, “The Waves of an Electron” Nature 122 (1928), 279–282, 281.
61Ibid., 282.
62George P. Thomson, The Wave Mechanics of Free Electrons (New York & London, 1930), 11.
63Ibid., 12.
64For a thorough analysis of the problems with beta decay and the conservation of energy, see Carsten

Jensen, Controversy and Consensus: nuclear beta decay, 1911–1934 (Basel: Birkhäuser, 2000).
65George P. Thomson, “On the Waves associated with β-Rays, and the Relation between Free Electrons

and their Waves” Philosophical Magazine 7 (1929), 405–417, 410.
66Ibid., 415.
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actual mechanism G.P. was thinking of was based on basic mathematical properties of
waves: the Fourier transformation of the initial pulse would give all possible monochro-
matic wavelengths and, therefore, all possible energies. The emitted electron would
choose only one of these monochromatic waves, thus explaining the indeterminacy in
their energy.67 G.P. did not follow this idea any further since he was step-by-step com-
ing to understand that the new physics was totally alien to the old notion of explanation
by way of mechanical models.

As for the relationship between the wave and the particle, the question arises as to
which is the real thing. Here his position is less clear, but there doesn’t seem to be a total
identification of both. The wave guides the electron but is not totally identifiable with
the electron, since what one really observes is the particle, not the wave: “Whenever an
electron produces any detectable effect it does so as a particle, and it seems easiest to
suppose that even when it is not producing an effect the particle is somewhere round”.68

An example he would often use in his popular lectures is that of the gossamer spider:

“When at rest this spider is a minute insect. When it wants to move it sends
out streamers into the air, and floats away owing to the action of the air
on these filaments which stretch out a foot or more all round it. Just so
the electron, when it is part of an atom its waves are limited to that atom,
or even to a part of it. They are curled round on themselves, as it were.
Suppose, now, an electron escapes from the hot filament of a wireless valve
and gets free. Its waves will spread far out into the space round it. I regard
it as still a particle at the centre of its wave system. The analogy can be
pressed further. If the wind sweeps the spider past an obstacle the filaments
will catch. The pull on filaments will move the spider, and he will feel that
there is something in the way, even though his body does not actually hit it.
In the same way the waves are a means by which the motion of the electron
is affected by things which the main body of the electron never comes very
near”.69

The Aberdeen experience came to an end in 1930, when he was offered the chair at
Imperial College, London, after his close friend W.H. Bragg had declined the offer. In
his new appointment, G.P. made use of his experimental skills to study the minutiae
of electron diffraction and some possible applications, soon to move, following the steps

67See George P. Thomson, “The Disintegration of Radium E from the Point of View of Wave Mechanics”
Nature 121 (1928), 615–616: “[The apparent non conservation of energy] is to be expected on the new
wave mechanics, if the ejection of a β-particle is produced by anything like a sudden explosion. In
such a case one would expect that the wave-group which accompanies, and on some views actually
constitutes, the electron, would be of the nature of a single pulse, that is, the damping factor of
the amplitude would be of the order of the wave-length. Such a wave-group, being very far from
monochromatic, would spread rapidly lengthwise owing to the large dispersion of the phase waves, and
so the distance within which the electron may occur becomes large, implying a marked ‘straggling’ in
velocity. Similarly, if the waves pass through a magnetic field, which is for them a refracting medium,
the group will split into monochromatic waves going in different directions, just as white light is split
up by a prism. Thus an observer who forms the magnetic spectrum of the β-rays will find electrons in
places corresponding to paths of various curvatures, that is, he will find a spectrum continuous over a
wide range”.

68George P. Thomson, op. cit. (62), 10.
69George P. Thomson, “New Discoveries about Electrons” The Listener 1 (1929), 219–220, 220.
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of Fermi, to the more fashionable and very promising field of slow neutrons. Electron
diffraction, for which he would become universally known and receive the Nobel Prize
in 1937, soon became a closed chapter of his scientific life.

Conclusion

A textbook history of the early developments of quantum physics will, at most, only
contain a footnote mentioning G.P.’s experiments on electron diffraction. And certainly
no reference will be made to the antagonism and speculations of J.J. Thomson. However,
a good history of quantum physics should analyse the attitudes, ideas and reactions of
both the ‘winners’ and the ‘losers’, to avoid being whiggish. J.J. Thomson can be
considered to be one of such losers; but in the 1920s he was still a public icon of British
science. True, he didn’t play a major role at the forefront of science, but he was a very
influential figure among second line scientists and the general public. The study of his
reaction against quantum physics is certainly necessary if we want to understand the
public perception of quantum physics in the 1920s.

At a less social level, one can also use this case study as a way to analyse the role that
experimental physics played in the configuration and acceptance of quantum physics.
Electron diffraction was proof that electrons behaved like waves, and it triggered in
G.P. a certain conviction that wave mechanics, with all the epistemological implications,
was worthwhile embracing. But, as we have seen, the experiments were not necessarily
an experimentum crucis for wave mechanics, certainly not for J.J. and his generation,
who were, in Kuhnian terms, excessively immersed in the paradigm of ether physics.70

This case study reveals the complexities in interpreting experimental results. The same
experiments triggered different, almost opposite, responses in the father and in the son.

70The antagonism to quantum mechanics was not exclusive to Cambridge. In Oxford, for instance,
the head of the Clarendon Laboratory stubbornly rejected quantum physics. See Benoit Lelong,
“Translating Ion Physics from Cambridge to Oxford: John Townsend and the Electrical Laboratory,
1900–24”, in Physics in Oxford 1839–1939. Laboratories, Learning and College Life, ed. Robert
Fox and Graeme Gooday (Oxford: Oxford University Press, 2005), 209–232, 229: “The break of
international physics became more marked after the war. Townsend first ignored and then rejected
the emerging quantum theories”.
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13 Weyl Entering the ’New’ Quantum
Mechanics Discourse

Erhard Scholz

Early in 1925 H. Weyl finished his great series of publications on the representation of
Lie groups and started the studies for his Philosophie der Mathematik und Naturwis-
senschaften delivered to the editors in summer 1926. He was in touch with M. Born
and got to know of the developments in the Göttingen group around Born, Heisenberg
and Jordan in early summer 1925. After a conversation with Born in September 1925
he started to develop ideas of his own how to quantize the mechanical observables of a
system and communicated them to Born and Jordan in October 1925. In these letters he
proposed the basic idea of a group theoretic approach to quantization, which he presented
to the scientific public in his 1927 paper Quantenmechanik und Gruppentheorie. This
paper had a long and difficult reception history for several decades.

Introduction

There are many stories to be told about Hermann Weyl’s involvement in quantum me-
chanics. Among them:

• 1918–1923, Weyl’s rising awareness of the role of quantum structures in the consti-
tution of matter during his phase of a dynamistic matter explanation in the frame
of the Mie-Hilbert-Weyl program,1

• 1925–1927, backstage involvement in the new QM leading to his published contri-
bution to the topic Weyl (1927) quoted as QMG in the sequel,

• 1927/28 lecture course and book publication on Groups and Quantum Mechanics,
quoted as GQM,

• 1929, Weyl’s contribution to the general relativistic Dirac equation (Fock-Weyl
theory),

• 1930ff. study of the role of spin coupling for molecular bounds, second edition of
GQM, and later contributions.

This is too much for a conference talk. Here I shall concentrate on the second item. For
items 4 see Scholz (2005), for 3 and 5 Scholz (2006), for item 1 with a link to 4 Scholz
(2004a,b).

1This relates to Weyl’s role in the Forman thesis. P. Forman’s version should not be taken literally,
however, und has to be reconsidered and drastically corrected.
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The reason for this choice is that Weyl’s contributions to QM during the period 1925–
1927 may be of particular interest for this conference. It contains a direct communication
between him and two of the main protagonists of the ‘new’ quantum mechanics, Max
Born and Pascual Jordan, in late summer and early autumn 1925. Moreover we find
here a very early formulation of a structural approach to quantization. This may be
helpful to understand historically, and perhaps more widely, a mathematician’s view of
the relationship mathematics—physics in foundational aspects.2

During the years 1924 and 1925 Weyl worked hard on his great series on the represen-
tation theory of Lie groups, beautifully described in Hawkins (2000). It was finished in
April 1925 Weyl (1925/1926). Then he started intense reading work for his contribution
to Philosophie der Mathematik und Naturwissenschaften in Handbuch der Philosophie.
He took this task very seriously; it occupied him well into the year 1926. In his letter
to Born of Sep. 27, 1925, he characterized himself as “fettered to the deep swamp of
philosophy (gefesselt an das tiefe Moor der Philosophie)”. This did not hinder him, on
the other hand, to follow very closely what was going on inside the Göttingen group of
theoretical physics during 1925, with its great step towards a new kind of mathematized
quantum mechanics.

Already earlier in the 1920s, Weyl had found two topics in modern physics, in which
group representations became important. The first topic was in general relativity and dif-
ferential geometry. The representation theory of the special linear group SLnR, showed
that there is a mathematical reason for the structural importance of tensors in differen-
tial geometry.3 The second point became clear to him, when Elie Cartan proved that
the algebraic part of Weyl’s analysis of the space problem could be answered by the use
of group representations more easily.4

When Weyl learned from M. Born in September 1925 of the recent Göttingen work in
quantum mechanics, he immediately tried to link the new theory to the representation
theory of groups. Already in autumn 1925 he started to investigate inhowfar group
representations might help to understand the Göttingen quantization procedure and, in
particular, how they shed light on the role of the Heisenberg commutation rule (section
2 below). His approach led directly to the study of abelian ray representations. He even
made first steps towards what later turned into Weyl quantization (section 3). Both ideas
were first published in QMG Weyl (1927). This contribution ends with some remarks
on Weyl’s indications on interacting and/or relativistic systems (section 4) and a short
outlook on reception and repercussions of Weyl’s proposals (section 5).

From Commutation Rules to Abelian Ray Representations

Shortly before leaving for a visit to the US of America, Max Born visited Zürich in
September 1925 and informed Weyl on the recent progress in QM made at Göttingen.
This led to a short correspondence between Born and Weyl (Weyl to Born Sept. 27, 1925,

2Here “foundational” is understood in the sense of foundations of physics, not as foundations of mathe-
matics.

3All irreducible representations of SL2R, arise as subrepresentations of tensor products of the natural
representation with certain symmetry properties. Thus infinitesimal structures of classical differential
geometry have a good chance to be expressible in terms of vector and tensor fields.

4Hawkins (2000); Scholz (2004b)
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Born to Weyl Oct. 3, 1925) and, after Born’s departure, between Weyl and Jordan ( Weyl
to Jordan Oct. 13, 1925, Jordan to Weyl, Nov. 1925, and two postcards, Weyl to Jordan,
Nov. 23 and 25, 1925). The correspondence took place in the time lapsed between
the submission and publication of Born’s and Jordan’s common article on quantum
mechanics Born (1925).5

Apparently Born had explained the content of this paper to Weyl. The latter wrote
to Born:

Dear Herr Born!
Your Ansatz for quantum theory has impressed me tremendously. I have
figured out (zurecht gelegt) the mathematical side of it for myself, perhaps
it may be useful for your further progress . . . Weyl (Ms1925a).6

In his “Zurechtlegung des Mathematischen” Weyl immediately passed over from the
matrices p, q etc. of Born, Heisenberg, and Jordan to the “one-parameter group which
results from the infinitesimal transformation 1 + δp by iteration” (the δ was introduced
by Weyl to characterize the limit process δp for δ → 0),

P (s) = eps = 1 + sp+
s2

2!
p2 . . . , Q(t) = eqt = 1 + tq +

t2

2!
q2 . . . (s, t ∈ R) .

That is, he considered the p, q as infinitesimal generators of 1-parameter groups. He did
not touch analytical details of domains of definition etc..7

This move was motivated by Weyl’s recent experiences with Lie groups. There he had
studied the consequences of the shift from the infinitesimal group (now, Lie algebra) to
the finite one (the Lie group itself) for the corresponding representations. He had found
valuable new insights by such a shift from the infinitesimal to the integral (finite) point
of view.

In the context presented to him by Born, Weyl realized that the Heisenberg commu-
tation rule for the infinitesimal operators

pq − qp = ~ 1, (13.1)

with ~ “a number” (Weyl omitted the imaginary unit i), was (and is) equivalent to the
quasi-commutation rule for the integral operators P := P (1), Q := Q(1)

PQ = αQP, with α(s, t) complex factor. (13.2)

This looked like an easy reason for the validity of Heisenberg commutation in quantum
mechanics, where states were represented by functions or vectors up to a non-vanishing
complex factor only, if normalized up to a phase factor α, |α| = 1, “. . . which one [could]
deny any physical meaning” (Weyl Ms1925a). In this sense the integral version (2) of

5Submission date, 27 Sept., publication 28 November 1925.
6The German original is even nicer: “Lieber Herr Born, Ihr Ansatz zur Quantentheorie hat auf mich
gewaltigen Eindruck gemacht. Ich habe mir das Mathematische dazu folgendermaßen zurecht gelegt,
vielleicht kann Ihnen das bei ´der weiteren Durchführung behülflich sein . . . .”

7This state of affairs pertained well into 1927. Even Hilbert in his lecture course in winter semester
1926/27 and did not specify domains of definition. This situation started only to be changed with von
Neumann’s first own contribution on the foundations of QM.
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Figure 13.1: Weyl to Born, 27 Sept. 1925, page 1
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the commutation rule seemed more basic to Weyl. He started to explore first conclusions
of it for algebraic expressions of p and q, which we do not go into here (we come back
to this question in the discussion of Weyl’s letter to Jordan).

Born’s reaction was polite,

Dear Herr Weyl,
It was a great pleasure for me to see that our new quantum mechanics attracts
your interest. In the meantime, we have made considerable progress and are
now sure that our approach covers the most important aspects of the atomic
structure. . . . Born (Ms 1925)

But apparently he was not particularly interested in Weyl’s proposal. In the last phrase
Born referred to his joint paper with Jordan, just submitted to Zeitschrift für Physik.
Then he continued:

It is very fine that you have thought about our formulas; we have derived
these formulas in our way, even if not as elegantly as you, and intend to
publish the subject in this form, because your method is difficult for physicists
to access. (ibid)8

So Weyl was left alone with his proposal to pass over to the integral version of the
infinitesimal transformations.

He saw the opportunity to come back to the question in a direct communication with
the younger colleague a little later. On 13 Nov. 1925 he received proofs of Born and
Jordan’s paper, “against ackowledgement of receipt and by express mail! (eingeschrieben
und durch Eilboten!)”, as he remarked with some surprise in his first letter to Jordan.
He did not go into the details of the paper but referred to his letter to Born, in which he
had done some of the calculations in his own approach, and added some other comments.

Jordan replied in November (no day specified in the date) answering that he had
seen Weyl’s letter to Born. But also he did not take up the idea of passing to the one-
parameter integral groups.9 He added that in the meantime he and Born had found
their own way to establish the Heisenberg commutation relation “without any other
precondition” from the “equations of motion”

q̇ =
∂H

∂p
, ṗ = −∂H

∂q

for a Hamilton operator H which could be expressed algebraically by a polynomial in p
and q .

In a footnote he added
8“Lieber Herr Weyl,
daß unsere neue Quantenmechanik Ihr Interesse erregt, hat mir große Freude gemacht. Wir sind inzwis-
chen sehr viel weiter gekommen und sind jetzt ganz sicher, daß unser Ansatz die wesentlichen Züge der
Atomstruktur richtig trifft. Daß Sie sich selbst mit unsern Formeln beschäftigt haben, ist sehr schön;
wir haben diese Formeln uns auch, wenn auch nicht so elegant, hergeleitet und werden wohl in dieser
Form die Sache veröffentlichen, weil Ihr Verfahren für die Physiker wohl zu schwer ist. . . . ” Born (Ms
1925)

9“Ihren Brief an Prof. Born habe ich seinerzeit mit Interesse gelesen . . . ” Jordan ( Ms 1925). Apparently
Born had handed over the letter to Jordan during the final preparation of the manuscript. It remained
in Jordan’s hand and is still in his Nachlass (Staatsbibliothek Berlin).
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When Born talked to you, we still believed that
pq − qp = h

2πi 1 is an independent requirement.10

So, even if Weyl’s proposal to consider integral versions of 1-parameter operator groups
and their natural quasi-commutation rule (2) did not immediately enter the Göttingen
discourse on the foundation of QM, he seemed to have triggered second thoughts of the
Göttingen physicists on how to derive Heisenberg commutation from basic principles of
QM (“without any other precondition”). Born and Jordan succeeded by referring to the
Hamilton operator of the system.

On the other hand, it appeared unnatural for Weyl to consider only polynomial ex-
pressions in the basic momentum and localization operators p, q for H. In his postcards
Weyl mentioned an idea to Jordan, which kind of functions for H (classical Hamiltonian)
might be taken into consideration for a quantum analogue of H.

I conclude that the domain of acceptable functions H is characterized by the
Ansatz ∫ ∫

eξp+ηqϕ(ξ, η)dξdη . (13.3)

This is less formal than
∑
pmqn Weyl (Ms1925c) (equ. number added,

E.S.).11

The formula has to be read with the imaginary unit in the exponential,
∫
ei(ξp+ηq).

Weyl was used to omit these to “facilitate reading”, as he felt.12 Thus the integral in
the postcard to Jordan indicated something like an inverse Fourier transform of ϕ. It
contained the starting point for Weyl’s idea of quantization by using operator Fourier
integrals. He later explored and extended the idea and published it in 1927 (QMG). We
will come back to this point in the next section.

Weyl’s idea to look at the operator relations of QM from an integral point of view
lay dormant for more than a year. In autumn 1927, shortly before his lecture course on
group theory and quantum mechanics started, Weyl finally prepared his s article QMG,
Weyl (1927).13 There he discussed some basic principles of the representation of physical
quantities in QM by Hermitian forms (in particular simultaneous diagonalizability) as
well as the difference of pure states (eigenvectors of a typical observable of the system
under consideration) and mixtures (compositions of pures states in any mixing ratio).14

We are here more interested in part two. Weyl announced that this section

. . . deals with deeper questions. [. . . ]. It is closely connected to the question
of the essence and correct definition of a canonical variable. (Weyl, 1927, 92)

10“Als Born Sie sprach, glaubten wir noch daß pq − qp = h
2πi

1 eine unabhängige Voraussetzung sei.”
Jordan ( Ms 1925) (emphasis in original)

11“Ich komme darauf, den Bereich der vernünftigen Funktionen H durch den AnsatzR R
eξp+ηqϕ(ξ, η)dξdη wiederzugeben; das ist weniger formal als

P
pmqn.”

12In a slightly different denotational form: “Um der Leserlichkeit willen schreibe ich oft e(x) statt eix.”
(Weyl, 1927, below equ. (35)). In the postcard he even used the exponential form of denotation eξp+ηq

itself.
13Submitted October 13, 1927.
14Von Neumann characterized mixtures in the same year more precisely by a positive Hermitian operator
A with sum of eigenvalues

P
aν = 1 (trace class operators of trace class norm 1).
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He continued by criticizing Jordan’s paper (1927) which left “completely unclear” how
to assign a matrix f(Q) to a function f(q) of position coordinates q. Moreover Weyl
considered Jordan’s presentation of the concept of canonical variables “mathematically
unsatisfactory and physically unfeasible”.

Here I believe to have arrived at a deeper insight into the true state of affairs
by the use of group theory. (ibid.)

This insight was gained from extending the approach he had already proposed in his
letter to Born in September 1925.

Starting from a Hermitean matrixA, Weyl associated the corresponding anti-Hermitean

C := i A

and considered the unitary 1-parameter group generated by it,

U(s) = eisA = esC , s ∈ R .

For an abelian group G̃ =< C1, . . . , Ck > generated freely by k such matrices C1, . . . , Ck,
he accordingly got a k-parameter unitary group with typical element

U(s1, . . . , sk) = e
i

P
ν
sνCν

, s ∈ R .

In QM the commutation of the C-s and U -s may be weakened. The weakening of the
commutation relation for the unitary group elements

U(s)U(t) = U(t)U(s) , s, t ∈ Rk

by admitting phase factors

U(s)U(t) = eiα(s,t)U(t)U(s) , α(s, t) ∈ R ,

corresponded to commutation relations for the generators of the form

CjCl − ClCj = i cjl · 1 (13.4)

with skew-symmetric real coefficients (cjl) (commutator form).
Weyl argued that for an irreducible group the commutator form is non-degenerate

(|cjl| 6= 0). By a change of generators it could be normalized to matrix blocks(
0 1
−1 0

)
,

i.e., to the normal form of a symplectic matrix.
For even k, k = 2n, the new generators (after change of base) can be written as

iPν , iQν (ν = 1, . . . n)

with Pν , Qν Hermitian and

i(PνQν −QνPν) = c · 1 , c = 1, ~ . (13.5)
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All other commutators are 0. By obvious reasons Weyl called P1, . . . Pn, Q1, . . . Qn a
canonical basis for the representation of G̃.

For operators
A(s) = ei

P
sνPν , B(s) = ei

P
tνQν

W (s, t) := A(s)B(t) ,

the commutation relations acquire the form

A(s)B(t) = e
ic

P
ν
sνtν

B(t)A(s) (13.6)

The commutative addition for (s, t), (s′, t′) in Rn reappears here slightly deformed as:

W (s+ s′, t+ t′) = e−ic<s,t>W (s, t)W (s′, t′) , (13.7)

where < s, t >:=
∑
ν
sνtν .

Weyl called the ‘deformed’ representation

G̃ := R2n −→ U(H)
(s, t) 7→ W (s, t) = A(s)B(t) , (13.8)

with U(H) the unitary group of the Hilbert space H, an “irreducible group of abelian ray
rotations”. Later authors would prefer the terminology projective (or ray) representation
of G̃.

Weyl realized that he had found a structural reason, based on group theoretic consid-
erations, for the canonical pairing of basic observables

Pν , Qν ,

satisfying the Heisenberg commutation relations

[Pν , Qν ] = −i ~1 . (13.9)

The latter arose naturally as the infinitesimal counterpart of the integral version for the
unitary 1-parameter groups

eisPνeitQν = ei~steitQνeisPν , (13.10)

with its commutator phase shift ei~st. In the sequel (13.10) will be called, as usual, the
Weyl commutation relations.

Weyl showed that in this situation the spectrum of the localization operators Q was
the whole real continuum, R, and the pure states could be characterized by square
integrable complex-valued functions on Rn =: G (G̃ = G× Ĝ), with Ĝ dual of G)

ψ ∈ L2(Rn,C) of norm |ψ| = 1

on the space of q localizations. Then the operators (13.8) of the kinematical group R2n

were represented by translations, respectively phase multiplication operators of the form

A(s)ψ(q) = ψ(q − s) , B(t)ψ(q) = ei<t,q>ψ(q) , (13.11)
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and the canonically paired basis operators became

Pν : ψ 7→ i
∂ψ

∂qν
, Qν : ψ 7→ qν · ψ . (13.12)

Weyl commented:

We have thus arrived at Schrödinger’s version [of quantum mechanics, E.S.].
(Weyl, 1927, 122, emphasis in original)15

In the end, the Schrödinger characterization of a free particle turned out to be nothing
but a well chosen basis description of the irreducible ray representation of the non-
relativistic kinematical group R2n. Moreover, this argument showed that every irre-
ducible ray representation of R2n was isomorphic to the Schrödinger picture of a free
particle. Weyl concluded:

The kinematical character of a physical system is expressed by an irreducible
Abelian rotation group the substrate of which [the set on which it operates,
E.S.] is the ray field (Strahlenkörper) of ‘pure cases’. (Weyl, 1927, 118, em-
phasis in original)16

The “kinematical character” of a non-relativistic quantum system with n continuous
non compactified degrees of freedom turned out to be of a rather simple nature and
universally given by the uniquely determined irreducible unitary ray representation of
G̃.

Weyl’s Approach to the Quantization Problem

We have seen that already in his postcard to P. Jordan Weyl indicated that a Fourier
transform kind approach might be helpful to delimit the “domain of reasonable functions
H” (13.3) or, in slightly more generalized terms, for functions which could be considered
as candidates for observables. In his 1927 article Weyl came back to this idea and worked
it out in some more detail.

After having arrived at the irreducible ray representation of G̃ ∼= R2n with canonical
basis

iPν , iQν , 1 ≤ ν ≤ n ,

he turned to the interrelation between the quantum system characterized by it and the
classical system with n continuous degrees of freedom, which could be assigned to the
former in a natural (structurally well determined) way. The latter had the classical
momentum and location observables p1, . . . , pn, q1, . . . qn. Weyl remarked:

A physical quantity is mathematically defined by its functional expression
f(p, q) in the canonical variables p, q. It remained a problem, how such an
expression had to be transferred to the matrices. (Weyl, 1927, 116)17

15“Damit sind wir bei der Schrödingerschen Fassung angelangt.”
16“Der kinematische Charaktter eines physikalischen Systems findet seinen Ausdruck in einer irreduziblen

Abelschen Drehungsgruppe, deren Substrat der Strahlenkörper der ‘reinen Fälle’ ist.”
17“Eine physikalische Größe ist durch ihren Funktionsausdruck f(p, q) in den kanonischen Variablen
p, q mathematisch definiert. Es blieb ein Problem, wie ein derartiger Ausdruck auf die Matrizen zu
übertragen war.”
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Weyl reminded the reader that the transfer from classical to quantum observables was
clear only for pure monomials of the form f(p, q) = pk or ql. Already for mixed mono-
mials of the type p2q it was no longer uniquely determined how the quantum ana-
logue should be characterized, because of the non-commutativity of Hermitian operators,
P 2Q, QP 2, PQP etc.. To solve this problem he recommended to use Fourier integrals.

Weyl considered the Fourier transform ξ of f , normalized like

ξ(s, t) = (
1

2π
)n
∫
e−i(ps+qt)f(p, q)dξdη , in short ξ = f̂ ,

and represented f as the Fourier inverse of ξ,

f(p, q) =
∫
ei(ps+qt)ξ(s, t)dsdt , f = ξ̌. (13.13)

It appeared rather natural to pass over to the operator analogue

F(f) :=
∫
ei(Ps+Qt)ξ(s, t) dsdt =

∫
Ws,t ξ(s, t) dsdt . (13.14)

For a real-valued square-integrable f , the Fourier transform ξ is itself square-integrable
and satisfies the reality condition

ξ(s, t) = ξ(−s,−t) ,

which again implies Hermiticity of F(f) (Weyl, 1927, 116f.). Weyl therefore considered
the resulting F := F(f) as a naturally defined quantum mechanical version of the
physical quantity related to f . In the sequel F(f) will be called the Weyl quantized
observable corresponding to f .

He added:

The integral development (42) [our (13.13), E.S.] is not always to be under-
stood literally. The essential point is only that one has a linear combination
of the e(pσ+qτ) on the right hand side [σ, τ correspond to our s, t, e(x) = eix,
E.S.], in which σ and τ take on arbitrary real values. If, e.g., q is a cyclic
coordinate which is to be understood mod 2π (. . . ), the integration with re-
spect to τ becomes a summation over all integer numbers τ ; then we have
the case of a mixed continuous-discrete group. (Weyl, 1927, 117)18

That is, Weyl envisaged the possibility of the torus group and its dual

G ∼= (S1) n =: Tn , Ĝ ∼= ZZn , G̃ ∼= Tn × ZZn (13.15)

as an example for a mixed continous-discrete group and considered Fourier integral
quantization on it.
18“Die Integralentwicklung (42) ist nicht immer ganz wörtlich zu verstehen; das wesentliche ist nur, daß

rechts eine lineare Kombination der e(pσ+qτ) steht, in denen σ und τ beliebige reelle Werte annehmen
können. Wenn z.B. q eine zyklische Koordinate ist, die nur mod. 2π zu verstehen ist, so daß alle in
Betracht kommenden Funktionen periodisch in q mit der Periode 2π sind, so wird die Integration nach
τ ersetzt werden müssen durch eine Summation über alle ganze Zahlen τ ; wir haben dann den Fall
einer gemischten kontinuierlich-diskreten Gruppe.”
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For the existence of the Fourier integral (13.13) Weyl could refer to recent papers by
N. Wiener, S. Bochner, G.H. Hardy and J.E. Littlewood on trigonometric integrals.19

He had thus arrived at a theoretically satisfying solution of the quantization problem for
classical observables depending only on the kinematical variables p and q.

Weyl had now at hand two structurally well defined types of composition of observables
on a “kinematical” system, defined by an irreducible ray representation of G̃ = R2n

(i) composition of classical “physical quantities” f(p, q), g(p, q) (real valued functions
on G) by multiplication, f · g,

(ii) composition of Weyl quantized observables F(f) ◦ F(g), with

F(f) =
∫
ei(Ps+Qt)ξ(s, t) dsdt

F(g) =
∫
ei(Ps+Qt)η(s, t) dsdt for η = ǧ .

Of course these compositions differed essentially, as · is commutative and ◦ obviously
non-commutative. Weyl might have easily transported the operator composition back
to the functions on the abelian group, defining f ∗ g =: h ⇐⇒ F(h) = F(f) ◦ F(g).
But he did not. He was not so much interested in the arising new algebraic structure
itself, as in the quantum physical context to which his investigations belonged. The next
most pressing problem after the derivation of the Schrödinger representation of a free
quantum mechanical system (see above) seemed to be the question, how to characterize
interactions, the “dynamical problem” as Weyl called it.

Reflections on the “Dynamical Problem”

Section III of Weyl’s article dealt with the dynamical problem. While the “kinematics”
of a system characterized by a continuous group G ∼= Rn was uniquely determined by
its number n of degrees of freedom, the same did not hold true for the dynamics, taking
interactions into account.

Up to now the approach claims general validity. The situation is less com-
fortable for the dynamical problem which is closely bound to the role of space
and time in quantum physics. (Weyl, 1927, 123, emph. in original)20

Weyl immediately hit on a strict limitation for contemporary quantum physics, which
was bound to the different roles played by space and time in Galilean and in relativistic
quantum physics. In non-relativistic QM, time was an independent variable, and even
the only one, of a system in the following sense:

Independent variables are no measurable quantities, they are a cognitive spi-
der web of coordinates arbitrarily spread out over the world. The dependence

19Wiener (1926); Bochner (1927); Hardy/Littlewood (1926)
20“Die bisherigen Ansätze beanspruchen allgemeine Geltung. Nicht so günstig steht es mit dem dy-

namischen Problem, das eng mit der Frage nach der Rolle zusammenhängt, welche Raum und Zeit in
der Quantenphysik spielen.”
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of a physical quantity on these variables can therefore not be controlled by
measurement; only if several physical quantities are in play, one can arrive at
relations between the observable quantities by elimination of the independent
variables.(Weyl, 1927, 124)21

Now Weyl indicated a critical difference between field physics and relativistic quantum
mechanics on the one side and Galilean QM on the other. Field theory deals with state
quantities (Zustandsgrößen), i.e., observables, which are “spread out in space and time”,
while in particle mechanics time may be considered as an independent variable. A
relativistic quantum description of the electron, e.g., has to consider spatial coordinates
and time as state quantities, “really marked space and, of course, also really marked
time” and thus as observables represented by Hermitian forms (or operators).

In contrast to this state of affairs, non-relativistic mechanics is in the comfort-
able situation to be able to ignore time as a state quantity, while relativistic
mechanics needs measurable time coordinates of the particles together with
measurable space coordinates. (Weyl, 1927, 124)22

The dynamical law of non-relativistic QM could therefore be given in the Schrödinger
picture by

dψ

dt
=
i

~
E · ψ

(with this sign!), where “ iE is the infinitesimal unitary mapping coupled to the Hermi-
tian form E which represents energy” (ibid, 124).23

For relativistic quantum physics the situation appeared still rather inconclusive, and
Weyl indicated only the direction of research one had to pursue:

If one wants to remove the criticized deficiency of the concept of time in
the old pre-relativistic quantum mechanics, the measurable quantities time
t and energy E have to be included as another conjugate pair. This can
also be seen from the action principle of analytic mechanics; the dynamical
law disappears completely. The relativistic treatment of an electron in the
electromagnetic field by Schrödinger e. a. corresponds to this point of view.24

A more general formulation is not yet available. (Weyl, 1927, 127)25

21“Die unabhängigen Veränderlichen sind keine gemessenen Größen, sie sind ein willkürlich in die Welt
hineingetragenes gedachtes Koordinatenspinngewebe. Die Abhängigkeit einer physikalischen Größe
von diesen Variablen ist also auch nicht etwas durch Messung zu Kontrollierendes; erst wenn mehrere
physikalische Größen vorliegen, kommt man durch Elimination der unabhängigen Veränderlichen zu
Beziehungen zwischen beobachtbaren Größen.”

22“Diesem Sachverhalt gegenüber ist die nicht-relativistische Mechanik in der glücklichen Lage, die Zeit
als Zustandsgröße ignorieren zu können, während die Relativitätsmechanik parallel mit den meßbaren
Raumkoordinaten auch die meßbaren Zeitkoordinaten der Teilchen benötigt.”

23Apparently Weyl followed here (Schrödinger, 1926, 142).
24Weyl quoted (Schrödinger, 1926, 163ff.).
25“Will man den gerügten Mangel des Zeitbegriffs der alten vorrelativistischen Mechanik aufheben, so

werden die meßbaren Größen: Zeit t und Energie E, als ein weiteres kanonisches Paar auftreten,
wie ja bereits das Wirkungsprinzip der analytischen Mechanik erkennen läßt; das dynamische Gesetz
kommt ganz in Fortfall. Die Behandlung eines Elektrons im elektromagnetischen Feld nach der Rel-
ativitätstheorie durch Schrödinger u. a. entspricht bereits diesem Standpunkt.[Fussnote mit Hinweis
auf (Schrödinger, 1926, 163ff.)] Eine allgemeinere Formulierung liegt noch nicht vor.”
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“Inclusion” of time and energy as another canonical pair of variables for a relativistic
approach would surely imply to take care also for the relativistic transformations between
different observers, i.e., the consideration of a ray representations of the Poincaré group
with conjugate pairs of translation variables (R4 ×R4) o SO(1, 3) (with o for the semi-
direct product). However, Weyl left it with the indication quoted above. It would be
taken up only much later by E. Wigner and G. Mackey.

In 1927, and still in summer 1928, Weyl apparently hoped that the group theoretic
approach might be a guide to field quantization also, at first in the non-relativistic case,
but then perhaps even in the relativistic one. At the end of §44 of the first edition of
GQM in which he sketched the quantization of the wave equation according to Jordan
and Pauli, he expressed confidence in the method to quantize the electromagnetic and
the electron wave. Then he continued (curly brackets { . . . } denote passages which were
omitted in the second edition 1931 and the English translation, angular brackets < . . .>
an addition in the second edition):

We have thus discovered the correct way to quantize the field equations (. . . )
defining light waves and electron waves {The exact execution is the next
task of quantum physics. The preservation of relativistic invariance seems
to offer serious difficulties [reference to Jordan/Pauli (1928) and Mie (1928),
E.S.] }. Here again we find <, as in the case of the spinning electron,> that
quantum kinematics is not to be restricted by the assumption of Heisenberg’s
specialized commutation rules. {And again it is group theory which furnishes
us with the natural general form, as is shown in the next section. . . . } (Weyl,
1928, 1st ed. 1928, 203), (Weyl, 1931, 253)26

The “next section” of the first edition comprised the content of Weyl (1927).27 Thus
even at the time when he finished his book on Gruppentheorie und Quantenmechanik
(GQM), Weyl apparently had the impression that the study of irreducible ray represen-
tations and a group theoretically founded approach to quantization ought to be helpful
for a full solution of the“dynamical problem” of quantum physics, i.e., the study of in-
teractions and for relativistic systems. His colleagues in physics started to attack such
problems by introducing the method of field quantization.

By the early 1930s Weyl became more cautious. His physics colleagues had embarked
even more strongly on the program of field quantization, including the relativistic case.
The great problems of divergent field expressions, even for perturbation developments,
were accumulating. Weyl did no longer try to pursue his own approach against the
mainstream of the (still very small) quantum physics community; he may have felt that
he should no longer insist on the superiority of the group approach to the foundations
26“Damit ist der Weg gezeigt, wie die Licht- und Elektronenwellen umfassenden Feldgleichungen in

richtiger Weise zu quantisieren sind. {Die genaue Durchführung ist die nächste Aufgabe der Quan-
tenphysik; die Wahrung der relativistischen Invarianz scheint dabei noch ernste Schwierigkeiten zu
bereiten. [Verweis auf Jordan/Pauli (1928) and Mie (1928), E.S.]} Es hat sich hier von neuem <,
wie beim Spin der Elektronen,> die Notwendigkeit herausgestellt, die Quantenkinematik nicht an das
spezielle Schema der Heisenbergschen Vertauschungsrelationen zu binden.” Robertson’s translation of
the first sentence in Weyl (1931) has been corrected by obvious reasons (“. . . electron waves and matter
waves . . . ” is non-sensical and not in agreement with the original).

27In the second edition and in the English translation new sections on the quantization of the Maxwell-
Dirac field and on relativistic invariance were inserted before the section on quantum kinematics (Weyl,
1931, §§ 12, 13).
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of quantum physics, if he himself did no longer continue to work along these lines.28 In
the second edition of GQM, and thus in the English translation, the (curly) bracketed
sentences no longer appeared.

Notwithstanding this shift at the turn to the 1930s, Weyl had good reasons in the late
1920s to be content with his group theoretic approach to the foundations of QM. He
had arrived at a convincing structural characterization of what he called the “quantum
kinematics” of physical systems. For n continuous degrees of freedom, the quantum
kinematics was even uniquely determined by n. Not so, however, for discrete systems in
which the noncommutative product structure of the algebra of observables might become
more involved. Weyl indicated very cautiously that such structures might perhaps be
useful for the understanding of atomic systems; but he was far from claiming so (Weyl,
1928, 207) (Weyl, 1931, 276).

Outlook and Repercussions

Weyl’s approach to quantization was so general that for decades to come it did not attract
much attention of physicists. At the beginning it even attracted very few successor
investigations inside mathematics and was not noticed in the foundation of QM discourse,
which was exclusively shaped by the Hilbert and von Neumann view until the 1950s.
Although the immediate reception of Weyl’s early contributions to QM until about
1927, in particular his Weyl (1927), was very sparse, its repercussion turned out to be
remarkably strong in the long range. Of course, this question touches a difficult matter
and deserves much closer and more detailed scrutiny. Here I can give only a very rough
first outline. It will be given in form of a provisional list of investigations which seem to
count as follow up stories to the proposals made by Weyl between 1925 and 1927.

(i) A first and immediate next step was made by Marshall Stone and John von Neu-
mann. They both took up Weyl’s statement of a uniquely determined structure of
irreducible unitary ray representations of R2n and proved it for n = 1 in L2(R,C) .
The result of this work is (for finite n) the now famous Stone/von Neumann repre-
sentation theorem: Up to isomorphism there is exactly one irreducible abelian ray
representation of R2n by unitary operators Stone (1930); von Neumann (1931).
As we have seen its content and a sketch of proof, generously passing over the
functional analytical details in silence, goes back to Weyl (1927).

Only much later a critical analysis of functional analytic preconditions for the
equivalence of Heisenberg commutation (13.9) and Weyl commutation (13.10)
started. Sufficient conditions were established by Friedrich (1946) and Dixmier.
The breakdown of uniqueness for infinite degrees of freedom (and thus for quan-
tum field theory) started with seminal work by Kurt Friedrichs and Rudof Haag
in the 1950s. Construction of “pathological” counter-examples, disregarding the
conditions of Rellich and Dixmier, even for the finite dimensional case (n = 1)
followed Summers (2001).

28The non-uniqueness problem for irreducible unitary representations of infinite dimensional degrees of
freedom, and thus for quantum field theory, was realized only in the 1950s Summers (2001); it seems
unlikely that Weyl expected a problem in this respect already at the turn to the 1930s.
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(ii) A second line of repercussions may be seen in that part of the work of E. Wigner
and V. Bargmann, which dealt with unitary and semi-unitary ray representations.
In particular Wigner’s now famous work (at the time among physicists completely
neglected) on the irreducible unitary ray representations of the Poincaré group
Wigner (1939) looks like a next step beyond Weyl’s non-relativistic quantum kine-
matics from 1927. It established a basis from which investigations of relativistic
dynamics might start from. But is has still to be checked in which respect, or per-
haps even whether, Wigner was motivated by Weyl’s work. Wigner surely knew
the latter, but he may have developed his research questions autonomously, in
communication with von Neumann, Dirac and others which stood closer to him
than Weyl.29

(iii) A third impact is clearly to be seen in George Mackeys’s work. Mackey express-
edly took up Weyl’s perspective Mackey (1949) and developed it into a broader
program for the study of irreducible unitary representations of group extensions,
H / G, induced from representations of a normal subgroup H in G, by what he
called systems of imprimitivity. Starting at first from abelian subgroups H, he
realized that the dual group Ĥ led to a pairing characteristic for Weyl’s analysis
(H ∼= Rn , H × Ĥ ∼= R2n) and generalized it to non-abelian normal subgroups. His
later commentaries on the foundations of QM, among them Mackey (1957, 1963,
1993), were seminal for bringing to bear the Weylian perspective in the domain of
foundations of quantum physics. They were so deeply influenced by the Weylian
view, that Mackey even considered his work as the true successor line of Weyl’s
foundational perspective Mackey (1988b,a). His work was influential among mathe-
maticians Varadarajan (1970), although apparently not so much among physicists.
It seems to contain unexhausted potential.

(iv) Finally, Weyl quantization was taken up by mathematical physicists from the later
1960s onwards with the rise of deformation quantization Pool (1966). Here the
starting point was the idea to translate the operator product introduced by Weyl’s
own quantization

f, g → H := F(f) ◦ F(g)

back to the function space:

f ∗ g =: h⇐⇒ F(h) = H = F(f) ◦ F(g)

Today, this noncommutative product of functions is usually considered (slightly
anachronistically) as Weyl quantization. Weyl’s mixed continuous-discrete group
(13.15) developed into the noncommutative torus. This was one step into the newly
rising field of noncommutative geometry and deformation quantization, which is a
very active subfield of present day mathematical physics.

29Wigner expressedly acknowledged the importance of Dirac’s and von Neumann’s communications for
his work (Wigner, 1939, 341/156); whereas he quoted Weyl only in questions of technical details and
Weyl (1927) not at all. On the other hand, Mackey is certainly right in the characterization of Wigner
(1939): “This kind of application of the theory of group representations to quantum mechanics is much
more in the spirit of Weyl’s 1927 paper in the Zeitschrift für Physik than that of most of Wigner’s
work up to this point” (?, 265).
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The last two points lead straight into very recent developments of mathematical
physics and far beyond the scope of this talk (and my competences). Nevertheless
it seems quite remarkable that at least two of Weyl’s ideas developed in the first two
years after the transition to the ‘new’ quantum mechanics, turned out to bear fruits in
so diverse directions in the long run. They inspired highly original work for more than
half a century and perhaps contain the potential to continue to do so.

Both ideas happen to have been mentioned at the very beginning of this phase in
Weyl’s correspondence with Born and Jordan, in late summer and autumn 1925. In
this correspondence Weyl contributed to the new quantum physics discourse in a more
personal form, before he turned toward published expression of his views two years later.
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14 The Statistical Interpretation According
to Born and Heisenberg

Guido Bacciagaluppi

At the 1927 Solvay conference Born and Heisenberg presented a joint report on quan-
tum mechanics. I suggest that the significance of this report lies in that it contains a
‘final’ formulation of the statistical interpretation of quantum mechanics that goes be-
yond Born’s original proposal. In particular, this formulation imports elements from
Heisenberg’s work as well as from the transformation theory of Dirac and Jordan. I
suggest further a reading of Born and Heisenberg’s position in which the wave function
is an effective notion. This can make sense of a remarkable aspect of their presentation,
namely the fact that the ‘quantum mechanics’ of Born and Heisenberg apparently lacks
wave function collapse.

14.1 Introduction

The fifth Solvay conference of 1927 saw the presentation of (and confrontation be-
tween) three fundamental approaches to quantum theory: de Broglie’s pilot-wave theory,
Schrödinger’s wave mechanics, and ‘quantum mechanics’ (i.e. matrix mechanics and its
further developments), the latter presented to the conference in a joint report by Born
and Heisenberg.

A thorough examination of the conference proceedings reveals substantial amounts of
material that are either little known or generally misrepresented. Such an examination is
given in a forthcoming book on the 1927 Solvay conference (Bacciagaluppi and Valentini,
2008), which also includes a complete English version of the proceedings, based on the
original-language materials where available.1

In this paper, I wish to focus on the report by Born and Heisenberg, arguing that
it contains a version of the statistical interpretation of quantum mechanics that goes
well beyond that elaborated by Born in his papers on collisions and in his paper on the
adiabatic theorem (Born, 1926a,b,c). In particular, the report offers an interpretation
of the interference of probabilities, which appears to be related to Heisenberg’s ideas as
developed in his uncertainty paper (Heisenberg, 1927).

I shall further propose a reading of Born and Heisenberg’s position in which the
wave function has no fundamental status, in a way related to Heisenberg’s paper on
fluctuations (Heisenberg, 1926). Born and Heisenberg’s report should thus indeed be
seen as presenting an approach that is fundamentally different from both de Broglie’s
pilot-wave theory and Schrödinger’s wave mechanics.
1Quotations below from the proceedings of the conference are based on this English edition; page refer-
ences are to the corresponding passages of the on-line draft available at http://xxx.arxiv.org/abs/quant-
ph/0609184 .
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Finally, I suggest that the proposed reading makes sense of an aspect of Born and
Heisenberg’s presentation (and of the discussions) that is especially puzzling from the
point of view of a modern reader, namely the almost total absence of the ‘collapse of the
wave function’ or ‘reduction of the wave packet’.

Much of the material presented below is based on Bacciagaluppi and Valentini (2008),2

including parts of the book that are joint work or even principally the work of my coau-
thor (the latter especially in section 14.3). However, the perspectives on this material
adopted in the paper and in the book are very different. The idea of a ‘definitive’ version
of the statistical interpretation merging elements from Born’s and Heisenberg’s work is
hardly mentioned in the book. Furthermore, the presentation in the book is uncommit-
tal about the views on collapse and on the status of the wave function held by Born
and Heisenberg. This paper instead attempts to put forward one particular reading (not
because it is unequivocally supported by the evidence, but as a proposal for making
sense of the material that will need further evaluation).

It is useful therefore to spell out at least some of the differences between the treatment
of the material in this paper and in Bacciagaluppi and Valentini (2008). First of all, as
emphasised already, here I suggest that the report is a new stage of development of the
statistical interpretation. This is something that is left largely implicit in the discussion
in the book. Here I suggest that Born and Heisenberg present a single coherent position.
The treatment in the book allows for possible differences in opinion between the two
authors (emphasising for instance the possible relation between Born’s discussion of the
cloud chamber and the guiding-field ideas in his collision papers). Here I try to make
explicit links between Born and Heisenberg’s implicit notion of state in their treatment
of transition probabilities on the one hand, and Born’s treatment of the cloud chamber
on the other; I also hint at the possibility that Pauli had such a link in mind. Neither
suggestion is made in the book. Last but not least, I suggest here that Born and
Heisenberg did not believe in the reality of the wave function. This is mentioned in the
book only as one tentative possibility among others.

Bacciagaluppi and Valentini (2008) refrains on purpose from drawing conclusions from
the material that might have been premature. This paper hopes to be a first step in
drawing further conclusions. Indeed, while the interpretation of quantum theory seems
as highly controversial again today as it was in 1927, from the vantage point of eighty
years of philosophy of quantum physics a more dispassionate evaluation of the sources
in the interpretation debate should be possible. I wish to thank Antony Valentini for
discussion and comments during the preparation of this paper, although of course all
deviations from and additions to the presentation of the material as given in the book
are my sole responsibility.

2The report itself and the discussion following it are translated and annotated on pp. 408–447. Born
and Heisenberg’s views are analysed and discussed principally in chapters 3 and 6. Among the topics
discussed in this paper, the main ones treated in the book are the following. Born and Heisenberg’s
treatment of interference is discussed in section 6.1.2 (pp. 172–177). The derivation of transition
probabilities in Born’s collision papers and in Heisenberg’s fluctuations paper are discussed, respectively,
in section 3.4.3 (pp. 107–108) and 3.4.4 (pp. 109–111). Phase randomisation in measurement is discussed
in detail on pp. 173–177. Extensive presentations and analyses of Born’s discussion of the cloud chamber
and of the exchange between Heisenberg and Dirac are given, respectively, in sections 6.2 (pp. 177–
182) and 6.3 (pp. 182–189). Finally, Einstein’s alternative hidden-variables proposal (with Heisenberg’s
comments) is discussed in detail in section 11.3 (pp. 259–265).
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14.2 The Statistical Interpretation in Born and Heisenberg’s
Report

The report by Born and Heisenberg on ‘quantum mechanics’ is surprisingly difficult
for the modern reader. This is partly because Born and Heisenberg are describing
various stages of development of the theory that are quite different from today’s quantum
mechanics. At the same time, the interpretation of the theory also appears to have
undergone important modifications, in particular regarding the notion of the state of a
system (see Bacciagaluppi and Valentini, 2008, section 3.4).

It is known which sections of the report were drafted by Born and which by Heisen-
berg. In particular, the section most relevant to our concerns—that on the ‘Physical
interpretation’ of the theory—was drafted by Born, who also prepared the final version
of the paper, although Heisenberg made some further small changes.3 As we shall see,
the interpretation presented merges crucially elements of Born’s and Heisenberg’s work,
and (at least for the purposes of this paper) we shall consider the interpretational views
as set forth in the report (and in the discussions reported below) as expressing a common
voice. This is also supported by Born’s remark to Lorentz that Heisenberg and he were
‘of one and the same opinion on all essential questions’.4

14.2.1 The Statistical Interpretation

Until the 1927 report, the most explicit presentation of the statistical interpretation of
quantum theory was that given in Born’s paper on the adiabatic theorem (1926c). The
picture presented by Born is as follows. Particles exist, at least during periods in which
systems evolve freely (say, between 0 and t). At the same time, they are accompanied
by de Broglie-Schrödinger waves ψ. Regardless of the form of these waves, during a
period of free evolution a system is always in a stationary state. When the waves ψ are
developed in the basis of eigenstates ψn(x) of energy, say

ψ(x, 0) =
∑
n

cnψn(x) , (14.1)

they yield the probabilities for the occurrence of the stationary states, the ‘state proba-
bilities’ being given by |cn|2. During periods, say from t to T , in which an external force
is applied (or the system interacts with another system) there may be no anschaulich
representation of the processes taking place. As regards the particles, the only thing
that can be said is that ‘quantum jumps’ occur, in that after the external influence has
ceased the system is generally in a different stationary state. The evolution of the state
probabilities instead is well-defined and determined by the Schrödinger equation, in the
sense that the state probabilities at time T are given by the corresponding expression
|Cn|2 of the coefficients of ψ(x, T ).

For the case in which ψ(x, 0) = ψn(x), Born determines explicitly these coefficients,
call them bnm, in terms of the time-dependent external potential; thus,

ψ(x, T ) =
∑
m

bnmψm(x) . (14.2)

3Born to Lorentz, 29 August 1927, AHQP–LTZ–11 (in German). Cf. Bacciagaluppi and Valentini (2008,
section 3.2).

4Born to Lorenz, loc. cit.; quoted with the kind permission of Prof. Gustav Born.

271



Guido Bacciagaluppi

Given the interpretation of the quantities |bnm|2 as state probabilities, in this case they
are also the ‘transition probabilities’ for the jump from the initial state, which by as-
sumption is ψn(x) at time t, to the final state ψm(x) at time T .

Finally, for the general case of an initial superposition (14.1), Born states that the
state probabilities |Cn|2 have the form

|Cn|2 = |
∑
m

cmbmn|2 , (14.3)

noting that (1926c, p. 174):

The quantum jumps between two states labelled by m and n thus do not
occur as independent events; for in that case the above expression should be
simply

∑
m |cm|2|bmn|2

(with a footnote to Dirac (1926) as also pointing out this fact5). He also remarks that, as
he will show later on, the quantum jumps become independent in the case of an external
perturbation by “‘natural” light’.

As it appears in Born’s adiabatic paper, the statistical interpretation is quite different
both from the familiar textbook interpretations and from the interpretation we shall find
in Born and Heisenberg’s Solvay report. For instance, the requirement that the state of
an isolated system be always a stationary state is unfamiliar, to say the least. (As we
shall see, it is eventually relaxed in Born and Heisenberg’s report.)

For now let us focus on Born’s remark about quantum jumps not being independent.
This terminology appears to presuppose a probability space in which the elementary
events do not correspond to single systems performing quantum jumps, but to N -tuples
of systems all performing quantum jumps between t and T .6 (The analogous case in
classical statistical mechanics is the treatment of gases of interacting rather than non-
interacting particles.)

If this is the correct way of understanding Born’s statistical interpretation of the wave
function (at least as proposed in 1926), then Einstein may well have had Born’s view in
mind when at the 1927 Solvay conference he criticised what he labelled ‘conception I’ of
the wave function (p. 487):7

The de Broglie-Schrödinger waves do not correspond to a single electron, but
to a cloud of electrons extended in space. The theory gives no information
about individual processes, but only about the ensemble of an infinity of
elementary processes.

According to Einstein, it is only the alternative ‘conception II’, in which the wave func-
tion is a complete description of an individual system (and which he also goes on to
criticise), that enables one to derive the conservation laws, the results of the Bothe-
Geiger experiments and the straight tracks of α-particles in a cloud chamber. Note that
the last example is taken up by Born in the general discussion (see below section 14.3.2).

5Cf. especially pp. 674 and 677 of Dirac’s paper.
6Born’s discussion of natural light later in the paper only reinforces this impression. Born assumes that
due to the irregular temporal course of the external perturbation, the bnm will fluctuate independently.

7For an alternative interpretation of Einstein’s comments, see Bacciagaluppi and Valentini (2008, p. 225).
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Be it as it may, Born’s paper on the adiabatic theorem lacks a separate discussion
of interference; and this is the crucial point where the report by Born and Heisenberg
goes further than Born’s paper. Born and Heisenberg (p. 423) consider an atom that is
initially in a superposition of energy states ψn(x), with coefficients cn(0) = |cn(0)| eiγn
and eigenvalues En. The Schrödinger equation induces a time evolution

cn(t) =
∑
m

Snm(t)cm(0) . (14.4)

In the special case where cm(0) = δmk for some k, we have |cn(t)|2 = |Snk(t)|2, and
Born and Heisenberg interpret |Snk(t)|2 as a transition probability. They also draw
the conclusion that ‘the |cn(t)|2 must be the state probabilities’ (p. 424). Thus far the
discussion is reminiscent of Born’s treatment, and Born and Heisenberg in fact quote
Born’s paper on the adiabatic principle in support of this interpretation.

At this point, however, Born and Heisenberg recognise a ‘difficulty of principle’ (p. 424),
which is precisely that for an initial superposition of energy states the final probability
distribution is given by

|cn(t)|2 =
∣∣∣∑
m

Snm(t)cm(0)
∣∣∣2 , (14.5)

as opposed to
|cn(t)|2 =

∑
m

|Snm(t)|2 |cm(0)|2 . (14.6)

This ‘theorem of the interference of probabilities’ in Born and Heisenberg’s words appears
to contradict what ‘one might suppose from the usual probability calculus’ (p. 424).

Born and Heisenberg then make a remarkable statement (pp. 424–425):

.... it should be noted that this ‘interference’ does not represent a contra-
diction with the rules of the probability calculus, that is, with the assumption
that the |Snk|2 are quite usual probabilities. In fact, .... [(14.6)] follows from
the concept of probability .... when and only when the relative number, that
is, the probability |cn|2 of the atoms in the state n, has been established be-
forehand experimentally. In this case the phases γn are unknown in principle,
so that [(14.5)] then naturally goes over to [(14.6)] .... .

We shall return in the next section to Born and Heisenberg’s characterisation of the
role of the experiment. What they are saying about the probability calculus is that the
expressions |Snk|2 denote ‘usual’ transition probabilities irrespectively of whether they
appear in (14.5) or in (14.6). Instead, the reason for the failure of (14.6) to hold in
general is that the expressions |cm|2 are not always state probabilities, because the state
probabilities themselves are not always well-defined (Bacciagaluppi and Valentini, 2008,
pp. 175–176). If the state probabilities are well-defined (namely if the energy has been
measured, in general non-selectively), then one can calculate them at future times using
(14.6). The truth of this conditional statement, however, is not affected if the state
probabilities in fact are not always well-defined.

This, now, is analogous to Heisenberg’s famous discussion of the ‘law of causality’
in his uncertainty paper: the law is again a conditional statement, which remains true
although the state of the system is defined in fact only to within the accuracy given by
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the uncertainty principle. In Heisenberg’s own words: ‘.... in the sharp formulation of
the law of causality, “If we know the present exactly, we can calculate the future”, it
is not the consequent that is wrong, but the antecedent. We cannot in principle get to
know the present in all determining data’ (Heisenberg, 1927, p. 197).8

What Born and Heisenberg mean by ‘usual’ transition probabilities is evidently not
the idea of conditional probabilities defined as quotients of the absolute probabilities,
since for them the latter are not always well-defined. Instead they must mean some kind
of potentialities, some probabilistic ‘field of force’, existing independently of the presence
of a ‘test particle’.

Regarding the ‘state’ of the system, the picture they have in mind seems to be similar
to that in Born’s papers: namely, that the actual state of the atom is a state of definite
energy. The difference to the earlier picture is that now the stationary states exist or
have a well-defined distribution only upon measurement (although the question of why
this should be so is not explicitly addressed). Instead, the wave function merely defines
a statistical distribution over the stationary states.

The step to considering arbitrary observables, and not just the energy, as having def-
inite values only upon measurement is now very easy.9 In order to extend the above
picture to the general case, one has to generalise Born and Heisenberg’s notion of tran-
sition probability to the case in which two different observables are measured at the
beginning and the end of a given time interval. Here Born and Heisenberg are not very
explicit. What they actually do in the report is to define ‘relative state probabilities’, i.e.
equal-time conditional probabilities for values of one quantity given the value of another,
in terms of the projections of the eigenvectors (‘principal axes’) of one quantity onto the
eigenvectors of the other. (In modern terminology, it is of course these expressions that
are called ‘transition probabilities’.) In this they follow Dirac’s (1927) and Jordan’s
(1927b,c) development of the transformation theory, which Heisenberg understood as
generalising the ideas of his paper on fluctuations (Heisenberg, 1926).10

14.2.2 Transition Probabilities and the Status of the Wave Function

In Born’s work as presented above, the statistical interpretation is an interpretation
of Schrödinger’s theory, albeit ‘in Heisenberg’s sense’ (Born, 1926c, p. 168). As we
shall see now, instead, Born and Heisenberg in the report do not start directly with
the Schrödinger equation. I shall suggest that in Born and Heisenberg’s view, although
they may be very useful tools both for calculational purposes and for understanding
interference, the wave function and the Schrödinger equation are only effective notions.

Section II of the report, on the ‘physical interpretation’ of quantum mechanics, begins
with the following statement (p. 420):

The most noticeable defect of the original matrix mechanics consists in that
at first it appears to give information not about actual phenomena, but

8On HeisenbergÕs treatment of the ‘law of causality’, see also Beller (1999, pp. 110–113).
9Again, Heisenberg’s uncertainty paper (Heisenberg, 1927, pp. 190–191), as well as his correspondence
with Pauli (Heisenberg to Pauli, 23 February 1927, in Pauli, 1979, pp. 376–382) both mention explicitly
the loss of a privileged status for stationary states.

10Heisenberg to Pauli, 23 November 1926: ‘Here [in Copenhagen] we have also been thinking more about
the question of the meaning of the transformation function S and Dirac has achieved an extraordinarily
broad generalisation of this assumption from my note on fluctuations’ (in Pauli, 1979, p. 357).
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rather only about possible states and processes. It allows one to calculate
the possible stationary states of a system; further it makes a statement about
the nature of the harmonic oscillation that can manifest itself as a light wave
in a quantum jump. But it says nothing about when a given state is present,
or when a change is to be expected. The reason for this is clear: matrix
mechanics deals only with closed periodic systems, and in these there are
indeed no changes. In order to have true processes, as long as one remains
in the domain of matrix mechanics, one must direct one’s attention to a part
of the system; this is no longer closed and enters into interaction with the
rest of the system. The question is what matrix mechanics can tell us about
this.

As raised here, the question to be addressed is how to incorporate into matrix mechanics
the (actual) state of a system, and the time development of such a state.

Two methods for introducing change into matrix mechanics are then presented. First
of all, following Heisenberg’s paper on fluctuation phenomena (Heisenberg, 1926), Born
and Heisenberg consider the matrix mechanical description of two coupled systems in
resonance. This they interpret in terms of quantum jumps between the energy levels of
the two systems, and they give an explicit expression for the corresponding transition
probabilities. It is only after this matrix mechanical discussion that Born and Heisenberg
introduce the time-dependent Schrödinger equation as a way for describing time depen-
dence. From this, Born and Heisenberg then derive transition probabilities following
Born’s adiabatic paper (1926c), as described above.

Already in the collision papers Born had aimed precisely at including into matrix
mechanics a description of the transitions between stationary states (Born, 1926a,b).
Born had managed to describe the asymptotic behaviour of the combined system of
electron and atom solving by perturbation methods the time-independent Schrödinger
equation, yielding a superposition of components associated to various, generally inelas-
tic, collisions in which energy is conserved. Interpreting statistically the coefficients in
the expansion, and since the incoming asymptotic wave function corresponds to a fully
determined stationary state and ‘uniform rectilinear motion’,11 one obtains the proba-
bilities for quantum jumps from the given ‘initial’ state to the given ‘final’ state, i.e. the
desired transition probabilities.12

At first Born may have thought that wave mechanical methods were indispensable for
this purpose.13 To Heisenberg’s delight, however, Pauli was able to sketch how one could
reinterpret Born’s results in terms of matrix elements.14 A few days later, Heisenberg

11This is, indeed, Born’s terminology (1926a, p. 864; 1926b, p. 806). In this context, cf. also the
discussion of Born and Wiener (1926) in Bacciagaluppi and Valentini (2008, section 3.4.1).

12Note that Born considers indeed two conceptually distinct objects: on the one hand the stationary
states of the atom and the electron, on the other hand the wave function that defines the probability
distribution over the stationary states. He reserves the word ‘state’ only for the stationary states.

13Cf. Born to Schrödinger, 16 May 1927: ‘the simple possibility of treating with it aperiodic processes
(collisions) made me first believe that your conception was superior’ (quoted in Mehra and Rechenberg,
2000, p. 135).

14See Pauli to Heisenberg, 19 October 1926, in Pauli (1979, pp. 340–349), and Heisenberg’s reply: ‘Your
calculations have given me again great hope, because they show that Born’s somewhat dogmatic
viewpoint of the probability waves is only one of many possible schemes’ (Heisenberg to Pauli, 28
October 1926, in Pauli, 1979, p. 350).
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sent Pauli the manuscript of his paper on fluctuation phenomena (Heisenberg, 1926), in
which he developed considerations similar to Pauli’s ones in the context of the example of
two atoms in resonance. Indeed, starting from a closed system (thus stationary from the
point of view of matrix mechanics) and focussing on the description of the subsystems,
Heisenberg was able to derive explicit expressions for the transition probabilities within
matrix mechanics proper, without having to introduce the wave function as an external
aid. A very similar result was derived at the same time by Jordan (1927a), using two
systems with a single energy difference in common.

Born’s collision papers and the papers by Heisenberg and by Jordan can be all under-
stood as seeking to obtain ‘information .... about actual phenomena’, by ‘direct[ing] one’s
attention to a part of the system’. In this context, the fact that it is Heisenberg’s setting
rather than Born’s which is chosen in the report suggests that Born and Heisenberg
indeed intend to make the point that matrix mechanics can account for time-dependent
phenomena without the aid of wave mechanics.

It is in this sense, I suggest, that one should read the following remark made by Born
and Heisenberg between their introduction of the time-dependent Schrödinger equation
and their discussion of transition probabilities and interference (p. 423):

Essentially, the introduction of time as a numerical variable reduces to think-
ing of the system under consideration as coupled to another one and neglect-
ing the reaction on the latter, but this formalism is very convenient and leads
to a further development of the statistical view.

In particular, I suggest that in Born and Heisenberg’s view one should not simply in-
terpret a time-dependent external potential in the Schrödinger equation (as used in the
adiabatic paper for instance) as a substitute for the full Schrödinger equation of the
combined system, but that the Schrödinger equation itself arises from considering only
subsystems.15

This reading is further supported by Born and Heisenberg’s remarks on generalising
transition probabilities to the case of an arbitrary observable, which are now coached in
terms that bypass wave functions entirely (pp. 428–429):

Alongside the concept of the relative state probability |ϕ(q′, Q′)|2, there also
occurs the concept of transition probability, namely, whenever one considers
a system as depending on an external parameter, be it time or any prop-
erty of a weakly coupled external system. Then the system of principal axes
of any quantity becomes dependent on this parameter; it experiences a ro-
tation, represented by an orthogonal transformation S(q′, q′′), in which the
parameter enters .... . The quantities |S(q′, q′′)|2 are the ‘transition probabil-
ities’; in general, however, they are not independent, instead the ‘transition
amplitudes’ are composed according to the interference rule.

In part, reference to wave functions here is eliminated through a switch to the Heisenberg
picture. One should note, however, that Born and Heisenberg manage to eliminate
reference to the wave function completely only because they consider exclusively maximal
observables. In the more general case of non-maximal (i.e. coarse-grained) observables,16

15Cf. also the derivation of time-dependent transition probabilities in Heisenberg (1930, pp. 148–150).
16And of course in the most general case of observables as positive-operator-valued measures (POVMs),

for which see e.g. Peres (1993, pp. 282–289).
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transition probabilities (whether in their sense or in the modern sense) depend also on
the quantum state.

The overall picture one glimpses from these aspects of Born and Heisenberg’s remarks
is that what exists are just transition probabilities and measured values (although, as
mentioned already, it is not explained why measurement should play such a special role).

As regards the transition probabilities, the |Snk|2 defined by Born and Heisenberg are
independent of the actual wave function. They can be calculated using the formalism
of wave functions, namely as the coefficients in (14.4) for the case in which the initial
wave function is the kth eigenstate of energy, but they are taken as the correct transition
probabilities even when the initial wave function is arbitrary.

By way of contrast, one could take Bell’s (1987) discrete and stochastic version of
de Broglie’s pilot-wave theory. In a theory of this type, given a choice of preferred
observable (‘beable’ in Bell’s terminology), the |cn|2 are indeed always state probabilities,
and one constructs appropriate transition probabilities that are generally different from
Born and Heisenberg’s |Snk|2, thereby explicitly retaining the validity of the standard
formula (14.6). Evidently, Bell’s transition probabilities must depend on the actual wave
function of the system, which thus acts as a pilot wave, as in de Broglie’s theory. Born
and Heisenberg instead choose to give up the |cn|2 as state probabilities and to keep
the transition probabilities independent of the actual wave function (which is thus not
a pilot wave in any sense).

In general, wave functions themselves can usefully represent statistical information
about measured values, but one need not consider wave functions as describing the real
state of the system (contra Schrödinger). In this sense, they appear to resemble more
the Liouville distributions of classical mechanics, a comparison suggested also by some
of Born and Heisenberg’s remarks (p. 433):17

For some simple mechanical systems .... the quantum mechanical spreading
of the wave packet agrees with the spreading of the system trajectories that
would occur in the classical theory if the initial conditions were known only
with the precision restriction [given by the uncertainty principle]. .... But in
general the statistical laws of the spreading of a ‘packet’ for the classical and
the quantum theory are different ....

As Darrigol (1992, p. 344) has emphasised, there is no notion of state vector either
in Dirac’s paper on the transformation theory (Dirac, 1927). (The well-known bras and
kets do not appear yet.) The main result of Dirac’s paper is to determine the conditional
probability density for one observable given a value for a different observable, a result
that Dirac illustrates by discussing precisely Heisenberg’s example of transition proba-
bilities in resonant atoms and Born’s collision problem. As we shall see in section 14.3.3,
however, by the time of the Solvay conference Dirac’s and Born and Heisenberg’s views
had diverged, both with regard to whether the wave function should describe ‘the state
of the world’, and with regard to the notion of the collapse of the wave function.

17Note also that in his discussion of the cloud chamber, Born once refers to the wave packet as a
‘probability packet’ (p. 483).
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14.3 Measurements and Effective Collapse

It is remarkable that the reduction of the wave packet is totally absent from Born and
Heisenberg’s report, although this concept had been famously introduced by Heisenberg
himself in the uncertainty paper (Heisenberg, 1927, p. 186). In this section we shall
discuss what appears to take the place of reduction in Born and Heisenberg’s report,
then we shall focus on the two places in the conference proceedings where the reduction
of the wave packet appears explicitly: Born’s treatment of the cloud chamber in his main
discussion contribution (pp. 483–486) and the intriguing exchange between Dirac and
Heisenberg (pp. 494–497), both appearing in the general discussion at the end of the
conference.

14.3.1 Measurement and Phase Randomisation

What is Born and Heisenberg’s description of measurement? In the report, measurement
appears only in the discussion of interference, namely, as we have seen, as the source
for its suppression. This suppression of interference is achieved neither by applying the
‘reduction of the wave packet’ (i.e. not by collapsing the wave function onto the eigen-
states of the measured observable) nor through entanglement of the measured system
with the measuring apparatus (a simple form of what we would now call decoherence).
The latter would in fact presuppose a quantum mechanical treatment of the interaction
between the two, which was uncharacteristic for the time.

Instead, Born and Heisenberg appear to take measurement as introducing a randomi-
sation of the phase in the wave function (Bacciagaluppi and Valentini, 2008, p. 173–177):
indeed, they consider the case in which (p. 425):

.... the relative number, that is, the probability |cn|2 of the atoms in the
state n, has been established beforehand experimentally. In this case the
phases γn are unknown in principle, so that [(14.5)] then naturally goes over
to [(14.6)] .... .

At this point Born and Heisenberg add a reference to Heisenberg’s uncertainty paper,
which indeed contains a more detailed version of essentially the same claim (see also
below section 14.3.3). There, Heisenberg considers a Stern-Gerlach atomic beam passing
through two successive regions of field inhomogeneous in the direction of the beam
(so as to induce transitions between energy states without separating the beam into
components). If the input beam is in a definite energy state then the beam emerging
from the first region will be in a superposition. The probability distribution for energy
emerging from the second region will then contain interference—as in (14.5), where the
‘initial’ superposition (14.1) is now the state emerging from the first region. Heisenberg
asserts that, if the energy of an atom is actually measured between the two regions, then
because of the resulting perturbation ‘the “phase” of the atom changes by amounts that
are in principle uncontrollable’ (Heisenberg, 1927, pp. 183–184), and averaging over the
unknown phases in the final superposition yields a non-interfering result.

This is clearly not the same as applying the collapse postulate. Indeed, if one applied
the usual ‘Dirac-von Neumann’ postulate, after the measurement the atoms would be
in eigenstates of energy, and the non-interfering result would be obtained by averaging
over the different energy values.
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The difference between the two descriptions is masked by the fact that the averages
are the same, i.e. a statistical mixture of states of the superposed form (14.1), with
randomly-distributed phases γn, is indeed statistically equivalent to a mixture of energy
states ψn(x) with weights |cn(0)|2, because the corresponding density operators are the
same. But for the subensembles selected on the basis of the measurement results (i.e. for
the subensembles with definite values for the energy), the density operators are clearly
different.

In the standard collapse case, indeed, the selected subensemble is homogeneus and
described by a pure state ψn(x). In the case of phase randomisation, taken literally, the
subensembles selected on the basis of the measurement results are instead described by
the same mixture of superposed states with randomly-distributed phases γn. If we take
the state of the system (in the modern sense, i.e. the density operator) as determining
the probabilities for the results of future measurements, we ought to conclude that in the
case of phase randomisation an immediate repetition of the measurement will generally
not yield the same result as the original measurement, and that any value could occur
as a possible result.

However, if our reading above of Born and Heisenberg’s discussion of the probability
calculus is correct, the quantum state in the modern sense is not what determines the
result of a subsequent measurement. While each atom in, say, the kth subensemble
has a wave function of the form (14.1) with some unknown phases in the coefficients,
we also know that it has the energy value Ek, because the energy has been measured
and the atom has been selected precisely on the basis of this energy value. But now,
according to Born and Heisenberg, the transition probabilities |Snk|2 are independent of
the actual wave function of the atom, so that if the atom is known to have the energy
Ek, the statistical distribution of the energy values upon repetition of the measurement
is simply given by (14.6) with cm(0) = δmk. If the repetition takes place immediately
after the first measurement, the transition probabilities |Snk|2 will tend to δnk, so that
indeed the first result will be confirmed (Bacciagaluppi and Valentini, 2008, p. 175–176).

One might dispute that the description of measurements as randomising the phases
should be taken literally: it might be simply a rather sloppy way of talking about
the decoherence induced by the measurement (encountered sometimes even today in
disussions of decoherence in general).18 However, the fact that Born and Heisenberg
during the conference (and Heisenberg in the uncertainty paper) appear to use both
the description of measurements in terms of phase randomisation and that in terms
of reduction of the wave packet as equally good alternatives, may indicate that neither
should be taken literally. The wave function can be chosen one way or another, depending
on what is more convenient ‘for practical purposes’.

14.3.2 Born’s Discussion of the Cloud Chamber

In his discussion of the cloud chamber, Born attributes to Einstein the question of
how one can account for the approximately straight particle track revealed by a cloud
chamber, even if the emission of an α-particle is undirected, so that the emitted wave

18My thanks to Antony Valentini for pointing out that a description of measurement in terms of phase
randomisation appears also in Bohm’s textbook on quantum mechanics (Bohm, 1951, pp. 122, 600–
602).
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function is approximately spherical.19 Born asserts that to answer it (p. 483):

.... one must appeal to the notion of ‘reduction of the probability packet’
developed by Heisenberg. The description of the emission by a spherical
wave is valid only for as long as one does not observe ionisation; as soon
as such ionisation is shown by the appearance of cloud droplets, in order to
describe what happens afterwards one must ‘reduce’ the wave packet in the
immediate vicinity of the drops. One thus obtains a wave packet in the form
of a ray, which corresponds to the corpuscular character of the phenomenon.

But then Born goes on to consider if wave packet reduction can be avoided by treating
the atoms of the cloud chamber, along with the α-particle, as a single system described
by quantum theory, a suggestion that he attributes to Pauli. The latter had made
this suggestion also in a letter to Bohr one week before the beginning of the Solvay
conference:20

This is precisely a point that was not quite satisfactory in Heisenberg [(1927)];
there the ‘reduction of the packets’ seemed a little mystical. Now in fact it
should be stressed that such reductions are not necessary in the first place if
one includes in the system all means of measurement. But in order to describe
at all observational results theoretically, one has to ask what one can say alone
about a part of the whole system. And then from the complete solution one
sees immediately that, in many cases (of course not always), leaving out the
means of observation can be formally replaced by such reductions.

Born’s own opinion is as follows (p. 483):

Mr Pauli has asked me if it is not possible to describe the process without
the reduction of wave packets, by resorting to a multi-dimensional space
whose number of dimensions is three times the number of all the particles
present .... . This is in fact possible and can even be represented in a very
anschaulich manner [d’une manière fort intuitive] by means of an appropriate
simplification, but this does not lead us further as regards the fundamental
questions. Nevertheless, I should like to present this case here as an example
of the multi-dimensional treatment of such problems.

Both Born and Pauli thus seem to think that the reduction of the wave packet is a
dispensable element in the description of measurements.21 However, Born’s subsequent
discussion remains somewhat unclear about why this should be so. From the above
quotation, it appears that the discussion is intended mainly as an illustration of the
use of configuration-space wave functions (a point reiterated by Born at the end of his
discussion). Born, indeed, merely presents a multi-dimensional treatment of the problem,
simplified in that all motions are in one dimension and the cloud chamber is represented
by only two atoms. Only in the end does Born remark that (p. 486):
19Cf. Einstein’s main contribution to the general discussion (pp. 486–488), and above, section 14.2.1.
20Pauli to Bohr, 17 October 1927, in Pauli (1979, p. 411).
21Note that also Pauli’s remarks to Heisenberg about transition probabilities and Born and Heisenberg’s

treatment thereof, discussed in section 14.2.2, crucially make reference to ‘what one can say alone
about a part of the whole system’. Pauli’s suggestion to Born and his remarks to Heisenberg may in
fact be related.
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To the ‘reduction’ of the wave packet corresponds the choice of one of the
two directions of propagation +x0 , −x0, which one must take as soon as it
is established that one of the two [atoms] 1 and 2 is hit ....

Now, provided this remark is at all relevant to the question of whether wave packet
reduction is unnecessary, it should be read as an alternative to the description by means
of reduction. That is, one should be able to leave the wave packet uncollapsed and choose
instead a direction of propagation for the α-particle, either because this is truly what
happens upon measurement, or because the two descriptions are equivalent at least ‘for
all practical purposes’, in which case presumably neither is to be taken literally.

Incidentally, the atoms in the cloud chamber are described by Born on the same
footing as the α-particle, making this perhaps the first example of explicit inclusion of
a measuring apparatus in the quantum mechanical description. Note that the fact that
the Schrödinger equation was not applied to the measurement interaction means that
there was no awareness at the 1927 Solvay conference of the ‘measurement problem’,
in the sense of macroscopic superpositions arising from the measurement interaction.
For instance, also in Bohr’s famous exchanges with Einstein between the sessions of the
conference (Bohr, 1949), Bohr applies only the uncertainty principle to the apparatus,
and certainly not the Schrödinger equation, so that no macroscopic superpositions are
considered. As regards Born’s example of the cloud chamber, it could have been used
in principle to raise this problem. However, if the reading of Born and Heisenberg’s
position suggested here is correct, it is not surprising that Born did not see the resulting
macroscopic superposition as a problem, since the ‘state’ of the α-particle (under the
given conditions) would correspond indeed to its direction of motion.

14.3.3 The Exchange between Heisenberg and Dirac

Born’s remarks on the collapse of the wave function should be contrasted with Dirac’s
remarks on the same topic, also in the general discussion (pp. 494–495):

According to quantum mechanics the state of the world at any time is
describable by a wave function ψ, which normally varies according to a causal
law, so that its initial value determines its value at any later time. It may
however happen that at a certain time t1, ψ can be expanded in the form

ψ =
∑
n

cnψn ,

where the ψn’s are wave functions of such a nature that they cannot interfere
with one another at any time subsequent to t1. If such is the case, then the
world at times later than t1 will be described not by ψ but by one of the ψn’s.
The particular ψn that it shall be must be regarded as chosen by nature.

This, according to Dirac (p. 495) is ‘an irrevocable choice of nature, which must affect
the whole of the future course of events’. Dirac thus appears both to take the wave
function to be a real physical object, and to take the collapse of the wave function
to be a real physical process, connected with lack of interference (an interesting point
both from today’s perspective and for the exchange with Heisenberg). But Dirac goes
further, and recognises that there are circumstances where the choice made by nature
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cannot have occurred at the point where it might have been expected. Dirac considers
at some length the specific example of the scattering of an electron, concluding with the
following observation (pp. 495–496):

If, now, one arranged a mirror to reflect the electron wave scattered in one
direction d1 so as to make it interfere with the electron wave scattered in
another direction d2, one would not be able to distinguish between the case
when the electron is scattered in the direction d2 and when it is scattered in
the direction d1 and reflected back into d2. One would then not be able to
trace back the chain of causal events so far, and one would not be able to
say that nature had chosen a direction as soon as the collision occurred, but
only [that] at a later time nature chose where the electron should appear.
The interference between the ψn’s compels nature to postpone her choice.

In Dirac’s manuscript of this discussion contribution,22 a cancelled version of the last
sentence begins with ‘Thus a possibility of interference ....’, while another cancelled
version begins with ‘Thus the existence of interference ....’. Possibly, Dirac hesitated here
because he saw that in principle the mirror could always be added by the experimenter
after the scattering had taken place. Thus, there would be no cases in which interference
could be ruled out as impossible, making this an unrealisable criterion for the occurrence
of collapse.

Precisely this point was made by Heisenberg, shortly afterwards in the discussion
(p. 497):

I do not agree with Mr Dirac when he says that, in the described experi-
ment, nature makes a choice. Even if you place yourself very far away from
your scattering material, and if you measure after a very long time, you are
ablef to obtain interference by taking two mirrors. If nature had made a
choice, it would be difficult to imagine how the interference is produced. I
should rather say, as I did in my last paper [(Heisenberg, 1927)], that the ob-
server himself makes the choice, because it is only at the moment when the
observation is made that the ‘choice’ has become a physical reality and that
the phase relationship in the waves, the power of interference, is destroyed.

Note the striking resemblance between what is said here by Heisenberg and what is
said (more understatedly) by Born in his treatment of the cloud chamber. Born talks
about the ‘choice of one of the two directions of propagation’, a choice which is taken
not when one of the two atoms is hit, but when it is ‘established’ that it is hit (when
the ionisation is ‘shown’ by the appearance of the cloud droplets); Heisenberg (who of
course is also following Dirac’s terminology) talks of a ‘choice’ of which path is taken
by the electron, a choice which becomes physically real ‘only at the moment when the
observation is made’. But Heisenberg goes further than Born here, suggesting that what
happens upon observation is that ‘the phase relationship in the waves, the power of
interference, is destroyed’, i.e. that the effect of measurement is phase randomisation
rather than collapse.

22AHQP–36, section 10.
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14.4 Born and Heisenberg on ‘Hidden Variables’

To conclude, we shall now have a brief look at the views on what one would now call
‘hidden variables’ (in particular in the context of guiding fields) expressed at the time
by Born and by Heisenberg, mostly before the Solvay conference. Indeed, the idea of
observables having values that are not strictly linked to the wave function of the system
(no ‘eigenstate-eigenvalue link’) might strike one as typical of hidden variables theories.
This is precisely what happens in pilot-wave theories of the Bell type, as mentioned in
section 14.3.1 above. Unsurprisingly, however, the views on the subject expressed by
Born and by Heisenberg are quite negative.

14.4.1 Born on the Practical Irrelevance of Microcoordinates

Consider Born’s second paper on collisions (Born, 1926b). In this paper Born makes an
explicit link between his work and guiding-field ideas, saying that while in the context
of optics one ought to wait until the development of a proper quantum electrodynamics,
in the context of the quantum mechanics of material particles the guiding field idea
could be applied already, using the de Broglie-Schrödinger waves as guiding fields; these,
however, determine the trajectories merely probabilistically (p. 804). In the concluding
remarks of the paper, Born comments explicitly on whether this picture is to be regarded
as fundamentally indeterministic (pp. 826–827):

In my preliminary communication [(Born, 1926a)] I laid very particular stress
on this indeterminism, since it seems to me to correspond perfectly to the
practice of the experimenter. But of course it is open to anyone who will
not rest content therewith to assume that there are further parameters not
yet introduced in the theory that determine an individual event. In classical
mechanics these are the ‘phases’ of the motion, e.g. the coordinates of the
particles at a certain instant. It seemed to me unlikely at first that one
could freely include quantities in the new theory that correspond to these
phases; but Mr Frenkel23 has informed me that perhaps this in fact can be
done. Be it as it may, this possibility would change nothing in the practical
indeterminism of collision processes, since indeed one cannot give the values
of the phases; it must lead, besides, to the same formulas as the ‘phaseless’
theory proposed here.

Thus, Born took it that a ‘completion’ of quantum mechanics through the introduction
of further parameters into the theory would have no practical consequences, an opinion
echoed in Born and Heisenberg’s report immediately after their introduction of transition
probabilities (p. 422):

While the determinateness of an individual process is assumed by classical
physics, practically in fact it plays no role, because the microcoordinates
that determine exactly an atomic process can never all be given; therefore
by averaging they are eliminated from the formulas, which thereby become

23This is presumably Y. I. Frenkel, who at the time was in Germany on a Rockefeller scholarship. Born
had supported Frenkel’s application. (See Frenkel, 1996, p. 72).
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statistical statements. It has become apparent that quantum mechanics rep-
resents a merging of mechanics and statistics, in which the unobservable
microcoordinates are eliminated.

At the Solvay conference the idea of quantum mechanics as eliminating microscopic
coordinates from the description of motions is mentioned by Born also in discussing
Schrödinger’s treatment of the Compton effect (p. 371; cf. also p. 444). It may have
been an important element of Born’s intuition, and appears also in Born’s reaction to
the EPR paper (Einstein, Podolsky and Rosen, 1935).24

14.4.2 Heisenberg and Einstein on Hidden Variables

The above statements by Born may not rule out unequivocally the possibility of thinking
of the wave function as a guiding field (more so perhaps his statements in the adiabatic
paper on the Unanschaulichkeit of the quantum jump). Heisenberg’s statements on
the subject instead indicate both that he understood the principles behind pilot-wave
theories and that he rejected them decidedly.

Heisenberg’s views are contained in a letter to Einstein about the latter’s own un-
published hidden-variables proposal (cf. Pais, 1982, p. 444). In May 1927, Einstein had
proposed what in retrospect appears to be an alternative version of pilot-wave theory,
with particle trajectories determined by the many-body wave function, but in a way
different from that of de Broglie’s theory. This theory was described in a paper entitled
‘Does Schrödinger’s wave mechanics determine the motion of a system completely or
only in the sense of statistics?’,25 which was presented on 5 May 1927 at a meeting of
the Prussian Academy of Sciences. On the same day Einstein wrote to Ehrenfest that
‘.... in a completely unambiguous way, one can associate definite movements with the
solutions [of the Schrödinger equation]’ (quoted in Howard, 1990, p. 89). However, on 21
May, before the paper appeared in print, Einstein withdrew it from publication. The pa-
per remained unpublished, but its contents are nevertheless known from the manuscript
version in the Einstein archive—see also Belousek (1996) and Holland (2005).

Heisenberg had heard about Einstein’s theory through Born and Jordan, and on 19
May—just two days before Einstein withdrew the paper—wrote to Einstein enquiring
about it. On 10 June 1927, Heisenberg wrote to Einstein again, this time with detailed
comments and arguments against what Einstein was (or had been) proposing. I shall
now briefly summarise this second letter.26

Evidently, Einstein had not sent the withdrawn paper in reply to the original enquiry,
for Heisenberg mentions he has learnt nothing new, but Heisenberg says he would like to
write again why he believes indeterminism is ‘necessary, not just consistently possible’.
If he has understood his viewpoint correctly, Einstein thinks that, while all experiments
will agree with the statistical quantum theory, nevertheless in the future one will be able

24See Born to Schrödinger, 28 June 1935, AHQP–92, section 2 (in German).
25‘Bestimmt Schrödingers Wellenmechanik die Bewegung des Systems vollständig oder nur

im Sinne der Statistik?’, Albert Einstein Archive 2–100.00; currently available on-line at
http://www.alberteinstein.info/db/ViewDetails.do?DocumentID=34338 .

26Heisenberg to Einstein, 19 May and 10 June 1927, Albert Einstein Archive 12–173.00 and 12–174.00
(both in German). Passages from the letter of 10 June are quoted with the kind permission of Prof.
Helmut Rechenberg of the Werner Heisenberg Archive.
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to talk also about definite particle trajectories. Heisenberg’s main objection is now as
follows.

Consider free electrons with a constant and low velocity, ‘so slow, that the de Broglie
wavelength is very large compared to the size of the particle, i.e. the force fields of the
particle should be practically zero on distances of the order of the de Broglie wavelength’.
Such electrons strike a grating with spacing comparable to their de Broglie wavelength.
Heisenberg remarks that, in Einstein’s theory, the electrons will be scattered in discrete
spatial directions. Now, if the initial position of a particle were known one could calculate
where the particle will hit the grating and ‘set up some obstacle that reflects the particle
in some arbitrary direction, quite independently of the other parts of the grating’. This
could be done, if the forces between the particle and the obstacle act indeed only at
short range, small with respect to the spacing of the grating. Heisenberg then continues:

In reality the electron is reflected independently of the obstacle in question
in the definite discrete directions. One could only escape this if one sets the
motion of the particle again in direct relation to the behaviour of the waves.
But this means that one assumes that the size of the particle, that is, its
interaction forces, depend on the velocity. Thereby one actually gives up
the word ‘particle’ and loses in my opinion the understanding for why in the
Schrödinger equation or in the matrix Hamiltonian function always appears
the simple potential energy e2/r. If you use the word ‘particle’ so liberally, I
take it to be very well possible that one can define also particle trajectories.
But the great simplicity that in the statistical quantum theory consists in
that the motion of the particles takes place classically, insofar as one can talk
of motion at all, in my opinion is lost.

Heisenberg then notes that Einstein seems willing to sacrifice this simplicity for the
sake of maintaining causality. However, even Einstein’s approach would not be able to
change the fact that many experiments would be determined only statistically: ‘Rather
we could only console ourselves with the fact that, while for us because of the uncertainty
relation p1q1 ∼ h the principle of causality would be meaningless, the good Lord in fact
would know in addition the position of the particle and thereby could preserve the
validity of the causal law’. Heisenberg concludes the objection by saying that he finds it
‘actually not attractive [eigentlich doch nicht schön] to want to describe physically more
than the connection between experiments’.

Note that Heisenberg’s objection is not that the theory does not predict the usual
scattering pattern in the practically unrealisable case in which one manipulates the
trajectory of a particle with known initial position. Rather, his gedankenexperiment
serves to establish the point that, even in the normal case (in which the initial position of
the particle is unknown), the direction in which a ‘particle’ is scattered must depend only
on the local features of the grating, thus contradicting the normal experimental results.
The only way to have the direction of scattering depend on the features of the grating
other than where the particle hits it, is to make the trajectory of the particle depend on
the associated wave rather than on particle-like short-range interaction behaviour.

It is striking that Heisenberg’s objection concerning the electron and the grating shows
that he thought that a trajectory-based deterministic theory of quantum phenomena is
possible. It is equally striking that Heisenberg appears to have thought that such a
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theory is nevertheless unacceptable on what would seem to be aesthetic grounds (or
grounds of Anschaulichkeit), because it gives up both the usual concept of particle
and the mathematical simplicity of quantum mechanics. This objection appears to
have remained a mainstay of Heisenberg’s negative views on hidden variables. Indeed,
Heisenberg repeated it also in his own draft reply to the EPR paper (Heisenberg, 1985,
p. 416).27

14.5 Conclusion

In this paper, I have suggested that Born and Heisenberg’s report at the 1927 Solvay
conference is significant because it presents a more mature and definitive version of the
statistical interpretation of quantum mechanics. The key point about this suggestion is
that the interpretation in the report merges elements of Born’s interpretational work of
1926 and of Heisenberg’s work on fluctuations and in the uncertainty paper. I have also
proposed a specific reading of Born and Heisenberg’s position (thereby continuing where
the analysis of Bacciagaluppi and Valentini, 2008, leaves off). The key intuition behind
this proposal is that Born and Heisenberg did not take the wave function to be a real
entity.

Of course, it is well-known that Heisenberg at least was strongly antagonistic to
Schrödinger’s introduction of wave functions and to his attempts to interpret them as
giving an anschaulich picture of quantum systems. While Born’s work of 1926 can be
put in relation with ideas on guiding fields, I suggest that, at least come 1927, Born
and Heisenberg’s conception of the wave function was thoroughly statistical, i.e. more
analogous to a classical Liouville distribution, thus making also the collapse of the wave
function a matter of convenience of description. Born and Heisenberg’s own words give
the impression that they considered the presentation in their report to be indeed a final
formulation of the theory and interpretation of quantum mechanics (pp. 409, 437):28

Quantum mechanics is meant as a theory that is in this sense anschaulich and
complete for the micromechanical processes ([Heisenberg, 1927]) .... There
seems thus to be no empirical argument against accepting fundamental in-
determinism for the microcosm.

.... we consider [quantum mechanics] to be a closed theory [geschlossene
Theorie], whose fundamental physical and mathematical assumptions are no
longer susceptible of any modification.

Even as these views were being expressed, there remained significant differences of opin-
ion even within the ‘Göttingen-Copenhagen’ camp (as seen in the exchange between
Dirac and Heisenberg). Moreover, with its lack of collapse and perhaps even of funda-
mental wave functions, the interpretation presented was itself quite different from what
might be assumed today to have been the ‘statistical interpretation’ of quantum theory.

27My thanks to Elise Crull for directing my attention to this passage in Heisenberg’s draft.
28One can recognise Heisenberg’s pen in these passages, which were in fact drafted by him (Born to

Lorentz, loc. cit., note 3). Cf. also Heisenberg’s later writings on the concept of ‘closed theories’, e.g.
Heisenberg (1948).
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Jordan, P. (1927a), ‘Über quantenmechanische Darstellung von Quantensprüngen’,
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15 Early Impact of Quantum Physics on
Chemistry: George Hevesy’s Work on
Rare Earth Elements and Michael
Polanyi’s Absorption Theory

Gabor Pallo

According to the standard history, the influence of quantum physics upon chemistry
started in 1927. This was the publication year of Heitler and London’s seminal article
on the hydrogen molecule, an article that is supposed to have radically changed the
theory of chemistry and endangered its independence.1 Since then, many people have
considered chemistry as a kind of applied physics, more precisely, of quantum physics.
Meanwhile, to researchers working in less theoretical fields of chemistry, such as synthetic
organic chemistry or classical chemical analysis, might have remained unnoticed that
their discipline disappeared as it had been reduced to physics. In their eyes, chemistry
seemed entirely different from physics, even if quantum physics exerted important impact
upon its theoretical parts. In the followings, I will detail two cases of the early 1920s
to show this impact. The underlying intention of this paper is to demonstrate the
non-reductive heuristic value of quantum physics inside chemistry. I emphasize that
’inside chemistry’ because the central characters of the two stories are not physicists but
chemists, George von Hevesy and Michael Polanyi.2

The statement that Hevesy and Polanyi were not physicist but chemists, tacitly in-
cludes (to use Polanyi’s phrase) that a sharp boundary existed between physics and
chemistry, hence we can decide whether someone stands in one or the other side of the
boundary. In a scrutiny, however, the boundary problem seems related to reductionism,
to the questioned independent status of chemistry. After some general historical remarks
on this issue, I will recapitulate the discovery of a chemical element, hafnium, and the
interpretation of gas adsorption. The hafnium story is related to the old quantum theory
while the absorption theory to quantum mechanics. In both cases, we will see fervent
scientific controversies.

1W. Heitler, F. London, “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Qaun-
tenmechanik. Zeitschrift für Physik. 44. 1927. 455–472.

2Some recent biographies of Hevesy and Polanyi: Siegfried Niesse, Georg von Hevesy: Wissenschaftler
ohne Grenzen. Dresden: Forschungszentrum Rossendorf, 2005. William T. Scott, Martin X. Moleski,
S.J., Michael Polanyi: Scientist and Philosopher, Oxford: Oxford University Press, 2005.
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Theoretical Chemistry or Applied Physics

Chemistry, and probably other disciples too, has always had to carry on boundary works,
to use Thomas Gieryn’s term, meaning that it had to take efforts to demarcate its ter-
ritory both from physics and biology.3 Looking back as far as to the 31st Query of
Newton’s Optics, or to the chemical revolution, chemistry’s relation with physics has
been uneasy.4 The boundary problem between physics and chemistry can be connected
with physicalism, a positivist philosophical stand. In the 19th century, chemical con-
cepts had been attempted to interpret in the framework of mechanics, thermodynamics
or electricity. Concepts, such as affinity, valence, chemical bond, later spectroscopy,
reaction kinetics, electrochemistry appeared to be very close to physical notions. In
an ideal situation, the chemical concepts were assumed to be derivable from the first
principles of theoretical physics. On the other hand, many fields of chemistry, including
synthetic organic chemistry, were nearer to a particular laboratory practice than to an
Aristotelian ideal of science relying on first principles.

Sociologically, the boundaries of chemistry were set by special jobs, by professional
university departments providing degrees of chemistry, by textbooks, journals, scientific
societies, highly admired researchers, professors, such as Lavoisier, Dalton or Berzelius
and their scientific schools, by particular results and tenets like the periodic system
created in 1869.5 By all these means, the discipline of chemistry defined a territory with
boundaries worth defending and occasionally extending.

Quantum physics attacked the boundaries both of biology and chemistry. In his work
titled What is life, Erwin Schrödinger initiated a research program aiming at explaining
biological phenomena in a reductionist way, similarly to the way quantum physics ex-
plains microphysical phenomena.6 Max Delbrück and others became supporters of this
program that brought major breakthroughs in biology.7

Quantum physics entered chemistry with Stark and Einstein’s second law of photo-
chemistry in 1912. The first fundamental results were achieved in 1913 by Niels Bohr’s
model of the atom, and his explanation of the periodic table, to which he returned in
1921–23.8 Although Bohr’s theory was considered to be physics, chemists liked to use it

3Thomas Gieryn, Cultural Boundaries: of Science: Credibility on the Line. Chicago, London: Chicago
University Press, 1999.

4A vast amount of literature discussed this problem. See, e.g., Evan M. Melhado, “Chemistry, Physics,
and the Chemical Revolution,” Isis 76. 1985. 195–211.

5Mary Jo Nye analyzed the general features of disciplines, mainly chemistry, through their identities.
Mary Jo Nye, From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics
of Disciplines, 1800–1950. Berkeley, Los Angeles, London: University of California Press, 1993.

6E. Schrödinger, What is Life? Cambridge: Cambridge University Press, 1944.
7In the vast literature see, e.g., D. Fleming, ”Émigré Physicists and the Biological Revolution.” In: D.
Fleming, B. Bailyn, The Intellectual Migration: Europe and America, 1930–1960. Cambridge (Mass.):
Harvard University Press, 152–189.

8N. Bohr, On the Constitution of Atoms and Molecules (Papers reprinted from the Philosophical Mag-
azine with an intorduction by L. Rosenfeld). Copenhagen and New York: Munksgaard and W. A.
Benjamin. On the later results see N. Bohr, “The Structure of the Atom,” (Nobel Lecture, Decem-
ber 11, 1922.) Nobel Lectures, Physics, 1922–1941. Amsterdam: Elsevier Publishing Company, 1965.
About the extension of Bohr’s building-up theory to molecules, see Buhm Soon Park, “A Principle
written in Diagrams: The Aufbau Principle for Molecules and its Visual Representations. 1927–1932.”
In: U. Klein (ed.), Tools and Modes of Representation in the Laboratory Sciences, Dordrecht, Boston,
London: Kluwer Academic Publishers, 2001. 179–98.
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for interpreting chemical phenomena, because of the model’s simplicity and because to
a large extent it relied on chemical experimental data.

The radical reductionist program evolved after the introduction of quantum mechan-
ics. In 1929, soon after the publication of Heitler and London’s seminal article, Paul
Dirac pronounced a radical reductionist program, saying that “The underlying physical
laws necessary for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble.”9

Indeed, based on Heitler and London’s initial ideas, Slater and Pauling with others
established the so-called valence-bond theory, VB in 1927. Hund and Mullikan published
the rival theory, called molecular orbital, MO, theory in the same year. In the VB
method, hydrogen molecule was considered as an aggregate of two distinct hydrogen
atoms, in which the two electrons constituting the chemical bond were placed between
the two nuclei. The atoms were distinct physical systems and the theory described their
connection. The MO theory, on the other hand, considered the hydrogen molecule as
one physical system, having two electrons in one orbital around the two nuclei. The two
approaches have competed in quantum chemistry for decades.10

Historians Ana Simoes and Kostas Gavroglu, however, pointed at another distinction.
In the 1930s, Linus Pauling, a follower of Heitler and London’s VB method, used the
notion of resonance for explaining traditional organic chemistry problems, such as the
tetravalency of carbon, the aromatic structure of benzene, the three-electron bond, and
the like. By these, Pauling became part of the structural chemistry tradition rather than
the tradition of theoretical physics. Simoes attributed this position partly to Pauling’s
ties with a research program initiated by Gilbert N. Lewis. Lewis suggested that the
atoms composing a molecule could share electron pairs that secure the covalent bond
between them. The other factor was a kind of pragmatism, manifested in the so-called
‘semi empirical’ method. This procedure combined theoretical, quantum physical cal-
culations with empirical data of chemistry, instead of sticking to the physical goals of
deriving chemistry from first principles. Simoes and Gavroglu argued that Pauling and
Mullikan started a non-reductionist, chemistry-oriented version of quantum chemistry
that was rooted in the American pragmatism.11

No wonder: Lewis, Pauling and Mulliken were trained as chemists. If quantum chem-
istry was a fence at the boundary between physics and chemistry, Heitler and London,
and most of their followers were sitting on the fence with legs toward physics, while
Mulliken and Pauling with legs toward chemistry.12

9P.A.M. Dirac, “Quantum Mechanics of Many Electron Systems,” Proceedings of the Royal Society of
London, A123 (1929): 714–733, on 714

10On the history of quantum chemistry see Mary Jo Nye, ref. 5. p. 227–261.
11A. Simões, ”Chemical Physics and Quantum Chemistry in the Twentieth Century.” In Mary Jo Nye

(ed), The Modern Physical and Mathematical Sciences. The Cambridge History of Science, Vol. 5.
Cambridge: Cambridge University Press, 2003. 394–412., A. Simões, K. Gavroglu, ”Issues in the
History of Theoretical and Quantum Chemistry, 1927–1960.” In: C. Reinhardt (ed.), Chemical Sciences
in the 20th Century. Weinheim: Wiley-VCH, 2001., and K. Gavroglu, A. Simões, ”The Americans, the
Germans, and the beginnings of quantum chemistry: The confluence of diverging traditions.” Historical
Studies in the Physical Sciences, 25(1), 1994, 47–110.

12Buhm Soon Park emphasized that quantum chemistry gradually put on a technical, computational
character with a diminishing physical relevance. Buhm Soon Park, ”Computational Imperatives in
Quantum Chemistry,” Paper presented at the HQ-1 conference, July 2–6, 2007, Berlin.
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The Discovery of Hafnium

Encylopeadia Britannica presented the standard history of the hafnium’s discovery as
follows: “Bohr pointed out that the missing element 72 would be expected, from its
position in the periodic system, to be similar to zirconium in its properties rather than
to the rare earths; this observation led G. de Hevesy and D. Coster in 1922 to examine
zirconium ores and to discover the unknown element, which they named hafnium.”13

In this account, Bohr’s theory concerning the periodic table was corroborated by
Hevesy and Coster. This presentation of the story follows the logic of a reductionist
and Popperian philosophy. Indeed, Popper wrote: “all attempts to find it [the chemical
element with atomic number 72] were in vain until Bohr succeeded in predicting several
of its properties by deducing them from his theory.”14 At another place, Popper said
that “it [the discovery of hafnium] struck us then as the great moment when chemistry
had been reduced to atomic theory.”15

From Bohr’s point of view, the problem was that while working on the electronic
building-up of the atoms in the periodic system, he had to place the still unknown
element 72 somewhere in the periodic system. He faced with the dilemma whether the
this element was a rare earth to be placed in a separate row below the table with the
other rare earths or it was a transition metal to be placed on the table. From his theory,
Bohr concluded that element 72 was a transition metal because of its electronic structure.

In his method, by proceeding forward in the periodic table to successive atoms an
extra electron should be added to the previous ones. The electrons were arranged in
shells and outer shell received the next coming electron. Arriving at the element 57
(see Table 15.1), lanthanum, however, the electrons did not continue to fill the outer
P shell. Instead, the added electron was placed on the inner O shell, 5d, and in the
following elements, starting with cerium, the N shell, 4f , were built up, while the O and
P shells remained unchanged. Fourteen electrons fulfilled the 4f shell. Hence, the last
element belonging to this group should be 71, lutetium, because 57 (element number of
lanthanum) + 14 = 71. The configuration of the outer shell determines the chemical
properties of the elements. Since the outer shell of the elements 57− 71 did not change,
only inner shells changed, the chemical properties of these elements should be almost
identical. These are the rare earth elements. After the 4f shell has been fulfilled at
element 71, the next electron goes to the O shell, 5d, again, making the properties of the
unknown element 72 different from the previous ones. Therefore, element 72, should not
be a rare earth, and it should be placed on the main table with the transition metals.

From chemical point of view, the historical process seemed different, because the logic
of chemical research on rare earths was influenced by the changing methods of analyt-
ical chemistry, rather than physical ideas. As historian of analytical chemistry, Ferenc
Szabadváry pointed out, rare earths were found mainly in two minerals, yttria and ce-
ria. The chemical properties of rare earths proved almost identical with each other.
Moreover, they occurred together in these two minerals. Hence, to separate them (that
started in 1787) was extremely difficult and uncertain. This is why their discovery fol-

13http://www.britannica.com/nobelprize/article-80831
14K. Popper, The Logic of Scientific Discovery. London: Hutchinson, 1959. p. 69.
15K. Popper, The Open Universe. London: Hutchinson, 1982. Cited by Eric Scerri, “Popper’s Naturalized

Approach to the Reduction of Chemistry,” International Studies in the Philosophy of Science, 12. 1998.
33–44. p. 34.
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Number Element K L M N O P

56 Barium 2 8 18 18 8 2
57 Lanthanum 2 8 18 18 9 2
58 Cerium 2 8 18 19 9 2
59 Praseodymium 2 8 18 21 8 2
60 Neodymium 2 8 18 22 8 2
61 Promethium 2 8 18 23 8 2
62 Samarium 2 8 18 24 8 2
63 Europium 2 8 18 25 8 2
64 Gadolinium 2 8 18 25 9 2
65 Terbium 2 8 18 27 8 2
66 Dysprosium 2 8 18 28 8 2
67 Holmium 2 8 18 29 8 2
68 Erbium 2 8 18 30 8 2
69 Thulium 2 8 18 31 8 2
70 Ytterbium 2 8 18 32 8 2
71 Lutetium 2 8 18 32 9 2
72 Hafnium 2 8 18 32 10 2
73 Tantalum 2 8 18 32 11 2

Table 15.1: Electron configuration of some atoms.

lowed a pattern of division: some components were held to be new chemical elements, but
subsequently they proved to be mixtures, the components of the mixture were thought
to be elements, but one of them proved to be a mixture, and so on. For instance, in
1905, Auer von Welsbach, an Austrian chemist, applied fractional crystallization of the
double oxalates and found out that an element called ytterbium was in fact a mixture
of two elements. The French professor Georges Urbain used his own method, based on
a ‘separating element’ that crystallizes with rare earth elements, and came to the same
conclusion. They simultaneously discovered element 71, lutetium. Chemists found new
and new rare earth elements and their final number was uncertain. In 1911, Urbain
announced to find a new element mixed with lutetium. He called it celtium, the element
72, another rare earth. In 1922, Urbain with a co-author confirmed the existence of
celtium by Roentgen spectroscopy.16

This confirmation caused severe headache to Bohr, who wanted to present his new
interpretation of the periodic system in his Noble lecture in 1902. He explained the prob-
lem to his friend, George de Hevesy, a chemist working in the Bohr institute. Supposing
that element 72 was homologue with zirconium, Hevesy with his colleague, the physicist
Dirk Coster, analyzed a Norwegian zirconium mineral, by Roentgen spectroscopy and
found the unknown element number 72, subsequently named hafnium. Hevesy separated
hafnium and proved that it had no rare earth chemical properties.17

16Ferenc Szabadváry, “The History of the discovery and Separation of the Rare Earth,” In K. A. Gschnei-
der, Jr., L. Eyring, Handbook of the Physics and Chemistry of Rare Earths, Vol. 11. Amsterdam:
Elsevier Science Publisher, 1988. 33–80.

17Hevesy told this story many times, including his biographical notes that were published with insignif-
icant corrections by J. D. Cockroft as an obituary of Hevesy. J. D. Cockroft: “George de Hevesy
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The result of this controversy18 seems to prove the advantage of the physical theory
over chemical experimenting. Karl Popper referred to the hafnium story in this context.
More recently, however, philosopher Eric Scerri has challenged the reductionist analysis
in a non-reductionist framework. His interpretation of hafnium’s discovery relies on two
arguments. According to the first one, Bohr’s model was not a logical precondition
for listing element 72 among transition metals. Some chemists, including the Danish
Thomsen in 1895, predicted that element 72 would be homologous with zirconium. After
knowing the results of Moseley’s Roentgen spectroscopy measurements carried out in
1914, this place appeared doubtless. According to the other argument, which seems
stronger in our context, the discovery of hafnium does not support reductionism, because
the Bohr model itself was not a deductive result from first principles. Scerry argued that
this model, the old quantum theory was inductive relying on various experimental facts,
many originating in chemistry.19

Indeed, in the tradition of chemistry, the discovery of hafnium is attributed to George
Hevesy, a chemist. This exemplary case neither proves, nor falsifies the potential re-
duction of chemistry to physics but demonstrates an effective collaboration between
quantum physics and chemistry.

Theory of Adsorption

Adsorption is a phenomenon whereby gasses are attracted and stuck to the surface of a
solid. Michael Polanyi did pioneering but controversial research on adsorption. His ideas
might originate in the biographical contingency that Polanyi graduated from medicine,
obtaining limited training in chemistry. He worked out the basic elements of his potential
theory of adsorption, while being hospitalized in Budapest, in 1914, without any access
to the current scientific literature.20

As he did not know about the electronic theory of chemical processes, Polanyi based
his interpretation of adsorption on classical thermodynamics. He thought that the van
der Waals type attractive forces originated in the surface of solids establish a potential
gradient. Polanyi called this force adsorption potential, and assumed that it influenced
the gas above the adsorbent in a way that was similar to compression. By the work done
by adsorption potential, the gas was thought to condense in an adsorbed phase upon the
surface of the solid. Adsorption potential was defined by a simple formula: ε = f(ϕ), in
which ε is the adsorption potential, ϕ is the space where the force is effective. In this
model, the adsorbed layers of gas were several molecules thick.21

1885–1966”, Biographical Memoirs of Fellows of the Royal Society, 13. 1967, 125–166. D. Coster, G.
Hevesy, “On the new element hafnium.” Nature, 111. 1923. 182, and 252. After working out the details
of the hafnium chemistry, Hevesy published a monograph on the new element: G. Hevesy, Das Element
Hafnium. Berlin: Springer, 1927.

18About the controversy, see H. Kragh, “Anatomy of a priority conflict: The case of element 72.”
Centaurus. 23. 1980. 275–301.

19E. Scerri, “Prediction of the Nature of Hafnium from Chemistry, Bohr’s Theory and Quantum Theory.”
Annals of Science. 51. 1994. 137–150.

20About Polanyi’s life, see W. T. Scott, M. X. Moleski, SJ. , Michael Polanyi: Scientist and Philosopher.
Oxford: Oxford University Press, 2005.

21M. Polanyi, “Adsorption, Quellung und osmotischen Druck von Kolloiden,” Biochemische Zeitschrift,
66. 1914. 258–268., M. Polányi, ”Über Adsorption und Kapillarität vom Standpunkte des II. Haupt-
satzes,” Zeitschrift für physikalische Chemie, 88. 1914. 622–631., M. Polanyi, “Über die Adsorption
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This consequence of Polanyi’s potential theory of adsorption met serious disagree-
ments. In 1921, living already in Germany, Polanyi was invited to give an account of his
theory at the seminar of the Kaiser-Wilhelm Institute for Physical Chemistry and Elec-
trochemistry.22 Characteristically, the chemist audience, including Herbert Freundlich,
head of department and expert of adsorption, or Hermann Mark, found Polanyi’s the-
ory convincing because it was in harmony with the experimental data available then.23

However, Haber, Nernst and particularly the special guest, Albert Einstein strictly re-
fused it. “I survived the occasion only by the skin of my teeth.”—Polanyi remembered
in 1963.24

The attack was directed against the multimolecular layers of the adsorbed molecules
on the adsorbent. The critics thought it was impossible for two reasons. Firstly, because
Polanyi had no convincing theory on the nature of the attractive force originated in
the surface of the adsorbent. His thermodynamic argumentation was considered old
fashioned, which disregarded contemporary results of physics related to the electronic
character of the atomic and molecular forces, in particular, disregarded the nature of the
dipole interactions. The critics supposed that the van der Waals type forces decreased by
an inverse sixth power and that the dipole-dipole forces between the adsorbed molecules
were shielded out by the adsorbed molecules. They did not see any force to keep several
layers of the adsorbed molecules on the surface of the adsorbent.25

Secondly, the criticism referred to Polanyi’s negligence of Irving Langmuir’s adsorption
theory that was launched in 1916 and gradually became main stream. Langmuir relied on
the latest physical theories, including electronic structure of matter, electron pairs and
chemical bond. In his adsorption theory, Langmuir supposed that electrostatic forces
originate in the adsorbent, which are related to the valence of the molecules on the
surface of the adsorbent. Because of the range of this force, the gas molecules can only
constitute a monomolecular layer on the surface of the adsorbent. Langmuir published
an isotherm equation, the widely used Langmuir isotherm, and supported his theory by
elegant experimental results. Polanyi’s rival proved so persuasive that he received the
1932 Chemistry Nobel Prize.26

In spite of Einstein and Haber’s criticism and Langmuir’s success, Polanyi was con-
vinced about the value of his theory, even if was based on a 19th century physical
picture. His supposedly victorious argument came from quantum theory. Fritz London,

vom Standpunkt des dritten Wärmesatzes,” Verhandlungen der deutschen physikalischen Gesellschaft,
16. 1914. M. Polányi: Adsorption von Gasen (Dampfen) durch ein festes nichtflüssiges Adsorbens.
Verhandlungen der deutschen physikalischen Gesellschaft, 18. 1916. 55– 80. 1012–1016. Polanyi’s PhD
Theses: Polányi Mihály, Gázok (gozök) adsorbtiója szilárd, nem illanó adsorbensen. Doktori dissz-
ertáció. 30 o. Budapest, 1917.

22About Polanyi1s times in berlin see Mary Jo Nye, “Historical Source of Science-as-a-social-practice:
Michael Polanyi in Berlin,” Historical Studies in the Physical and Biological Sciences, 37. 2. 2007.
409–434.

23The chemists’ favorable reaction was reported in an interview with Hermann Mark. W. T. Scott, M.
X. Moleski, SJ. , Michael Polanyi, ref. 19. p. 74.

24M. Polanyi, “The Potential Theory of Adsorption”, Science, 141. 1963. 1010–3. Reprinted in: M.
Polanyi, Knowing and Being. London: Routledge & Kegan Paul, 1969. p. 97–104.

25W. T. Scott, M. X. Moleski, SJ. , Michael Polanyi, ref. 19. p. 73.
26Langmuir’s fundamental paper: I. Langmuir, “The adsorption of gases on plane surfaces

of glass, mica and platinum”, Journal of the American Chemical Society, 40. 1918, 1361–
1403. A wider view: I. Langmuir, ”Surface chemistry”, Nobel Lecture, December 14, 1932.
http://nobelprize.org/nobel prizes/chemistry/laureates/1932/langmuir-lecture.html
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one of the physicist founders of quantum chemistry, after moving to Berlin at the end of
the 1920s, regularly participated in the seminars at Haber’s institute. By then Polanyi
was a leading researcher of the institute, the head of a section, out of two sections of
the institute. (The other section’s head was Herbert Freundlich, chemist, an expert of
adsorption.) In 1930, London published a quantum mechanical calculation on a weak
force, called dispersion force, working between two dipoles.27 From Polanyi’s point of
view dispersion force had two particularly important features. Firstly, it was not elec-
tric, therefore, shielding out does not occur. Secondly, its range above the adsorbent
decreased by an inverse third power, rather than sixth powers as in the case of the van
der Waals type forces, meaning that the range of dispersion force was much larger than
the range of the van der Waals force. It seemed large enough to create more than one
layers on the surface of the adsorbent. Polanyi cooperated with London in calculating
the dispersion force working in the case of adsorption and they could identify disper-
sion force with Polanyi’s adsorption potential, just the way he described in his study it
in 1914 and 1916.28 With his collaborators in Haber’s institute, mainly H. Goldman,
Polanyi created an apparatus for experimental research of adsorption by which they
thought they confirmed the potential theory and the multilayer image of adsorption.

According to William Scott, Polanyi’s biographer, in the early 1930s Polanyi felt
great satisfaction seeing his original theory of adsorption to be justified.29 Historian
Mary Jo Nye added that in 1932, Polanyi’s colleague, Herbert Freundlich published a
paper intending to compromise between the two rival theories. Polanyi thought that
Langmuir’s formula was a simplistic idealization that can be derived as a special case
from his theory. Although he thought that his theory was firm and well founded, Polanyi
knew that it did not gain wide acceptance.30 Scott cited a letter written by Polanyi to
a friend: “Whose fate is better, mine or Langmuir’s? My theory is absolutely right but
not accepted. Langmuir’s theory is wrong but very famous... Langmuir is better off.” 31

Polanyi fled to Britain from Hitler in 1933, and gradually changed from chemistry to
philosophy. In 1958, he published Personal knowledge, a very influential book on the
philosophy of science inspired by cultural, moral, political and of course scientific com-
mitments.32 Indeed, commitment was one of Polanyi’s central categories besides tacit
knowledge, focal and subsidiary awareness and others. All these served as conceptual
instruments to analyze discoveries, rather than justification, unlike the main stream con-
temporary philosophy of science that divided scientific research between the context of
justification and discovery. Discovery was considered contingent, psychological, and soci-
ological, an inappropriate subject for rational philosophical reflections. Polanyi thought

27F. London, “Theorie und Systematik der Molekularkräfte,” Zeitschrift für Physik, 63. 1930. 245–279.,
F. London, “Properties and applications of molecular forces”, Zeitschrift für Physikalische Chemie
(B), 11. 1930. 222–251. R. Eisenschitz, F. London, “Über das Verhaltnis der van der Waalsschenkräfte
zu den homoopolaren Bindungskräften,” Zeitschrift für Physik, 60. 1930. 491.

28F. London, M. Polanyi, “Über die atomtheoretische Deutung der Adsorptionskräfte,” Die Naturwis-
senschaften, 18. 1930. 1099–1100.

29W. T. Scott, M. X. Moleski, SJ. , Michael Polanyi, ref. 19. p. 126.
30Mary Jo Nye, “Michael Polanyi’s Theory of Surface Adsorption: How Premature?,” In: E. B. Hooke

(ed.), Prematurity in Scientific Discovery: On Resistance and Neglect. Berkeley: University of Cali-
fornia Press, 2002. 151–164.

31W. T. Scott, M. X. Moleski, SJ. , Michael Polanyi, ref. 19. p. 112.
32M. Polanyi, Personal Knowledge. London: Routledge and Kegan Paul, 1958; Chicago: Chicago Uni-

versity Press 1958.
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that scientific ideas were born before research, as a kind of preliminary knowledge or
belief, and research in fact articulates, justifies the ideas instead of producing them.
Therefore, the precondition of a good research work is to believe in an idea that emerges
in the course of doing science. His whole philosophy was about and based on belief and
commitment whether speaking about science, epistemology, ethics, religion, or esthetics.

Although Polanyi worked out his philosophy several decades later than he had received
criticism from his peers concerning his potential theory of adsorption, one cannot resist
thinking that his behavior was motivated by his deep belief in and commitment to
the multilayer model. When working it out, he was a young researcher, just left his
country behind, lacking any shelter, any family or colleagues network, working on a
field, physical chemistry, without proper basic training and receiving sharp criticism
from leading experts of science. Polanyi needed that strong belief and commitment to
his belief for not giving up, not fleeing from science. He was looking for justification. In
1963, remembering his adventure with the potential theory of adsorption, Polanyi wrote
in Science that after the criticism he had received “my belief in my theory was quite
unshaken...”.33 He continued in this way: “I became immune to these objections, but I
remained powerless to refute them.”34 Eugen Wigner, Polanyi’s student had a different
impression. He thought even Polanyi might had some doubts concerning his own theory
of adsorption: “The writer of these lines [Wigner] remembers that when he pointed
to some experimental data strongly supporting the multilayer character of adsorption,
Polanyi was quite taken aback.”35

According to Mary Jo Nye, by 1930 after about twenty years research work “the
old-fashioned potential gradient now had a firm theoretical basis in the new quantum
mechanics.”36 By that time, however, the Langmuir approach rooted deeply in physical
chemistry. Nevertheless, potential theory of adsorption stayed alive. Both Mary Jo Nye
and William Scott showed that the theory found its way in the textbooks of chemistry.
I can add that in the 1950s and 60s, the Hungarian physical chemistry and colloid
chemistry textbooks also contained detailed descriptions of it with modernized versions,
including that of M. Dubinin.37 Multilayer adsorption theory has finally been accepted
in the main stream.

Conclusions

The two cases, the histories of the discovery of hafnium and the potential theory of
adsorption did not exemplify the reduction of chemistry to physics, although in both
cases quantum physics played a crucial role. In both cases, chemistry seemed helpless in
deciding controversial issues. A renowned authority in the field of rare earth chemistry,

33M. Polanyi, “The Potential Theory of Adsorption”, ref 23. p. 89.
34Ibid. p. 91.
35E. P. Wigner, R. A. Hodgkin, “Michael Polanyi, 12 March 1891 – 22 February, 1976,” Biographical

Memoirs of Fellows of the Royal Society, 23. 1977. 412–448.
36T. Erdey-Gruz, G. Schay, Elméleti Fizikai Kémia (Theoretical Phisical Chemistry), Budapest:

Tankönyvkiado, 1952–1954. The potential theories of adsorption are discussed (in the fourth edi-
tion published in 1964) in Vol. 2. p. 389–400. E. Wolfram, Kolloidika, (lecture notes for chemistry
students of the Eötvös Lorand University) Budapest: Tankönyvkiado, 1965. p. 156–159.

37Mary Jo Nye, “At the Boundaries: Michael Polanyi’s Work on Surfaces and the Solid State,” In: C.
Reinhardt (ed.), Chemical Sciences in the 20th Century. Weinheim: Wiley-VCH, 2001. p. 249.
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George Urbain concluded that element 72 was a rare earth, while some other chemists
thought it was not. None of the arguments were entirely convincing to the chemical com-
munity that inclined to accept Urbain’s position concerning celtium. Bohr’s quantum
theory was not considered decisive for chemists. However, Bohr’s theory provided strong
arguments to Hevesy to search for hafnium in a non rare earth mineral. In chemistry,
the preparation of the new element counted as the strongest argument for the existence
of this element, and the derivation from the first principles of physics did not matter
very much. Bohr’s model was not an attack against the border of chemistry, rather a
useful heuristic instrument that helped chemists to interpret chemical phenomena, even
after the model proved fallacious.

The history of adsorption showed some similar features. In working out his potential
theory, Polanyi relied on the classical thermodynamics used by physical chemistry that
he learned in Budapest mainly from Walter Nernst’s book, Theoretical Chemistry.38

Polanyi’s approach was criticized referring to a pre-quantum mechanical view of mo-
lecular forces. Polanyi’s adsorption potential gained solid theoretical foundation from
quantum physics, sixteen years after its construction. However, in this case, foundation
did not mean a deduction from first principles. The disadvantage of Polanyi’s theory was
that it failed to produce an equation for adsorption isotherms. Such a formula would
have been considered a real analytical approach in the sense of physicalism. Adsorp-
tion has not been deduced from quantum physics or quantum chemistry, but it could
be interpreted by it. Consequently, potential theory of adsorption remained behind the
boundaries of physical chemistry, while it needed the quantum theoretical interpretation.

Our two cases revealed that quantum physics could play important role in chem-
istry without completely reducing it to physics. Sociologically, this was expressed by
the cooperative efforts in our cases. Simoes and Gavroglu described the differences be-
tween the early German and American quantum chemistry schools in terms of the main
character’s relationship with chemistry, finding that the German quantum chemistry
community consisted of physicists, while the Americans of chemists.39 Our cases showed
that in the European continent, including Germany fruitful cooperation was established
between the two fields. In the case of hafnium, the chemist Hevesy cooperated with the
physicist Bohr, in adsorption theory the chemist Polanyi with the physicist Fritz Lon-
don. The representatives of the two disciplines walked to the boundary from two different
directions and proceeded together peacefully along the border without any sorrow fight.

38W. T. Scott, M. X. Moleski, SJ. , Michael Polanyi, ref. 19. p. 25. Probably, it was an edition of Walther
Nernst, Theoretische Chemie vom Standpunkte der Avogadroschen Regel und der Thermodynamik.
Stuttgart: Verlag von Ferdinand Enke, 1st edition, 1893.

39K. Gavroglu, A. Simões, “The Americans, the Germans, and the beginnings of quantum chemistry:
The confluence of diverging traditions,” Historical Studies in the Physical Sciences, 25(1). 1994. 47–110.
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16 Computational Imperatives in Quantum
Chemistry

Buhm Soon Park

In the traditional narrative of the history of quantum physics, the problem of chemical
binding appears only briefly at the end of the long march toward the formulation of a
new mechanical system. This is usually introduced as one of the exemplary problems
that quantum mechanics solved, thereby validating its general applicability. Singularly
recognized as ground-breaking is Walter Heitler and Fritz London’s 1927 paper, which
gave a theoretical explanation of why two hydrogen atoms combine to form a molecule.1

Thereafter, Heitler and London were optimistic about understanding the whole territory
of chemistry with quantum mechanics, and their reductionist ideal was shared by other
physicists, including P. A. M. Dirac, who made a famous statement that “the underlying
physical laws for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known.”2 Indeed, the excitement about the new theo-
retical framework was abound in the late 1920s, as the historian Max Jammer put it:
“Satisfied that the theory “works,” since it provided unambiguous answers whenever in-
voked, physicists engaged themselves rather in solving problems which so far had defied
all previous attempts or which promised to open up new avenues of research.” According
to him, Heitler and London’s work “eventually brought the whole of chemistry under
the sovereignty of quantum mechanics.”3

Intriguing is the fact that historians of quantum physics, including Jammer, have
paid little attention to whether the reductionist program worked well or faced diffi-
culties in chemistry after 1927. They tend to believe that quantum chemistry, a new
field of study that came into being after Heitler and London’s paper, would successfully
carry the mission of reducing chemistry to physics. Historians of quantum chemistry
are rather critical of this picture. They have shown that the early optimism about re-
ductionism quickly subsided into pessimism in the 1930s in the face of complexity of
chemical systems, and that quantum chemistry was developed into a discipline with di-
verse methodologies, indigenous languages, and separate institutional bases.4 To them,
the acceptance of quantum mechanics in chemistry does not necessarily mean the re-

1Walter Heitler and Fritz London, “Wechselwirkung neutraler Atome und homöopolare Bindung nach
der Quantenmechanik,” Zeitschrift für Physik, 46 (1927), 455–72.

2P. A. M. Dirac, “Quantum Mechanics of Many-Electron Systems,” Proceedings of the Royal Society,
A123 (1929), 714–33, quote on p. 714.

3Max Jammer, The Conceptual Development of Quantum Mechanics, 2nd ed. (College Park, MD:
American Institute of Physics, 1989), pp. 359–60, 384–86.

4Kostas Gavroglu and Ana I. Simões, “The Americans, the Germans, and the Beginnings of Quantum
Chemistry: The Confluence of Diverging Traditions,” Historical Studies in the Physical and Biolog-
ical Sciences, 25 (1994), 47–110; Mary Jo Nye, From Chemical Philosophy to Theoretical Chemistry
(Berkeley: University of California Press, 1993).
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duction of one discipline to another. While I agree on this point of view in general, I
want to point out that the historians of quantum chemistry have not fully examined,
either, the subsequent development of mathematical tools and conceptual devices to
solve the Schrödinger equation for multi-electron atomic or molecular systems without
using empirical data. This paper aims to reassess the place of the pioneers of ab initio
methods in the history of quantum physics or quantum chemistry.5 I first examine who
they were, why they got interested in computations, and how they improved agreement
between theory and experiment. And then I show that their computation-oriented work
was undervalued by some leading scientists, whose attitude has significantly affected the
current historiography of quantum physics and chemistry.

Heitler and London’s 1927 Paper

In 1927, two German physicists, Walter H. Heitler and Fritz London, published a paper
in which they treated the hydrogen molecule with quantum mechanics and studied the
source of its binding energy. This paper was quantum mechanics’ first step toward
chemistry, almost single-handedly creating the new field of quantum chemistry. In view
of the significance of this paper, it is interesting to note that the encounter of Heitler and
London was incidental, and that their collaboration was short-lived. Both Heitler and
London were products of the University of Munich, trained in different areas: London
took his Ph.D. in philosophy in 1921 and spent some years in a teaching job before
he decided to study theoretical physics under Sommerfeld; and Heitler worked on the
theory of concentrated solutions for his doctoral degree, which he got in 1925, and went
to Copenhagen to continue his work on physical chemistry with Niels Bjerrum. Their
paths converged in 1927 when each of them received the Rockefeller Fellowship and went
to Zurich to learn wave mechanics under Schrödinger. After publishing their joint paper,
Heitler and London continued to study the problem of the chemical bond for some years,
but subsequently their interests diverged, Heitler moving into the quantum field theory
and London into superconductivity.6

Heitler and London’s basic idea was to regard the molecule as composed of atoms, a
view which was not different from the traditional conception of the molecule in chem-
istry.7 But Heitler and London adopted it as part of applying the approximation tech-
nique known as the perturbation method, which had been developed in celestial me-
chanics and used in the old quantum theory. Assuming that the atoms were set apart
at the infinite internuclear distance, they first approximated the wave function (Ψ) of
the hydrogen molecule with known eigenfunctions of the hydrogen atom, Ψ1ϕ2, where
Ψ1 was the eigenfunction of electron 1 at nuclei a and ϕ2 was that of electron 2 at nuclei
b. At this point, the interaction between the atoms could be neglected. However, as
the atoms came closer to each other, one could not ignore the interatomic interaction.
Heitler and London regarded this interaction among two electrons and two nuclei as the

5The term ab initio, which means “from the beginning,” was first used around 1950. Peter W. Atkins,
Quanta: A Handbook of Concepts, 2nd ed. (Oxford: Oxford University Press, 1991), p. 1.

6Nevill F. Mott, “Walter Heinrich Heitler,” Biographical Memoirs of the Fellows of the Royal Society, 28
(1982), 141–51; and Kostas Gavroglu, Fritz London: A Scientific Biography (Cambridge: Cambridge
University Press, 1995).

7For reactions to Heitler and London’s paper, see Gavroglu, Fritz London, pp. 51–3; Gavroglu and
Simoes, “The Americans, the Germans, and the Beginnings of Quantum Chemistry,” pp. 70–75.
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perturbation of the system.
Here, Heitler and London found that the perturbation included not only the usual

Coulombic interaction between electrons but also a possibility of electron exchange
(“Austausch”). For one could not know which electron was located near which nu-
clei: that is, the electrons were indistinguishable. Therefore, ϕ1Ψ2 being as acceptable
an approximation of Ψ as Ψ1ϕ2, the correct representation would be linear combinations
of Ψ1ϕ2 and ϕ1Ψ2:

Ψα =
1√

2 + 2S
(Ψ1ϕ2 + Ψ2ϕ1)

Ψβ =
1√

2− 2S
(Ψ1ϕ2 −Ψ2ϕ1)

where S (overlap integral) was
∫

Ψ1ϕ1Ψ2ϕ2 dτ . Putting these values into the Schrödinger
equation, whereR is the internuclear distance, r12 the distance between the two electrons,
ra1 the distance between the nucleus a and the electron 1, and so on,

∇2
1Ψ +∇2

2Ψ +
8π2m

h2

{
E −

(
e2

R
+
e2

r12
− e2

ra1
− e2

ra2
− e2

rb1
− e2

rb2

)}
Ψ = 0,

they obtained two different energy levels, Eα and Eβ:

Eα = E11 −
E11S − E12

1 + S
=
E11 + E12

1 + S

Eβ = E11 +
E11S − E12

1− S
=
E11 − E12

1− S
where E11 and E12 were integrals of the following form,

E11 =
∫ [(
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2
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2
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2
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dτ

E12 =
∫ (

2e2

r12
+

2e2

R
− e2

ra1
− e2

ra2
− e2

rb1
− e2

rb2

)
Ψ1ϕ2Ψ2ϕ1

2
dτ

After obtaining this mathematical expression for the energy of H2, Heitler and London
considered the physical meaning of Eα and Eβ and their components, E11 and E12. It
was certain that E11 had to do with the “Coulombic interaction of the present charge
distribution,”8 and that this integral could be solved analytically as a function of the
internuclear distance, R. In contrast, E12 did not permit such a simple, classical inter-
pretation as E11 did. Moreover, it was difficult to calculate all the integrals involved
in E12, particularly the one known as the exchange integral,

∫ Ψ1ϕ2Ψ2ϕ1

r12
dτ . Heitler

and London circumvented this difficulty by considering only its upper limit, and drew
approximate graphs of Eα and Eβ. (see Fig. 18.1)

According to this energy diagram, Eβ represented a repulsion between the atoms at
any internuclear distance; Eα showed an attraction at a larger distance and a repulsion
at a smaller distance, having a minimum value when the internuclear distance R was 1.5

8Heitler and London, “Wechselwirkung,” 461.
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Figure 16.1: Heitler and London’s energy diagram of the hydrogen molecule. Eα represents
nonpolar attraction; Eβ elastic reflection; and E11 coulomb interaction.

a0 or 0.8 Å. From the graph of Eα, the corresponding dissociation energy or the binding
energy was about 2.4 eV.9

Heitler and London did not compare their theoretical values with observed ones, pre-
sumably because the agreement was not particularly good for the binding energy. But
they seemed to place less emphasis on the quantitative argument than on the inter-
pretative promise of their treatment, which explained the attraction between the two
non-polar hydrogen atoms without considering perturbation by polarization. This was
due to the electron exchange, a “characteristic quantum-mechanical effect.” Represented
by the integral E12, the exchange effect affected Eβ as the van der Waals repulsion (“elas-
tic reflection”) of two hydrogen atoms; and it contributed to Eα as the strength of the
molecular binding (i.e., the chemical bond).10

9Kostas Gavroglu and Ana Simões have mistakenly said that Heitler and London obtained 72.3 kcals
(about 3.2 eV) for the binding energy of the hydrogen molecule. Gavroglu and Simões, “Quantum
Chemistry,” p. 63; and Gavroglu, Fritz London, p. 47. As I will show, this value was in fact obtained
by Yoshikatsu Sugiura, who computed the exchange integral which Heitler and London had roughly
estimated.

10Heitler and London, “Wechselwirkung,” pp. 460–63.
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What was the nature of this exchange effect? Why did non-polar hydrogen atoms
interact in two different ways, attraction and repulsion? Heitler and London could
conveniently define the frequency of exchange by the energy difference of Eα and Eβ

divided by the Planck constant, Eβ−Eα
h . But they found it difficult to characterize this

effect in the language of classical mechanics. At least, they saw the exchange effect
as “closely related with the quantum mechanical resonance phenomenon” introduced by
Werner Heisenberg a year earlier for the problem of helium,11 in that both resonance and
exchange originated from the indistinguishability of electrons. Yet Heitler and London
noted some subtle differences: “While, in resonance, electrons of different energy levels
in the same set of eigenfunctions exchange their energy, here, electrons of the same
state (the same energy) yet different eigenfunction systems (Ψ and ϕ) exchange their
places.”12

The interpretation of Eα and Eβ was important in another way. The Pauli exclusion
principle required Eα to be an energy state in which the electrons were in opposite spin
orientations (antiparallel); and Eβ, in the same orientation (parallel). Therefore, the
electronic spin state was a useful indicator of the molecular formation: the antiparallel
spin state led to the attraction (thus, bonding), while the parallel one corresponded to
the unstable excited state. In other words, the chemical bond resulted from the pairing
of electrons of different spin orientations, and valence was predicated on this pairing.
This established a connection between the spin theory of valence and the Lewis theory
of paired-electron bond which London elaborated in his papers of 1928.13

Toward Better Agreement between Theory and Experiment

The further development of Heitler and London’s treatment of the hydrogen molecule
went in two directions. On the one hand, two Americans, John C. Slater and Linus
Pauling, applied Heitler and London’s interpretative scheme to polyatomic molecules,
explaining the directed property of valence with the concept of hybridization.14 On the
other hand, there were those who attempted to make the Heitler and London approach
acceptable quantitatively as well as qualitatively. They calculated the exchange inte-
gral, employed physical and chemical insights to narrow the gap between theory and
experiment, and even developed different kinds of computational schemes.

The first step in this direction was made by Yoshikatsu Sugiura, who came from

11Werner Heisenberg, “Mehrkörperproblem und Resonanz in der Quantenmechanik,” Zeitschrift für
Physik, 38 (1926), 411–26. On the origins of the resonance concept in physics and its use in chemistry,
see Cathryn Carson, “The Peculiar Notion of Exchange Forces—I: Origins in Quantum Mechanics,
1926–1928,” Studies in History and Philosophy of Modern Physics 27 (1996), 23–45; Buhm Soon Park,
“Chemical Translators: Pauling, Wheland and Their Strategies for Teaching the Theory of Resonance,”
British Journal for the History of Science, 32 (1999), 21–46. On Heisenberg’s study of helium, see
Jagdish Mehra and Helmut Rechenberg, The Historical Development of Quantum Theory, vol. 3: The
Formulation of Matrix Mechanics and Its Modifications, 1925–1926 (New York: Springer-Verlag,1982),
pp. 282–301.

12Heitler and London, “Wechselwirkung,” p. 461. For Heitler and London’s concern about
(mis)interpretation of exchange effect, see Gavroglu and Simoes, “Quantum Chemistry,” pp. 61–5.

13Heitler and London, “Wechselwirkung,” pp. 465–8. Fritz London, “Zur Quantentheorie der homöopo-
laren Valenzzahlen,” Zeitschrift für Physik, 46 (1928), 455–77; and idem, “Zur Quantenmechanik der
homöopolaren Valenzchemie,” Zeitschrift für Physik, 50 (1928), 25–51.

14Buhm Soon Park, “The Contexts of Simultaneous Discovery: Slater, Pauling, and the Origins of
Hybridisation,” Studies in the History and Philosophy of Modern Physics, 31 (2000), 451–474.
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Japan to Europe to learn the new quantum theory in the late 1920s. Thanks to Max
Born at Göttingen, Sugiura had an opportunity to read Heitler and London’s paper
before its publication. Finding that they did not calculate the exchange integral, Sugiura
plunged into this problem. In August 1927, he obtained the solution of the integral E12

as a function of the distance between the two atoms through a complex procedure of
mathematical manipulation involving a power series expansion.15

Figure 16.2: Sugiura’s energy diagram for the hydrogen molecule: Sugiura’s notations of V (s)
1,1

and V
(a)
1,1 correspond to Heitler and London’s E11 and E12.

Sugiura showed that the equilibrium separation of H2 was the same as Heitler and
London’s value, 0.8Å. But his calculation of the binding energy was 3.2 eV, which was
closer to the then available empirical value, 4.4 eV, than Heitler and London’s had been.
The agreement was, in his opinion, satisfactory.

Shou Chin Wang, a Chinese physicist studying at the University of Columbia for his
doctoral degree, was one of those interested in the problem of the hydrogen molecule.
Although his thesis adviser was an old-fashioned mathematical physicist, Wang had a
chance to learn quantum mechanics by reading the latest issues of Zeitschrift für Physik
in a study group led by Ralph Kronig.16 Wang’s approach was basically the same as
15Yoshikatsu Sugiura, “Über die Eigenschaften des Wasserstoffmoleküls im Grundzustande,” Zeitschrift

für Physik, 45 (1927), 484–92. On Born’s guidance, see ibid., p. 492.
16Katherine R. Sopka, Quantum Physics in America, 1920–1935 (New York: Arno Press, 1980), pp.
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Heitler and London’s in that he formed a linear combination of wave functions assum-
ing atomic individuality in the molecule.17 However, Wang attacked the problem with
a different mathematical technique. Instead of calculating the perturbation energy, he
adopted what had been known as the Ritz method or the variation method, in which
one could determine the coefficients of the linear combination in a way that gave the
lowest possible energy value. This method had been successfully applied to the problem
of helium by the German physicist Georg W. Kellner.18 In addition, Wang was also
attracted to Kellner’s use of the effective nuclear charge Ze as a variable parameter,
which took into account the screening effect of electrons over nuclei—the effect that the
electronic orbits are contracted into a smaller region because of the Coulombic attrac-
tion between electrons and nuclei. Putting the effective nuclear charge into the hydrogen
eigenfunctions, Wang finally obtained improved results: the equilibrium separation was
0.73 Åand the dissociation energy 3.76 eV. When he had almost completed his paper,
Wang received the latest issue of Zeitschrift für Physik containing Sugiura’s paper. Nev-
ertheless, Wang was confident that his work was worthy of publication for the reason
that he “used a new method of calculation and arrived at some results in a little better
agreement with the experimental data than Sugiura’s.”19

Sugiura and Wang did not attempt to make further improvements of their calcula-
tions.20 But the persistent discrepancy between theory and experiment continued to
attract attention from young scientists like Nathan Rosen. Rosen was to be best known
later as one of the co-authors of the Einstein-Podolsky-Rosen (EPR) paradox, which was
devised to criticize the Copenhagen interpretation of quantum mechanics in 1935. But
in the early 1930s, Rosen worked on the problem of H2 as a graduate student of Slater at
MIT. According to Rosen, previous treatments of this problem were “hitherto success-
ful qualitatively but not quantitatively.”21 He maintained that there should be a better
way to inquire as to the various complicated interactions between atoms, such as the
distortion of the charge distribution. Rosen valued Wang’s treatment of this distortion

3.48–3.50, and p. 3.102.
17Shou C. Wang, “The Problem of the Normal Hydrogen Molecule in the New Quantum Mechanics,”

Physical Review, 31 (1928), 579–86.
18Georg W. Kellner, “Die Ionisierungsspannung des Heliums nach der Schrödingerschen Theorie,” Zeit-

schrift für Physik, 44 (1927), 91–112.
19Wang, “Hydrogen Molecule,” p. 579.
20After his research trip in Europe, Sugiura returned to Tokyo to join the Institute of Physical and

Chemical Research (Riken), which had been established in 1917, modeled after Germany’s Impe-
rial Institute for Physics (Physikalisch-Technische Reichsanstalt). Along with Bunsaku Arikatsu and
Woshio Nishina, Sugiura also lectured on quantum mechanics at Kyoto from 1929 to 1931, spreading
the “Copenhagen spirit.” Among his students were the future Nobel laureates, Hideki Yukawa and
Shinichiro Tomonaga. See Hideki Yukawa, Tabibito, trans. L. M. Brown and R. Yoshida (Singapore:
World Scientific, 1982), pp. 176–7. For the context for the establishment of Riken, see Itakura Kiyonobu
and Yagi Eri, “The Japanese Research System and the Establishment of the Institute of Physical and
Chemical Research,” in Science and Society in Modern Japan, ed. Nakayama Shigeru, David L. Swain,
and Yagi Eri (Cambridge: MIT Press, 1974), pp. 158–201. In comparison, Wang continued to study
the new quantum mechanics and atomic theory at Wisconsin and Chicago on a National Research
Fellowship in 1928–29. Like Sugiura, however, he finally went back to his own country, China, to teach
modern physics at the University of Chekiang and later at Peking University. For Wang’s professional
career, see National Research Council, National Research Fellowships, 1929–1944 (Washington, D.C.:
National Research Council, 1944), p. 37.

21Nathan Rosen, “The Normal State of the Hydrogen Molecule,” Physical Review, 38 (1931), 2099–114,
quote on 2099.
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with the altered atomic radius; but to him, it was “rather far from the goal.” Noting
that atomic interactions might occur along the molecular axis rather than symmetrically
about a sphere, he assumed that the electronic cloud of an atom would be polarized or
“bulge out” toward its binding partner. His consideration of the “polarization effect”
gave an improved value of the binding energy, 4.02 eV.

By the early 1930s, it had been known that one of the weaknesses in the Heitler and
London approach was its neglect of the possibility of ionic configurations in molecules.
Sidney Weinbaum examined this problem under the guidance of Pauling at the California
Institute of Technology (Caltech). He added ionic terms to wave functions originally
proposed by Heitler and London, finding an improvement in the binding energy of 0.0031
eV or 3 percent over Sugiura’s value.22 He also showed that the consideration of the
effective nuclear charge plus the ionic term would yield an improvement of 8 percent
over Wang’s value, a result which was almost equivalent to Rosen’s. The addition of
Rosen’s term into the Wang-ionic treatment turned out to give the best value, 4.10 eV,
among the ones obtained by Heitler and London’s method.

In 1933, Hubert M. James and Albert S. Coolidge obtained by far the most accurate
theoretical value, using the coordinate of the interelectronic distance, the method de-
veloped by the Norwegian physicist Egil Hylleraas for helium.23 James and Coolidge
were at Harvard University: James as a physics graduate student working toward his
doctoral degree, and Coolidge as a chemistry professor. Though from different depart-
ments, they had a common background in that both learned quantum mechanics in
Edwin C. Kemble’s lectures. And their initial collaboration took place, at Kemble’s sug-
gestion, when they checked each other’s calculations for quantum mechanical treatments
of the chlorine molecule (by James) and the water molecule (by Coolidge).24 During his
calculations, James found that Cl2 was too complex to be handled by the Heitler and
London method, and thus changed his problem to a much simpler one, that of the lithium
molecule. Here, he soon realized that “all calculations made up to that time on molecules
with inner shells [like Li2] were unreliable, some apparently good results being due to
cancellation of several serious approximations.” This time, James looked for a better
method of approximation. “I completed this work [on Li2] in the summer of 1932. while
I was on vacation at my home in West Virginia,” he recalled. “The result brought me to
look for a better method than that of Heitler and London for the treatment of molecules,
and I naturally did this in the context of the simplest typical molecule, H2.”25

James and Coolidge abandoned the fundamental assumption of the Heitler and London
method, i.e., the atomic individuality. Instead of approximating the molecular wave
function with the atomic eigenfunctions, they started with a trial function having many

22Sydney Weinbaum, “The Normal State of the Hydrogen Molecule,” Journal of Chemical Physics, 1
(1933), 593–6.

23Hubert M. James and Albert S. Coolidge, “The Ground State of the Hydrogen Molecule,” Journal of
Chemical Physics, 1 (1933), 825–35.

24In fact, Hubert M. James started his graduate study in the chemistry department in 1928. But after
finding that his interests were in mathematics and physics, he switched over to the physics department.
For James’s switch and Kemble’s role in the James-Coolidge collaboration, see James to Spencer R.
Weart, May 1980, American Institute of Physics Early 1930s Ph.D. Project, “Hubert James,” MB
31484.

25James to Sopka, 9 May 1972, quoted in Sopka, Quantum Physics, pp. 4.87–4.88.
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variable parameters:
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where λ1, λ2, λ3, and λ4 were four elliptic coordinates of the following relations,

λ1 =
r1a + r1b

R
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R
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R
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r2a − r2b

R

and the fifth coordinate, ρ = 2r12
R , had the interelectronic distance in it. The summation

was to extend over the positive or zero values of the indices, with the restriction that
j+k must be even, which was required by nuclear symmetry. The function was also able
to take as many terms as necessary to give an acceptable approximation for the energy.
To examine the behavior of this function, James and Coolidge fixed the equilibrium
distance (R) at 1.4 a0 (or 0.74 Å), and the exponent (δ) at 0.75 a0, and then solved a
set of equations which came from the condition of making values of the C’s minimize
the energy.

It turned out that the inclusion of several terms could lead to an energy value much
better than any previously reported. As the number of terms increased, the improvement
slowed. The computations became more and more laborious, because the incorporation
of each new term required the computation of numerous integral terms. The success
of James and Coolidge’s treatment was immediately recognized as a “thoroughly sat-
isfactory treatment of the normal hydrogen molecule, the only improvement which we
may look forward to being the increase in accuracy by the inclusion of further terms.”26

And their paper was also praised as showing that Schrödinger’s equation was reliable
for molecules as well as atoms. Charles A. Coulson later said, “It is not unreasonable to
claim that their highly laborious calculations, yielding such an excellent final result, rep-
resent one of the most satisfactory ‘proofs’ of the validity of the original wave equation
when applied to problems with more than one electron.”27

James and Coolidge’s success was a source of optimism that molecular properties could
be computed with only the Schrödinger equation and several fundamental constants, such
as the electronic charge (e), the electronic mass (me), Planck’s constant (h), the atomic
number (Z), and the masses of the nuclei involved, with no further empirical data.
In another sense, however, James and Coolidge’s success was a source of pessimism:
the amount of computation was simply formidable. Thus textbook writers of quantum
chemistry noted:
26Pauling and Wilson, Quantum Mechanics, p. 351.
27Charles A. Coulson, Valence (Oxford: Clarendon Press, 1952), p. 118. See also Henry F. Schaefer III,

Quantum Chemistry: The Development of Ab Initio Methods in Molecular Electronic Structure Theory
(Oxford: Clarendon Press, 1984), pp. 1–2.
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Maximum Equilibrium
Type of Wave Function Binding Separation

Energy (De) (re)

Heitler-London, rough estimation 2.4 0.8
(Heitler and London, 1927)
Heitler-London, computed 3.14 0.87
(Sugiura, 1927)
Heitler-London with screening 3.76 0.73
(Wang, 1928)
Heitler-London with screening + polarization term 4.02 0.74
(Rosen, 1931)
Heitler-London + ionic term 3.21 0.90
(Weinbaum, 1933)
Heitler-London with screening + ionic term 4.00 0.74
(Weinbaum, 1933)
Heitler-London with screening + polarization term 4.10 -
+ ionic term (Weinbaum, 1933)
Trial Function with the interelectronic coordinate
(James and Coolidge, 1933)

one term 2.56 0.74
five terms 4.507 0.74
eleven terms 4.682 0.74
thirteen terms 4.697 0.74

Experiment 4.725 0.74

Table 16.1: Quantum-mechanical calculations of the binding energy and equilibrium separation of
the hydrogen molecule from 1927 to 1933. Source: John H. Van Vleck and Albert Sherman, “The
Quantum Theory of Valence,” Reviews of Modern Physics, 7 (1935), 167–228. The molecular
orbital approximation performed poorly even with the consideration of the screening effect. See
Charles A. Coulson, Valence (Oxford: Clarendon Press, 1952), p. 119.

However, the labor involved in these calculations is so great even for these
simple systems [like He, H+

2 , and H2] that it does not appear to be a prof-
itable method of attack on molecular problems in general. Because of the
mathematical difficulties involved, we are forced to use much less accurate
approximations; usually we are forced to write the wave function as some
linear combination of one-electron wave functions. Although these will not
give satisfactory quantitative results, they should in general be qualitatively
correct, and should enable us to correlate experimental chemical facts.28

As James found, “a good fortune” of unjustified approximations could provide remark-
ably good results for diatomic molecules, such as Li2, LiH, Na2, K2, and KH.29 One
of the often used assumptions was to consider only the valence electrons, that is, to
ignore the other electrons in the closed inner shells, when dealing with the binding en-
ergy of molecules larger than hydrogen. Neglect of the inner-shell electrons gave a nice

2828 Henry Eyring, John Walter, and George E. Kimball, Quantum Chemistry (New York: John Wiley
& Sons, 1944), p. 217.

29Hubert M. James, “Wave-Mechanical Treatment of the Li2 Molecule,” Journal of Chemical Physics, 2
(1934), 794–810; and idem, “Wave-Mechanical Treatment of the Molecule Li+2 ,” Journal of Chemical
Physics, 3 (1935), 9–14. See also John H. Van Vleck and Albert Sherman, “The Quantum Theory of
Valence,” Reviews of Modern Physics, 7 (1935), 167–228, esp. 185–6.
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agreement between the calculated and observed values of the binding energy of Li2, but
James showed that the consideration of inner-shell electrons would completely destroy
the agreement. The rigorous treatment gave poorer results than the rough one! It
was called “the nightmare of inner shells.”30 In fact, James proposed a remedy for this
problem: describe valence electrons with the same function as he and Coolidge had de-
vised for hydrogen, and treat non-valence electrons by means of simple atomic orbitals.
However, computational difficulties in this procedure, especially considering r12 terms
in the presence of other electrons, were insurmountable. James could only conclude: “In
principle, then, we appear to have a way in which to treat diatomic molecules with any
desired precision. Unfortunately, the limits of human patience restrict the usefulness of
the complete method.”31

James and Coolidge continued their collaboration until 1940, working on polyatomic
molecules, but with no notable success.32 Their research program demanded intensive
labor with the then available computing facilities. It was only after the war that human
patience was greatly relieved by the development of electronic digital computers33; and
the field of rigorous computations of molecular properties was then opened up again.
But James and Coolidge, like other workers involved in the H2 problem, never returned
to the field. Paradoxically, James and Coolidge’s work heralded the coming of the “dark
ages” of the ab initio method.34

From Helium to Many-Electron Atoms

The point of departure for the problem of many-electron atoms was, as always, the
normal helium atom: various approximation methods were first developed and tested
for helium before being applied to larger atoms. The criteria for testing a method, in
view of its further applicability, included the amount of labor in computations as well as
the degree of accuracy of computed results. The desideratum was that approximations
would make problems “manageable” without the expense of accuracy; but that was
difficult to achieve.

By 1930, an outstanding agreement between theory and experiment on the helium

30Van Vleck and Sherman, “Quantum Theory of Valence,” pp. 185–6.
31Ibid., pp. 186–90, quote on p. 190. This part of the review article was written by James. See footnote

37.
32James to Weart, May 1980, American Institute of Physics Early 1930s Ph.D. Project, “Hubert James,”

MB 31484. In 1940, James became an assistant professor at Purdue University, where his interests
were diverted to polymer and solid-state physics.

33Buhm Soon Park, “The ‘Hyperbola of Quantum Chemistry’: The Changing Identity and Practice of a
Scientific Discipline in the Early Years of Electronic Digital Computers, 1945–65,” Annals of Science
60 (2003), pp. 219–247.

34Schaffer, Ab Initio Methods, p. 4. Indeed the quantitative investigation of molecules, being limited
to relatively simple ones, languished in the late 1930s and 40s. Only a small number (seven) of
studies on the hydrogen molecule were reported in this period, and all of them, using various trial
functions, fell short of the accuracy of James and Coolidge’s. See A. D. McLean, A. Weiss, and
M. Yoshimine, “Configuration Interaction in the Hydrogen Molecule-The Ground State,” Reviews
of Modern Physics, 32 (1960), 211–8. Andrea I. Woody also points out the difficulty of applying
James and Coolidge’s method to other molecules, and sketches the development of the Configuration
Interaction method after the war. Andrea I. Woody, “Early Twentieth Century Theories of Chemical
Bonding: Explanation, Representation, and Theory Development (Quantum Chemistry)” (Ph.D. Diss.,
University of Pittsburgh, 1997).
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problem had been achieved by Egil A. Hylleraas.35 Hylleraas took his Ph.D. at the
University of Oslo in 1924, working on the crystal lattice theory. Two years later, after
spending the intervening period as a school teacher, he joined Born’s group at Göttingen
on a Fellowship of the International Education Board in the hope of furthering his
work on crystals. But, following Born’s suggestion, Hylleraas decided to study problems
related to the application of quantum mechanics.36 At that time, the basic understanding
of the spectral properties of helium had been well established by Heisenberg; but there
was still a broad gap between the spectroscopic measurement of the ionization energy
(24.46 eV) and its numerical calculation, either by the old quantum theory (28 eV) or
by a simple perturbation treatment of the Schrödinger equation, as given by Albrecht
Unsöld (20 eV).37 The introduction of an effective nuclear charge by Geroge Kellner
reduced the discrepancy from about 4 to 1.5 eV,38 which was still a significant amount.
Under Born’s guidance, Hylleraas began to attack the problem of helium with a noisy
electric desk calculator called the Mercedes Euclid to handle a large volume of numerical
work. Using a trial function that might be interpreted as representing one electron in
an inner orbit and the other in an outer orbit, Hylleraas obtained a good result, 24.35
eV. It was soon “greatly admired and thought of as almost a proof of the validity of
wave mechanics, also, in the strict numerical sense.”39 Not fully satisfied with this result,
however, Hylleraas continued to work on reducing the discrepancy after his return to
Oslo. Finally, he made a major advance by introducing in the wave function a new
coordinate of the interelectronic distance, u = r12

a0
, which occurred in the interaction

term for the two electrons. The final theoretical value for the energy of the helium
atom was only 0.0016 eV below the experimental value: a discrepancy like this could be
attributed to a numerical error in the calculations or to experimental error or possibly
to some small effects such as electron-spin interactions, motion of the nucleus, and so
on.40 It was seen as a triumph for quantum mechanics when applied to many-electron
atoms, as Linus Pauling and E. Bright Wilson put it: the “success of this program would
strengthen our confidence in our wave-mechanical equations, and permit us to proceed
to the discussion of many-electron atoms and molecules.”41

And yet it was not easy to adapt Hylleraas’s method to heavy atoms, because the
number of terms that had to be computed increased very rapidly with increasing num-
bers of electrons. Even in the early 1960s, no successful application of the method was
reported for atoms heavier than lithium, a three-electron system.42 However, the intro-
35Egil A. Hylleraas, “Über den Grundzustand des Heliumatoms,” Zeitschrift für Physik 48 (1928): 469–

94; idem, “Neue Berechnung der Energie des Heliums in Grundzustande, sowie des tiesfsten Terms
von Orthohelium,” Zeitschrift für Physik, 54 (1929), 347–66; and idem, “Über den Grundterm der
Zweielektronenprobleme von H−, He, Li+, Be++ usw.,” Zeitschrift für Physik, 65 (1930), 209–225.

36For Hylleraas’s educational background and Born’s influence upon him, see Egil A. Hylleraas, “Rem-
iniscences from Early Quantum Mechanics of Two-Electron Atoms,” Reviews of Modern Physics, 35
(1963), 421–31.

37Albrecht Unsöld, “Beiträge zur Quantenmechanik der Atome,” Annalen der Physik, 82 (1927), 355–93.
38Kellner, “Ionisiderungsspannung des Heliums,” pp. 91–112.
39Hylleraas, “Grundzustand des Heliumatoms,” pp. 469–94. The quote is from Hylleraas, “Reminis-

cences,” p. 427.
40Linus Pauling and E. Bright Wilson, Introduction to Quantum Mechanics With Applications to Chem-

istry (New York: McGraw-Hill Book Company, 1935), p. 224.
41Ibid., pp. 222–4.
42John C. Slater, “The Electronic Structure of Atoms—The Hartree-Fock Method and Correlation,”

Reviews of Modern Physics, 35 (1963), 484–7.
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duction of r12 was not the only method for considering the inter-electronic interaction
known as electronic correlation. Hylleraas was also a pioneer of another method called
the configuration interaction. Instead of approximating the “true” wave function with
one-electron functions, he devised a way of using a set of functions of any number, possi-
bly an infinite number.43 But the computational difficulty with this method, along with
the modest result, discouraged him from proceeding further.

Less accurate but more applicable than Hylleraas’s two methods was the use of wave
functions of the simple, analytic form which might relieve the labor of computations.
The hydrogen eigenfunctions—the solutions of the Schrödinger equation for the hydrogen
problem—were such functions; and, in fact, they were exact solutions for other atomic
problems when the interaction between the electrons was entirely neglected. Kellner
partially took care of this interaction in helium, by putting an effective nuclear charge
into the function and fixing its value with the variation principle. This technique was
soon applied to lithium and the other elements in the first row of the periodic table,44

where, instead of the original wave functions of hydrogen, their asymptotic form (a
form at large distances between a nucleus and electrons) was used. The modified wave
functions had the same angular part as the hydrogen counterparts had, but their radial

part, rn
∗−1 e

−
h

(Z−s)r
n∗

i
, was different in that it had no radial nodes. Here r was the

distance between nucleus and electron, n∗ the effective quantum number (the parameter
for the principle quantum number), Z the nuclear charge, and s the screening constant.
In 1930 Slater used this form of wave function to discuss the size, the ionization potential,
and magnetic properties of much heavier atoms like Fe and Co. Hence the name the
Slater-Type Orbitals (STOs). Yet Slater did not determine the screening constants
and other parameters with the variation principle, but adjusted them using empirical
values. His was the semi-empirical study of atomic properties. Slater thus said: “It is
to be hoped that eventually a variation calculation can be made here too; but we may
anticipate that the figures given in this paper will be substantially verified, and in the
meantime, an approximate set of functions is much better than none.”45

Another approach was developed by the Englishman Douglas R. Hartree in 1928,
called the Self-Consistent-Field (SCF) method. As it turned out, the SCF method was
less accurate but much more manageable than Hylleraas’s; and it was more laborious
but much more reliable than the method of using analytical functions. Hartree was a
Cambridge man, who was born and educated, taught, and died in Cambridge.46 He
excelled in mathematics at St. John’s College, Cambridge, graduating in 1921 with First
Class Honors in Part I of the Mathematical Tripos and Second Class Honors in Part

43Egil A. Hylleraas, “Über den Grundzustand des Heliumatoms,” Zeitschrift für Physik, 48 (1928),
469–94.

44Victor Guillemin, Jr. and Clarence Zener, “Über eine einfache Eigenfunktion für den Grundzustand
des Li-Atoms und der Ionen mit drei Elektronen,” Zeitschrift für Physik, 61 (1930), 199–205; and
Clarence Zener, “Analytic Atomic Wave Functions,” Physical Review, 36 (1930), 51–6.

45John C. Slater, “Atomic Shielding Constants,” Physical Review, 36 (1930), 57–64, quote on p. 57.
46C. G. Darwin, “Douglas Rayner Hartree,” Biographical Memoirs of the Fellows of the Royal Society, 4

(1958), 103–16; and R. B. Lindsay, “Douglas Rayner Hartree,” in Dictionary of Scientific Biography,
vol. 6, ed. Charles C. Gillispie (New York: Charles Scribner’s Sons, 1970), pp. 147–8. See also Ana
Simões and Kostas Gavroglu, “Quantum Chemistry in Great Britain: Developing a Mathematical
Framework for Quantum Chemistry,” Studies in the History and Philosophy of Modern Physics, 31
(2000), 511–48.
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II of the Natural Sciences Tripos. Hartree continued his graduate study in Cambridge
under the Plummer Professor of Mathematical Physics, Ralph H. Fowler. A highlight
of that time was Bohr’s visit to Cambridge in 1921. Immediately attracted to the quan-
tum theory as presented by one of its authors, Hartree began to explore the electronic
structure of atoms. It was the problem that Bohr handled only qualitatively. If Bohr’s
theory was right, Hartree pondered, could one find an electric field for the atom?—the
field in which one could draw the actual form of the orbits and course of time along
it, and furthermore in which one could calculate the energy levels of states matching
experimental data. In 1923 Hartree sought to answer this question in his paper, “On
Some Approximate Numerical Applications of Bohr’s Theory of Spectra.”47

As Hartree set out in the introduction, this paper contained a germ of the idea of the
“self-consistent-field.”

For various reasons a type of field is assumed much simpler than the actual
atomic field must be, and exact agreement between all calculated and ob-
served terms is not to be expected and cannot in fact be obtained, but good
enough agreement is obtained to make the quantitative results interesting;
and both for the dimensions of the orbits and for the field they probably
form a fairly good first approximation. The orbits of the electrons normally
present in the atom having been calculated, the field due to them could be
determined and compared with the field deduced from the spectral terms.48

His logic was clear: (1) assume a simple type of field (here, a central field, i.e., a function
of the distance r from the nucleus only); (2) impose quantum conditions on this field;
(3) express the effective nuclear charge Z as a function of r, and solve the integral for
the field, V

(
V =

∫∞ Z
r2
dr
)
; (4) compare the obtained field with the experimental one,

to see if they are consistent. In reality, however, Hartree could not obtain the atomic
field only from the theory. Instead, he worked backwards, reversing steps (3) and (4):
he put empirical energy terms into the equation obtained from the quantum conditions,
and then found Z as an empirical function of r. Since the Z function was given only in
a graphical or tabular form, the final integration had to be carried out numerically.

Hartree’s method here was semi-empirical. But, within the framework of the old
quantum theory, there were not many alternatives for getting a quantitative picture of
the electric field of atoms.49 Moreover, his study indicated a notable paradox of the
Bohr theory: the electrons moving in sharply defined orbits produced a smooth charge
distribution curve, which went quite a long way outside the boundary of the atom.50

This was explained only after the arrival of quantum mechanics.
Hartree was awarded his Ph.D. in 1926, but he stayed in Cambridge as a Fellow of St.

John’s College and of Christ’s College until he took the Chair of Applied Mathematics

47Douglas R. Hartree, “On Some Approximate Numerical Applications of Bohr’s Theory of Spectra,”
Proceedings of the Cambridge Philosophical Society, 21 (1923), 625–41.

4848 Ibid., p. 625.
49Hartree acknowledged that E. Fues did similar calculations independently, but argued that his own

method was more general than Fues’ was. See Ibid. In 1924, R. B. Lindsay sought to derive a charge
density straightforwardly from a spherical average of Bohr orbits, which Slater saw as a step closer to
the self-consistent-field method. See John C. Slater, Solid-State and Molecular Theory: A Scientific
Biography (New York: John Wiley & Sons, 1975), p. 53.

50Hartree, “Numerical Applications,” p. 639. See also Slater, “Structure of Atoms,” p. 485.
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Figure 16.3: Hartree’s early idea of the Self-Consistent-Field method. (Z,ρ) curves for Na, K,
Ca+, determined by analysis of optical and X-ray spectral terms. Z is the effective nuclear
charge, and ρ is the distance from nucleus in Bohr’s atomic unit (that is, ra , where a is the radius
of hydrogen). The full line curves are the curves of Z as a function of ρ. The broken curves are
the hyperbolae Zρ = k2 (k, the radial quantum number, is the integer).

at the University of Manchester in 1929. It was in this postdoctoral period that Hartree
developed a quantum-mechanical method of investigating the electronic structure of
atoms.51

The overall structure of Hartree’s new method looked similar to that of his old one.52

First of all, Hartree started by assuming a central field (of the function of r only),
which he called the “initial field.” He then corrected the field for each electron, as the
distributed charge of an electron must be omitted in finding the field acting on it. The
third step was to put this corrected field into the Schrödinger equation and solve it for
each electron. From the solutions for all electrons, a distribution of charge could be
calculated. Hartree then found the field of the nucleus and this charge distribution, the
“final field.”

51Douglas R. Hartree, “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I.
Theory and Methods,” Proceedings of the Cambridge Philosophical Society, 24 (1928), 89–110; idem,
“The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and
Discussion,” Proceedings of the Cambridge Philosophical Society, 24 (1928), 111–32; idem, “The Wave
Mechanics of an Atom with a Non-Coulomb Central Field. Part III. Term Values and Intensities in
Series in Optical Spectra,” Proceedings of the Cambridge Philosophical Society, 24 (1928), 426–37; and
idem, “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part IV. Further Results
Relating to the Optical Spectrum,” Proceedings of the Cambridge Philosophical Society, 25 (1929),
310–15.

52“Wave Mechanics. Part II,” pp. 111–4.
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He summarized the procedure with the following diagram for a core electron:

Initial Field
↓

Initial Field corrected for each core electron
↓

Solutions of Wave-Equation for core electrons
↓

Distribution of Charge
↓

Final Field

If the final field was the same as the initial field, the field would be called “self-
consistent”; and no more numerical work would be necessary. If not, one should repeat
the same procedure by using the final field of the first approximation as the initial field
of the second one, over and over again, until self-consistency would be achieved.

Therefore, unlike the old quantum theory, quantum mechanics enabled Hartree to
obtain the atomic charge distribution without using any empirical data. He needed no
input of spectral information to calculate the energy level of atoms. The SCF method was
non-empirical, ab initio. This feature was the major difference between the SCF method
and his previous one. As an example, Hartree showed how successive approximations
narrowed the difference between the effective nuclear charge of initial and final field for
rubidium (Rb), an atom having thirty-seven electrons.53

Figure 16.4: Hartree’s three approximations to Self-Consistent-Field for Rb. Difference ∆Z
between effective nuclear charge of initial and final field was plotted against r for the three
approximations (Curves I, II, and III).

In general, Hartree was satisfied with the agreement between the SCF calculations and
observed values for He, Rb, Rb+, Na+, and Cl− : for instance, the calculated ionization
potential of helium was 24.85 eV, within the difference of 0.2 eV from the observed
53Ibid., pp. 117–8.
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value. He regarded this “very close agreement” as an “empirical justification of the
simple approximations,” if not a “notable success of the method.”54 Convinced of the
usefulness of his approximation method, Hartree remarked:

It is thought that the distribution of charge in the self-consistent field is
probably the best approximation to the actual distribution of charge in the
atom which can be obtained without very much more elaborate theoretical
and numerical work, and so is the most suitable to use in any problems
involving this distribution of charge; also it is hoped that when the time is
ripe for the practical evaluation of the exact solution of the many-electron
problem, the self-consistent fields calculated by the methods given here may
be helpful as providing first approximations.55

Hartree’s Self-Consistent-Field Method and Slater’s Determinantal Method

Only a few months after the publication of Hartree’s papers in 1928, J. A. Gaunt of
Trinity College offered a critical review of his SCF method.56 Gaunt’s purpose was not
to disprove the method, but to assess Hartree’s assumptions in the light of recent devel-
opments of quantum mechanics. He saw the assumptions as “simple and picturesque,”
and “open to several objections” from a rigorous point of view. He particularly raised a
question as to whether it was really justifiable to describe the many-electron atom as the
simple product of one-electron wave functions of individual electrons, rather than as one
complete wave function. This was the fundamental assumption that Hartree himself did
not doubt seriously; Hartree did not even consider the Pauli exclusion principle, the spin
state of electrons, or Heisenberg’s resonance phenomenon, in dealing with many-electron
systems. Hartree’s method was flawed in this regard. Investigating the error possibly
caused by the neglect of resonance terms, however, Gaunt showed that the terms respon-
sible for resonance were small enough. Indeed, he found that Hartree’s method gave a
better result for helium’s ionization potential than the perturbation method. Thus he
concluded: “Hartree’s wave functions have been shown to be good approximations.”

A more thorough review of Hartree’s papers came from John C. Slater of Harvard
University.57 Like Gaunt, Slater stressed that Hartree should have considered the reso-
nance interactions between electrons in his approximation. In addition, Slater pointed
out, Hartree also neglected the fact that electron distributions were not really spherical.
This was in fact what Hartree had been most concerned about. He had been aware
that except for an electron of s orbit (where the azimuthal quantum number l = 0) the
electron’s own contribution to the field was not centrally symmetrical; and thus that the
assumption of a central field had no general applicability. “It was just here,” Hartree
had admitted, “that we meet the most serious doubts concerning the replacement of the
actual many-body problem by a one-body problem with a central field for each electron,
even as a first approximation.”58 Besides, Slater found an inconsistency in Hartree’s
54Ibid., p. 117.
55Ibid., p. 114.
56J. A. Gaunt, “A Theory of Hartree’s Atomic Fields,” Proceedings of the Cambridge Philosophical

Society, 24 (1928), 328–42.
57John C. Slater, “The Self Consistent Field and the Structure of Atoms,” Physical Review, 32 (1928),

339–48.
58Hartree, “Wave Mechanics. Part II,” p. 112.
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method of dealing with the core (inner-shell) electrons and the valence electron: for the
valence electron, he solved the problem of the core electrons first and used the central
field determined from it, thus neglecting the influence of the valence electron on the core
electrons. In other words, Hartree neglected the possible polarization of the inner shell
by the valence electron.59

Slater’s criticism was not geared toward invalidating the SCF method. Instead, by
estimating the errors in it, Slater sought to provide a theoretical justification for Hartree’s
approximation method. Thus his conclusion was not much different from Gaunt’s: “we
see that none of the corrections to Hartree’s terms are really much larger than the order
of magnitude of his discrepancies from experiment, so that his good agreement with
observation is justified.”60 Hoping that Hartree would not misinterpret his criticism,
Slater sent him a draft of his paper. In reply, Hartree wrote: “I certainly hope you will
publish this paper. . .. Certainly I do not feel at all that you are treading on my toes in
working on this subject; on the contrary I am very glad the problem has attracted you,
and that you and Gaunt have been able to justify the procedure I adopted empirically.
If you want to do any further work involving numerical values, I would be glad to send
you any numerical data I possess.”61

Slater gave a critical review of the SCF method in 1928, when his main interest moved
from the radiation problem to the theory of matter—atoms, molecules, and metals.62

Slater sought to find out the proper ways of incorporating Pauli’s exclusion principle
into the problem of many-electron atoms, as Heisenberg had done for helium with the
concept of resonance. In fact, many competent theoretical physicists, such as Eugene
Wigner, Frederick Hund, Herman Weyl, and Walter Heitler, had been engaged in this
problem since the publication of Heisenberg’s helium paper in 1926. They followed the
procedure Heisenberg had prescribed: first, they tried to find the appropriate form of
wave functions of the ordinary position coordinates (x, y, z), and then considered the
spin needed to make the whole wave function antisymmetric with respect to the change
of electrons. To this end, they used group theory. In contrast, Slater took the opposite
tack, by introducing the spin at the very beginning of the calculation. This led to a
much simpler way of representing the antisymmetric wave function, now known as the
determinantal method, than by group theory.63

In the development of the determinantal method, Slater owed much to Hartree. For

59Slater, “Self Consistent Field,” pp. 346–8.
60Ibid., p. 348.
61Hartree to Slater, 6 July 1928, D. R. Hartree, #1, John C. Slater Papers, American Philosophical

Society, Philadelphia.
62Slater took his doctoral degree at Harvard University in 1923 under the supervision of the experimental

physicist Percy W. Bridgman, writing a thesis on the compressibility of alkali halide crystals of the
sodium chloride type. So it is possible to see that Slater moved back to his earlier interest. But he also
felt that he was outpaced by Dirac who published a paper on quantum electrodynamics that was far
more comprehensive and thorough than Slater’s ideas. Paul A. M. Dirac, “The Quantum Theory of
the Emission and Absorption of Radiation,” Proceedings of the Royal Society, A114 (1927): 243–65.
Slater later wrote that after reading Dirac’s paper, “It was obvious that I would never catch up with
Dirac to the point of being clearly ahead of him. Thus at this point I shifted my interest to the
helium atom.” Quoted in Silvan S. Schweber, “The Young John Clarke Slater and the Development of
Quantum Chemistry,” Historical Studies in the Physical and Biological Sciences 20 (1990): 339–406,
at p. 373. In footnote 94, Schweber has pointed out that Slater tried again and again but in vain to
unify the quantum theory of radiation with that of matter.

63John C. Slater, “The Theory of Complex Spectra,” Physical Review 34 (1929): 1293–322.
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Slater profited from the analysis of Hartree’s papers, from which he learned that the
assumption of the central field in many-electron atoms worked out well, and that the
one-electron approximation might be a good starting point even if resonance was ne-
glected. Therefore, Slater adopted the assumption of the central field, with a slight
modification for simplicity in description: “according to [Hartree’s scheme], each elec-
tron moves in a field of force slightly different from the others. We shall neglect the
difference, assuming that all the electrons move in precisely the same field. And this
field is to be so chosen as to give the best agreement with the correct values even with-
out further corrections.”64 Slater then used the one-electron approximation, representing
each electron’s wave function with both the position and spin coordinates. As Slater
acknowledged, the process of building up the antisymmetric wave function with a deter-
minant was well known.65 What was new in his method was to represent each electron’s
wave function with the position and spin coordinates together, and to construct the an-
tisymmetric wave function as the linear combination of the one-electron approximations.
Slater’s previous study of Hartree’s one-electron approximation provided him with the
confidence that this kind of approximation would lead to a good result. And he demon-
strated the validity of his method by using it in the wave-mechanical study of complex
atomic spectra, most notably the theoretical explanation of Hund’s empirical rule for
classifying spectra.

Slater sent his paper “The Theory of Complex Spectra” to the Physical Review, shortly
before he took a trip to Europe in the summer of 1929 as a Guggenheim Fellow. Everyone
he met seemed to know of his work, and most liked it. “No other work I have done,” Slater
wrote in his autobiography, “was so universally popular.”66 This paper was particularly
welcomed by those physicists who saw group theory as an arcane, incomprehensible
mathematical manipulation: Slater later heard such remarks as “Slater had slain the
‘Gruppenpest’ [the pest of group theory].” He met Hartree at a conference in Zurich,
before going to Leipzig to spend half a year with Heisenberg and Hund.

While in Leipzig, Slater found that Hartree’s Self-Consistent-Field method was not
well received among the quantum theorists. Despite some theoretical justifications made
by Gaunt and Slater, many still considered the SCF method to “stand apart from the
main current of quantum theory” and “to contain arbitrary and empirical elements.”
Thus Slater sent a short note to the Physical Review in defense of the SCF method.67

This time he insisted upon its close relation to the procedure a scientist should take when
applying the variation principle to the simple product of one-electron wave functions.
He said:

Suppose one sets up an approximate wave function for a general problem of
the motion of electrons among stationary nuclei, by assuming a product of
functions of the various electrons: u = u1(x1) . . . u(xn) ; suppose further that
one apply the variation principle by varying separately each of the functions

64Ibid., 1299.
65Ibid., 1294. Slater mentioned Dirac’s earlier papers and the recent paper by Iva Waller and Douglas

R. Hartree’s “The Intensity of Total Scattering of X-rays,” Proceedings of the Royal Society A124
(1929): 119–42.

66Slater, Solid-State and Molecular Theory, 62–3. Slater noted the responses from Hund, Waller, Hartree,
Bloch, Heisenberg, and Wigner. See also Schweber, “John Clarke Slater,” 377.

67John C. Slater, “Note on Hartree’s Method,” Physical Review 35 (1930): 210–1.
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ui, leaving the others constant. The n variation equations so obtained prove
to be those for the motion of the n electrons, each in a separate electrostatic
field; and the field for each electron is obtained by adding the densities u2

i for
all the other electrons, and finding by electrostatics the field of this charge
and of the nuclei. Thus this field is self-consistent in the sense of Hartree;
the result is a generalization of his method to more complicated problems
than atomic ones.68

The variation scheme was designed to find the “best” approximate wave function by
varying arbitrary parameters or arbitrary functions so that the energy of the system
was stationary with respect to slight variations of them. Slater realized that this way
of finding the “best” approximate wave function was tantamount to that of finding the
“self-consistent” field: that is, the “best” function would lead to the “self-consistent”
field, or vice versa. One notable difference in practice was that the variation procedure
did not include the spherical averaging of potential. Hartree needed this step to compare
the initial and final fields in terms of the actual charge distributions of those fields; but
in the variation procedure, the comparison was made as to the convergence of the energy
in the successive variations of the initial trial wave function.

In his note, Slater also hinted that the exclusion principle could be considered in the
SCF method by using his determinantal representation of the antisymmetric function.
Yet he did not show there how to set up an elaborate formulation of applying the
variation principle to the antisymmetric function. A few months later, the Russian
physicist Vladmir Fock developed another way of formulating the SCF method with
the variation principle. Unfamiliar with Slater’s determinantal method, Fock used the
technique of the permutation group.69 Hence the Hartree-Fock (instead of the Hartree-
Slater-Fock) method. In 1935, finally, Hartree simplified Fock’s formulation with Slater’s
determinantal method.70

The Hartree-Fock method was universally accepted, not because it produced results
as accurate as Hylleraas had achieved with helium, but because it provided a man-
ageable tool for handling heavy atoms. From the beginning, it was realized that this
method was only of limited accuracy, giving errors of around 1 percent. The source of
the errors was also well known: the neglect of electron correlation. Hartree’s original
SCF method presumed that electrons moved completely independently of each other;
and Fock’s elaboration remedied this problem partially, only through the requirement
of antisymmetricity of wave function. This kind of electron correlation was regarded as
“accidental,” since it stemmed from the Pauli principle rather than from the electrostatic
requirement that the electrons should keep away from one another. The further refine-
ment of the Hartree-Fock method was thus made to consider electron correlation in a
more general way.71 Despite this problem, there was a consensus that Hartree-Fock ap-
68Ibid., 211.
69Vladmir Fock, “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems,” Zeit-

schrift für Physik 61 (1930): 126–48. This paper was received on 21 February 1930. In it, Fock did
not mention any of Slater’s work; but he cited Gaunt’s paper on Hartree’s method.

70Douglas R. Hartree and William Hartree, “Self-Consistent Field, with Exchange, for Beryllium,” Pro-
ceedings of the Royal Society A150 (1935): 9–33. See also, Douglas R. Hartree, “Theory of Complex
Atoms,” Nature 138 (1936): 1080–82.

71For the source of the errors in the SCF method, see Frederick Seitz, The Modern Theory of Solids
(New York: McGraw-Hill, 1940), 237. See also Slater, “Hartree-Fock Method,” 480.
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proximations were the “best possible” one-electron wave functions, and that these were
“the only wave functions which can be used in most problems concerning the energy
levels of complex systems.”72

Although the idea of the self-consistent-field was the central part of Hartree’s original
method or its modified form, Hartree’s genius lay in his numerical analysis of difficult
wave equations. For each cycle of approximations, and for each of the electrons in
atoms, he had to solve the differential equation of radial function, which could not be
done analytically. So Hartree developed a technique of numerical integration, basically a
way of solving the equation at numerous fixed points of r, the distance from the nucleus;
and computations took up so much of his energy that he failed to keep abreast of the
recent development of quantum theory. In reply to Slater’s criticism in 1928, he said:
“Some of the steps were not clear to me without a bit of work and looking up the
general theory, but that is my fault; my time has been so taken up with the development
of the numerical technique of evaluating the self-consistent field, and with the actual
computing of particular cases, that I am not as familiar as I should be with the general
theory outside what I have required for my work, which is not much.”73 In the 1930s
Hartree was fortunate to have the assistance of his father, William Hartree, who liked
doing the computing work as an occupation for his retirement.74 Hartree also looked for
computing machines to relieve the amount of human labor. In the early 1930s, he visited
MIT to learn about Vannevar Bush’s differential analyzer75; and on his return to Britain,
he set up his own model of a differential analyzer with Meccano parts (children’s toys) to
demonstrate its working. After World War II, he again made a trip to America to become
familiar with the ENIAC (Electronic Numerical Integrator and Computer), the electronic
digital computer built for the purpose of calculating the trajectories of projectiles during
the war. On his return, Hartree published more than a dozen very detailed reports on
this machine for the general public as well as for the scientific community, and lent
his expertise to the installation of digital computers in England, including the EDSAC
(Electronic Discrete Variable Automatic Computer) in Cambridge and the Ferranti in
Manchester. The popularization of computers and their application to scientific problems
became his major activity for several years after his return to Cambridge in 1946, when
he succeeded Fowler as Plummer Professor of Mathematical Physics. It is no surprise
that the title of his inaugural lecture was “Calculating Machines, Recent and Prospective
Developments.”76

72Eyring et al., Quantum Chemistry, 166.
73Hartree to Slater, 6 July 1928, D. R. Hartree #1, John C. Slater Papers, American Philosophical

Society, Philadelphia.
74In 1939, Hartree wrote to Slater: “As you may know, all the computing work in the calculations of

atomic structures which my father and I have published during the last several years has been done by
him. He likes it as an occupation for his retirement, and I am glad to have his help, as I would not have
the time to carry through the rather extensive computations myself.” Hartree to Slater, 1 November
1939, D. R. Hartree, #1, John C. Slater Papers, American Philosophical Society, Philadelphia.

75Perhaps it was Slater who provoked Hartree to pay a visit to MIT. In his letter to Hartree on 25
November 1931, Slater gave a description of Bush’s differential analyzer, and said he planned to use this
machine in the SCF calculations. D. R. Hartree, #1, John C. Slater Papers, American Philosophical
Society, Philadelphia.

76Douglas R. Hartree, Calculating Machines, Recent and Prospective Developments (Cambridge: Cam-
bridge University Press, 1947). Thirteen out of forty publications by Hartree after 1946 were intended
to inform the readers of various journals and governmental officials about calculating machines. For
the bibliography of Hartree’s work, see C. G. Darwin, “Douglas Rayner Hartree,” pp. 112–6. For
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Computations in the History of Quantum Theory

Hartree’s deep interest in improving calculation techniques and easing human labor did
not earn him much respect among quantum physicists. Slater found it unfair. He
said: “Douglas Hartree was very distinctly of the matter-of-fact habit of thought that
I found most congenial. The hand-waving magical type of scientist regarded him as a
‘mere computer.’ Yet he made a much greater contribution to our knowledge of the
behavior of real atoms than most of them did.”77 Slater went on to argue that Hartree’s
contributions should be seen in a broader context: “while he limited himself to atoms,
his demonstration of the power of the self-consistent field for atoms is what has led to
the development of that method for molecules and solids as well.” Indeed, a convenient
method of dealing with molecular problems was developed in the early 1950s by adapting
the procedure of the self-consistent field approximation.78

Yet Hartree was not alone in having to cope with the prejudice against computation-
oriented research. Sugiura’s work failed to impress even Heitler, who said: “It appears
that there are in the world some hard working dwarfs” said Heitler, who put more value
on gaining physical explanations than having exact computations.79 Heitler’s attitude
was not much different from Heisenberg’s. After finishing his path-breaking paper on
helium, Heisenberg remarked: “I am convinced that the spectra of all chemical elements
can be obtained . . . from quantum mechanics in a unique manner without physics [i.e.,
physical insights] by bone-headed calculation.”80

To a large extent, the historical significance of computation in quantum mechanics
has been undervalued or unexplored. How much, then, do we have to pay attention to
those “hard working dwarfs” or “bone-headed” computers? Where is their proper place
in the history of quantum physics and chemistry? As long as we confine ourselves to
the “conceptual” development of quantum mechanics, it will be difficult to find answers
to these questions. A clue may be in the “practice” of theory to make its incremental
improvement or circumvent technological or even conceptual constraints. In this respect,
the following two recollections are illustrative. Heitler recalled his Eureka moment:

I slept till very late in the morning, found I couldn’t do work at all, had a
quick lunch, went to sleep again in the afternoon and slept until five o’clock.
When I woke up . . . I had clearly . . . the picture before me of the two wave
functions of two hydrogen molecules joined together with a plus and minus

Hartree’s role in the introduction of computers in England, see Mary G. Croarken, “The Emergence of
Computing Science Research and Teaching at Cambridge, 1936–1949,” Annals of the History of Com-
puting, 14 (1992), 10–15; Paul A. Medwick, “Douglas Hartree and Early Computations in Quantum
Mechanics,” Annals of the History of Computing, 10 (1988), 105–11.

77Slater, Solid-State and Molecular Theory, p. 54. Slater held that there were two quite different types
of thinkers among theoretical physicists. “One type is the prosaic, pragmatic, matter-of-fact sort, who
indicates the argument behind what he does, and tries to write or speak in the most comprehensible
manner possible. The other is what we might call the magical or hand-waving type, who like a
magician, waves his hands as if he were drawing a rabbit out of a hat, and who is not satisfied unless
he can mystify his readers or hearers.” He believed that Heisenberg and Schrödinger, as well as Hartree,
belonged to the first group; and that Dirac was definitely among the second group. See ibid., p. 42.

78Clemens C. J. Roothaan, “New Developments in Molecular Orbital Theory.” Reviews of Modern
Physics, 23 (1951), 61–89.

79Quoted in Gavroglu, Fritz London, p. 47.
80Werner Heisenberg to Pascual Jordan, 28 July 1926, quoted in Mehra and Rechenberg, The Formulation

of Matrix Mechanics and Its Modifications, p. 301.
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and with the exchange in it. So I was very excited, and I got up and thought
it out. As soon as I was clear that the exchange did play a role, I called
London up, and he came to me as quickly as possible. Meanwhile I had
already started developing a sort of perturbation theory. We worked together
then until rather late at night, and then by that time most of the paper was
clear. . .. Well,. . . at least it was not later than the following day that we had
the formation of the hydrogen molecule in our hands, and we also knew that
there was a second mode of interaction which meant repulsion between two
hydrogen atoms—also new at the time—new to chemists, too.81

Heitler and London may have finished essential parts of their paper almost overnight.
By contrast, a widely circulated rumor had it that James and Coolidge spent three years
on the hydrogen problem, although, in fact, it took about half a year. But had they had
no previous experience of computations with Li2, Cl2, and H2O, it would certainly have
taken longer than that. James later said:

The idea of applying to H2 a treatment analogous to that of the helium
atom by Hylleraas came to me in the bathtub—in keeping with the tradition
of Archimedes, but with less evident relevance. I made some general notes
on the project while I was at home, but I did not have facilities there to
begin the calculation. I was familiar enough with molecular calculations to
realize how much labor would be involved, and my earlier cooperation with
Coolidge had made evident the great advantages of collaboration in such
complex numerical calculations. When I returned to Cambridge in the fall
of 1932 I discussed with Professor Kemble the possibility of undertaking this
project in collaboration with Coolidge.82

Working with machines that seem primitive from today’s standpoint (they started
with hand-powered desk calculators and later used motor-driven ones), they found it
delightful to get good results after their labor-intensive calculations. “I remember,”
James said, “as among the happiest and most exciting days of my life the period in
which we saw the numerical results come out better and better as we added more and
more terms to our calculation.”83 James’s Eureka moment came with the realization
that enormous labor would be required to proceed his idea, and his rewarding moment
came when the theoretical values came closer to experimental ones.

Shortly after the advent of quantum mechanics, several ways of solving the many-
electron Schrödinger equation were developed, but there were considerable difficulties in
carrying out these solutions. As Per-Olov Löwdin, a Swedish quantum chemist, quipped
in the 1950s: “It is sometimes said that a theoretician is a person who knows how to solve
a problem, but who cannot do it.”84 Sugiura, James, Hartree, and other ab initioists
were those who did it. To them, making a theory really work in atomic and molecular

81Walter Heitler, AHQP (Archive for the History of Quantum Physics) Interview, pp. 541–542, Historical
Development of Quantum Theory, volume 6. 1963.

82James to Sopka, 9 May 1972, quoted in Sopka, Quantum Physics, pp. 4.87–4.88.
83Ibid., p. 4.88.
84Per-Olov Löwdin, “Recent Simplifications in the Molecular Orbital Theory of Calculating Energy

Levels,” in Proceedings of the International Conference of Theoretical Physics (Tokyo: Nippon Bunka
Insatusha Co., 1953), 599–609, quote on 599.
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problems was as important as developing it in the first place. Computational imperatives
in the early years of quantum chemistry clearly reveal the emerging practice of theory
that required human labor, technological improvement (computers), and mathematical
ingenuity. In no small measure, this practice contributed to demonstrating the validity
of quantum mechanics and its usefulness.
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17 A Service for the Physicists? B. L. van
der Waerden’s Early Contributions to
Quantum Mechanics

Martina R. Schneider

Bartel Leendert van der Waerden (1903–1996) was a scientist with a wide range of
interests. He contributed to invariant theory, algebraic geometry, algebra, topology,
statistics and probability theory, as well as to physics and to the history of mathematics,
astronomy and physics. In this paper1 I will try to characterize his early contributions to
quantum mechanics which he wrote around 1930.2 All of these deal with group theory,
a mathematical theory which was well established at the time but whose application to
quantum mechanics was quite controversial. How did van der Waerden come to publish
something in this field? What kind of mathematics did he use? What was his stance in
the debate about the “group plague”?

In order to give an idea in which direction these questions might be answered three
examples from his papers will be discussed. These examples concern van der Waer-
den’s development of the spinor calculus, his introduction to representation theory by
a concept called group with operators, and his treatment of Slater’s method, a method
which explicitly was aimed at avoiding group theory. Local networks (in Göttingen, the
Netherlands and Leipzig) which were a stimulus for van der Waerden’s work in physics
and, to some extent, had an influence on the direction of his research are sketched. By
comparing van der Waerden’s approach to that of H. Weyl and E. Wigner, two main
advocates of the group-theoretic method in quantum mechanics at the time, some of its
characteristic features are revealed and the wider (scientific) context is brought into the
analysis. Finally, an attempt is made to answer the question of the title with respect to
the discussed examples.

1I dedicate this article to Erhard Scholz on the occasion of his 60th birthday. A more detailed analysis
of van der Waerden’s early contributions to quantum mechanics will be given in my PhD thesis “Die
physikalischen Beiträge des jungen Bartel Leendert van Waerden” (Wuppertal, to appear 2008).

2van der Waerden [1929, 1932]; Infeld and van der Waerden [1933]. For a list of his publications see Top
and Walling [1994]. Despite its impressive length it is still incomplete.
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Background

Van der Waerden3 studied mathematics and physics with H. de Vries, G. Mannoury,
R. Weitzenböck, L. E. J. Brouwer and J. D. van der Waals jr. at Amsterdam university
between 1919 and 1924. In autumn 1924 he went to Göttingen on a Rockefeller grant.
There he studied for one year with E. Noether, R. Courant and D. Hilbert. During
this stay van der Waerden got to know the new methods of modern algebra developed
by Noether and E. Artin and others and which he applied to give a better foundation
of the Schubert calculus in his thesis. Although van der Waerden had done physics in
Amsterdam, according to his own account it was in Göttingen where he studied mathe-
matical physics in 1924 and read Courant and Hilbert’s recent book on the methods of
mathematical physics, and was deeply impressed by it.4 Brouwer had given him a letter
of recommendation for Courant and van der Waerden was soon drawn into Courant’s
small working unit on mathematical physics consisting of K. O. Friedrichs, H. Lewy and
P. Jordan. Van der Waerden left Göttingen in 1925 to do his military service in the
Netherlands and to write his PhD thesis. Then, in summer 1926, he went to Hamburg
on the rest of his Rockefeller grant where he continued to study modern algebra with
Artin. When the grant ran out he got a position as assistant to H. Blaschke in Hamburg.
So, van der Waerden was not in Göttingen, but in the Netherlands and in Hamburg when
W. Heisenberg, M. Born and Jordan developed matrix mechanics.

In spring 1927 he returned to Göttingen where he worked as an assistant for Courant.
He wrote his habilitation on Bézout’s theorem. In 1928 he got his first professorship
in Groningen in the Netherlands. As we will see, his time in Groningen was quite
important for the development of his first work on quantum theory. He returned as a
visiting professor to Göttingen in summer 1929. In 1930/31 he published a text book
on modern algebra which was based on the lectures of Noether and Artin. It quickly
became a bestseller. In May, 1931, van der Waerden was appointed professor in Leipzig.
He was especially looking forward to going there because Heisenberg and F. Hund were
there too.5 In fact, he regularly attended their seminar on the structure of matter. In the
winter term 1931/32 he gave a course of lectures on group-theoretic methods in quantum
mechanics. He also proposed and supervised the PhD thesis of H. A. Jahn on the rotation
and oscillation of the methane molecule which included the Jahn-Teller effect.6 It was
in Groningen and Leipzig where he wrote the papers on quantum mechanics from which
the examples for this analysis are taken.

Van der Waerden published several works on physics.7 His first publication at the

3For information on van der Waerden’s biography see Gross [1973]; Eisenreich [1981]; van der Waerden
[1983]; Frei [1993]; Freit et al. [1994]; Dold-Samplonius [1994]; Scriba [1996a,b]; Dold-Samplonius [1997];
Frei [1998]; Thiele [2004]; Soifer [2004a,b, 2005]. There is no scientific biography to date. A first step
in this direction is a paper by Schappacher [2003] on van der Waerden’s early contributions to the
development of algebraic geometry. The photo of van der Waerden (Figure 1) is taken from the photo
collection Veenhuijzen, Centraal Bureau voor Genealogie (Den Haag).

4Courant and Hilbert [1924].
5For information on the physics department in Leipzig during Heisenberg’s professorship see e. g. Kleint
and Wiemers [1993], on the interrelationship between mathematics and physics in Leipzig see Schlote
[2007].

6Jahn [1935].
7van der Waerden [1921, 1929, 1932]; Infeld and van der Waerden [1933]; van der Waerden [1941, 1963,
1966, 1975]. He also contributed to the history of quantum mechanics [van der Waerden 1960, 1967,
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Figure 17.1: Bartel Leendert van der Waerden, Groningen 1928

age of 18 was a popular account of special and general relativity theory based on a
lecture given by P. Ehrenfest.8 Several years later he published three works on quantum
mechanics, one along with L. Infeld. Van der Waerden developed a spinor calculus in
special and general relativity theory and applied it to the wave equation of the electron9

and he wrote a monograph on the group-theoretic method in quantum mechanics10.
This monograph was the last in a row of three books on the same subject. In 1931 both
Wigner and Weyl had published monographs, too.11 In the case of Weyl, this was the
second, revised edition of his comprehensive book from 1928. When van der Waerden
learned of Wigner’s publication he almost withdrew from his project. It was Courant
who convinced him to carry on.12

Group theory had been introduced into quantum mechanics in 1926/27 by Heisenberg,
Wigner, J. von Neumann and Weyl.13 With the help of this new method one was able
to mathematically deduce the quantum numbers (except for the quantum number n)

1973, 1976].
8van der Waerden [1921].
9van der Waerden [1929]; Infeld and van der Waerden [1933].
10van der Waerden [1932].
11Wigner [1931]; Weyl [1977].
12I thank Volker Remmert for this piece of information.
13For information on the history of the group-theoretic method in quantum mechanics see Mackey

[1988a,b]; Sigurdsson[1991], Mehra and Rechenberg [chap. III.4(e) 2000], Chayut [2001]; Scholz [2006]
and the contributions of E. Scholz and C. Smeenk in this volume.
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which had been based on an empirical analysis of spectra of atoms and molecules. The
algebraically simple structures of irreducible representations (of the group of rotations
and of the group of permutations) could be directly related to quantum numbers. More-
over, Wigner and Weyl also explored the conceptional power of group theory for the
foundation of quantum mechanics. W. Heitler and F. London applied group-theoretic
methods to explain the binding of atoms. The method, however, was met with resistance
by a lot of physicists and chemists, mainly because they were not acquainted with group
theory and found it difficult to learn. There was also a feeling that group-theoretic rea-
soning was essentially “not physical” (nicht physikalisch).14 The term “group plague”
(Gruppenpest) was coined. It was within this context that van der Waerden entered
quantum mechanics.

Spinor Calculus—a Calculus on Demand

Van der Waerden developed spinor calculus in Groningen. He did so at the request of
Ehrenfest in Leiden in spring 1929. Ehrenfest’s question dates back to autumn 1928
when he tried to get a grip on group-theoretic methods in order to understand the works
of Weyl, Wigner and von Neumann. Ehrenfest organized a series of lectures inviting
specialists like Wigner, W. Pauli, Heitler, London and von Neumann. He also invited
van der Waerden who had just got his first professorship in Groningen. Ehrenfest used
van der Waerden as a kind of mathematical advisor:

I [Ehrenfest] would like to ask you [van der Waerden] about various mathe-
matical things, very basic for you, because unfortunately a real group plague
[Gruppenpest] has broken out in our physical journals. Almost all of my
questions will refer to certain places in Weyl’s new book: “Gruppentheorie
und Quantenmechanik”, and in it mainly to the different “integer and half-
integer” representations of the rotation group in three- and four-dimensional
space.15 [Ehrenfest to van der Waerden, 8.10.1928]

Van der Waerden was drawn into a Dutch circle of physicists by Ehrenfest, a circle
consisting mainly of Ehrenfest’s students and former students like H. Kramers, G. Uh-
lenbeck, S. Goudsmit, D. Coster and H. B. G. Casimir.

Van der Waerden developed a formalism to handle “spinors,” a term probably coined
by Ehrenfest. Spinors are quantities in representation spaces of the Lorentz group or of
its subgroups. They had appeared implicitly or explicitly a couple of times in quantum
mechanics: in the works of Pauli, Wigner, Weyl and P. A. M. Dirac. Van der Waerden
was asked by Ehrenfest to develop a spinor calculus modelled on tensor calculus to handle
these quantities more easily. So Ehrenfest had a mathematical formalism designed for
calculation in mind.
14Wigner [1931, preface, p. V].
15“Ich [Ehrenfest] habe Sie [van der Waerden] ueber verschiedene fuer Sie ganz elementare

mat[h]ematische Dinge zu fragen, da ja leider eine wahre Gruppenpest in unseren physikalischen Zeit-
schriften ausgebrochen ist. Fast alle meine Fragen werden sich auf bestimmte Stellen aus dem neuen
Buch von Weyl: Gruppentheorie und Quantenmechanik beziehen und da wieder hauptsaechlich auf die
verschiedenen

’
ganz- und halbzahligen‘ Darstellungen der Drehgruppe im Drei- und vierdimensionalen

Raum.” [Museum Boerhaave in Leiden (MB), Ehrenfest Scientific Correspondence (ESC) 10, S.6, 217]
The translation as well as the other translations in this paper are mine (MS).
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In his article van der Waerden [1929] developed this calculus with a minimum of
mathematical prerequisites: He neither touched the theory of representation, nor did he
explain the theory of invariants or the underlying geometric picture. For example, he did
not give a formal, let alone axiomatic definition of representation, but rather mentioned
it, in passing by, in a concrete setting:

The task to find all “quantities” that are transformed linearly by the Lorentz-
transformations according to any kind of rule, so that with a composition
of two Lorentz-transformations the corresponding transformations of the
“quantities” are combined too, i. e. so that the product of two Lorentz-
transformations is expressed again by the product, is simply the problem
of the representation of the Lorentz group through linear transformations.16

[van der Waerden, 1929, p. 101, emphasis in the original]

This was not in line with a modern approach to representation theory of that time.
It shows van der Waerden’s capability and willingness to adapt to different scientific
contexts and audiences.

Van der Waerden introduced the spinor formalism by letting the special linear group
of complex 2 × 2 matrices (SL2C) act on a two-dimensional complex vector space. He
described the standard representation and the complex conjugate standard representa-
tion of SL2C. He did this by explicitly giving the equations for the transformed vectors.
He then generalized the operation of SL2C to factors of “products” consisting of com-
ponents of vectors in a two-dimensional space by factorwise operation, i.e. he described
the action of SL2C on tensor products. He introduced the following notation: If ξλ and
ηµ are transformed by the complex conjugate standard representation and ζν by the
standard representation then he denoted quantities transforming like the “product”

ξληµζν

of these components by the spinor
aλ̇µ̇ν

(with λ, µ, ν = 1, 2). These “dotted” indices are still in use today. Van der Waerden
also showed in analogy to the classical tensor calculus how the indices are pulled up and
down:

a1 = a2, a
2 = −a1 and a1̇ = a2̇, a

2̇ = −a1̇.

Today, this relation is denoted typically with the help of the skew-symmetric ε−tensor

(ελµ) =
(

0 1
−1 0

)
as aλ = ελµaµ.17 So, van der Waerden outlined the foundations of the spinor calculus.

16“Die Aufgabe, alle
’
Größen‘ zu finden, die bei Lorentztransformationen nach irgendeiner Regel line-

ar mit-transformiert werden, so daß bei Zusammensetzung zweiter [!] Lorentztransformationen auch
die zugehörigen Transformationen der

’
Größen‘ zusammengesetzt werden, d.h. so daß dem Produkt

zweier Lorentztransformationen wieder das Produkt entspricht, ist nichts anderes als das Problem der
Darstellung der Lorentzgruppe durch lineare Transformationen.”

17Van der Waerden introduced the ε−tensor as a “pure spinor” into spinor calculus to construct invariants
[van der Waerden, 1932, p. 86f].
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Then van der Waerden established a 2 : 1 homomorphism between SL2C (consid-
ered as a real Lie group) and the proper orthochronous Lorentz group L↑+ by giving a
concrete mapping between spinors of the form aλ̇µ and the coordinates of a real four-
dimensional vector space. In other words, he gave a bijection between 2 × 2 Hermitian
matrices and Minkowski space. Thus, one got an irreducible representation of SL2C and
a “two-valued” (zweideutige) representation of L↑+ where one could assign ±A ∈ SL2C
to one Lorentz-transformation. For his construction van der Waerden could rely on the
work of Weyl on representation theory and of E. A. Weiß on invariant theory.18 Thus,
mathematically, it was not a great challenge.

Van der Waerden then applied this calculus to physics: he translated the relativistic
Dirac wave equation into spinor formalism. He started out with a slightly modified
version of this wave equation given by Weyl in his book19

1
c

(
h

i

∂

∂t
+ Φ0

)
ψ +

3∑
r=1

s′r

(
h

i

∂

∂xr
+ Φr

)
ψ +mcΓ0ψ = 0,

where the wave function ψ has four components ψi : R4 −→ C. Translating this equation
step-by step into spinor calculus he ended up with a pair of spinor equations correspond-
ing to the first two and the last two rows of Weyl’s equation:

−
(
h
i ∂

λ̇
µ + Φλ̇

µ

)
ψλ̇ +mcχµ = 0(

h
i ∂

λ
µ̇ + Φ λ

µ̇

)
χλ +mcψµ̇ = 0,

where the wave function consists of four spinor-components ψ = (ψ1̇, ψ2̇, χ1, χ2) that are
complex-valued functions and correspond to the irreducible representations of SL2C,
and Φ is a field.

Van der Waerden did not stop there, but outlined the general spinor form of wave
equations of the first order with a two-component wave-function, and of the second
order with a two-component and a four-component wave function. Thus, he provided
the physicists with a multitude of different forms of wave equations in spinor formalism.
By doing so, he was able to answer Ehrenfest’s question why a two-component wave
function together with a wave equation of the first order would not suffice to describe
18Weiß [1924]; Weyl [1925, 1926, 1931].
19van der Waerden [1929, p. 106f], Weyl [1928, p. 172]. The constant h is Planck’s constant divided by 2π

(today’s notation is ~), m is the mass of the electron, c the velocity of light, Φk denotes the electrostatic
potential and the four-by-four matrices s′r, are built up by Pauli spin matrices sr(r = 1, 2, 3) as follows:

s′r =

„
sr 0
0 −sr

«
with

s1 =

„
0 1
1 0

«
, s2 =

„
0 i
−i 0

«
, s3 =

„
1 0
0 −1

«
.

The four-by-four matrix Γ0 is of the form „
0 E
E 0

«
.

The matrices s′r correspond up to a change of bases to Dirac’s γk−matrices.

328



B. L. van der Waerden’s Early Contributions to Quantum Mechanics

the electron relativistically. Van der Waerden showed that a wave equation with a two-
component wave-function of the first order

∂λ̇µψ
µ + cλ̇µψ

µ = 0,

would imply that the mass of the electron is zero, which rules out this possibility.20 Later,
Ehrenfest used this very question in Casimir’s examination.21 So, Ehrenfest seems to
have been convinced by van der Waerden of the usefulness of spinor calculus. Later,
in spring 1933, van der Waerden helped Infeld, a Polish physicist visiting Leipzig, to
introduce a spinor formalism for general relativity theory in order to find an alternative
to the “n-Bein”-formalism which Leipzig physicists preferred no to use.22 This shows
van der Waerden as a very pragmatic scientist who respected the wishes of his colleagues
and who made an effort to adapt to their special needs.

How was the spinor calculus received by Ehrenfest and other physicists? Uhlenbeck,
a former student of Ehrenfest, together with O. Laporte published an article in the
Physical Reviews—the American journal in which Slater had had his group-free method
published two years before—advocating the use of spinor calculus.23 They stated the
rules of the calculus very clearly and applied it to the Dirac equation as well as to the
Maxwell equations. Ehrenfest, however, was still not fully satisfied. What he wanted was
an easy introduction to both tensors and spinors, and he also had some more conceptual
questions.24 It was he who urged A. Einstein and W. Mayer to develop their alternative
concept of semivectors.25 Later, in 1936, the spinor calculus was used by Dirac to derive
wave equations for particles with spin greater than one half, that means wave equations
for (elementary) particles that had not been discovered up to then.26 And it is probably
this publication by this prominent researcher which made the spinor calculus known to
a wider audience and ensured that it was not forgotten.

Modern Representation Theory: Groups with Operators

The next example will show that van der Waerden did not refrain from using modern
algebraic concepts and methods in his group-theoretic monograph on quantum mechan-
ics.27 His introduction to representation theory was based on the concept “group with
operators”, a concept that had not appeared in any of the other articles or books on

20The correspondence between Ehrenfest and van der Waerden shows that van der Waerden started out
with a different equation. The published equation corresponds to Weyl’s equation [Weyl, 1929, p. 351]
which van der Waerden may have come across in Göttingen in summer 1929. It was later used by
Pauli to describe the neutrino.

21Ehrenfest to Uhlenbeck, 1.6.1930 [MB, ESC 10, S.2, 78].
22Van der Waerden to Schouten, 6.6.1933 [Centrum voor Wiskunde en Informatica (Amsterdam), corre-

spondence Schouten. I thank Gerard Alberts for drawing my attention to this archive.] On the history
of unified field theory see Goenner [2004].

23Laporte and Uhlenbeck [1931].
24Ehrenfest [1932].
25van Dongen [2004].
26Dirac [1936]. The elementary particles electron, positron, neutron, proton, known at that time, all

had spin one half. However, from 1928 onwards it was known that the nitrogen nucleus had spin one
by precision measurements performed by R. de Laer Kronig in Utrecht.

27van der Waerden [1932, chap. 2].
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group-theoretic methods in quantum mechanics before. So, van der Waerden’s approach
was unique in this respect.

The concept “group with operators” was first introduced in 1925 by W. Krull.28 Krull
had used a different name for it: generalized finite abelian group (verallgemeinerte
endliche Abelsche Gruppe). O. Schmidt and Noether took up the concept and made
it more general.29 It was Noether who introduced the name “group with operators” in
a very general setting. Van der Waerden also used the concept in his book on modern
algebra.30

In his introduction to group theory in his monograph on quantum mechanics van
der Waerden made use of the concept group with operators only in the restricted sense
introduced by Krull. His definition went as follows. Van der Waerden firstly defined a
group. The definition he gave there was axiomatic and general and thus in line with
modern algebra31:

A set g of elements a, b, . . . of any kind (e.g. of numbers, of linear transfor-
mations) is called a group if the following four conditions are satisfied:

(8.1.) A “product” a · b (or ab) is assigned to each pair of elements a, b in such
a way that it belongs again to g.

(8.2.) The law of associativity ab · c = a · bc.
(8.3.) There exists a “unit element”, e or 1, with the property ae = ea = a.

(8.4.) For each a of g there exists an inverse a−1 in g, so that a·a−1 = a−1·a = 1
holds.

The group is called abelian, if ab = ba always applies.

[. . . ] Generally one speaks of a group with operators if certain “multipliers”
or “operators” θ with the property (8.5) [i.e.

θ(u+ v) = θu+ θv (u, v ∈ g)]

are added to an abelian group.32

[van der Waerden, 1932, p. 28f, emphasis in the original]

Notice that there are very few restrictions on the set of operators.
Van der Waerden applied the concept of group with operators to the representation

space. The representation space is a vector space, thus its vectors form an abelian
group with respect to addition. The set of operators are the scalars together with the
28Krull [1925, 1926].
29Noether [1927]; Schmidt [1928]; Noether [1929].
30van der Waerden [1930, 1931].
31On the development of modern algebra see e. g. Corry [1996].
32

”
Eine Menge g von Elementen a, b, . . . irgendwelcher Art (z.B. von Zahlen, von linearen Transforma-

tionen) heißt eine Gruppe, wenn folgende vier Bedingungen erfüllt sind:

(8.1.) Jedem Elementenpaar a, b ist ein
”
Produkt“ a · b (oder ab), das wieder zu g gehört, zugeordnet.

(8.2.) Das Assoziativgesetz: ab · c = a · bc.
(8.3.) Es gibt ein

”
Einselement“, e oder 1, mit der Eigenschaft ae = ea = a.

(8.4.) Zu jedem a von g existiert ein Inverses a−1 in g, so daß a · a−1 = a−1 · a = 1 ist.

Die Gruppe heißt Abelsch, wenn stets ab = ba ist. [. . . ] Man redet im allgemeinen, wenn zu einer
additiven [d. i. Abelschen] Gruppe gewisse

”
Multiplikatoren“ oder

”
Operatoren“ θ mit der Eigenschaft

(8.5.) [d. i. θ(u+ v) = θu+ θv] hinzugenommen werden, von einer Gruppe mit Operatoren.“
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representation matrices of the group in question. This makes the representation space
into a group with operators. Van der Waerden showed how the central concepts of
representation theory, such as invariant subspaces or irreducible representation, can be
deduced from the theory of groups with operators.

One advantage of groups with operators was that van der Waerden could easily prove
an important uniqueness theorem: If a representation splits into irreducible represen-
tations then this splitting is unique up to isomorphism. This was a central theorem
of representation theory. It was also vital for quantum mechanics because of the cor-
respondence between irreducible representations and quantum numbers. Proving the
uniqueness theorem was elementary in this general setting.33

Wigner and Weyl also mentioned this central theorem of group theory. Wigner main-
tained it in full generality, but only proved it for groups with a finite number of ele-
ments.34 He used so-called transcendental methods relying on characters. This approach
went back to G. Frobenius and I. Schur.35 It had the advantage of achieving a construc-
tive method for reducing a given representation into irreducibles. This was also how
Weyl had proceeded in the first edition of his book. However, in the second edition he
changed to a more modern approach.36 Although he did not introduce the concept of
group with operators he used it implicitly. Weyl thought that this approach was more
elementary and that it allowed a “full insight” (vollen Einblick) into the situation and a
“complete understanding of the context” (restloses Verständnis der Zusammenhänge).37

Van der Waerden also saw another advantage of the concept of groups with operators,
especially in physical contexts. Groups with operators allowed an easy notation of the
group operation. Instead of working with different symbols to denote different represen-
tations of the same group, one could simply use the group element to operate on the
representation space. Thus the notation becomes somewhat simplified.

The concept of group with operators allowed an easy and short introduction to rep-
resentation theory from the point of view of modern algebra. This kind of approach
was quite original. However, as far as I know, it was not followed up by anyone else.
Van der Waerden used it in later editions of the book, even though the concept had
come out of fashion. Van der Waerden’s approach was not fully modern, since he did
not develop the theory in its full generality, but only in so far as it was necessary to
introduce representation theory of groups. Thus, he tailored his modern approach to
the needs of physicists.

Slater’s Method Revisited

In the letter to van der Waerden mentioned earlier, Ehrenfest characterized the ap-
pearance of group theory in quantum mechanics as “group plague” (Gruppenpest). As
already mentioned he did not intend to get rid of it altogether—as one would with a
real outbreak of the plague, but he tried to master this new set of mathematical tools.
The resistance to group theory grew when the young American physicist J. C. Slater

33van der Waerden [1932, §11].
34Wigner [1931, p. 95].
35On the history of the representation theory of Lie groups see Hawkins [2000].
36Weyl [1931, chap. III, §6].
37Weyl [1931, p. VIf.].
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introduced a method in 1929 to determine the multiplet system of an atom with several
electrons without using group theory.38 Slater’s method was warmly welcomed by the
physicists’ community. Many physicists believed that this was the beginning of the end
of group theory in quantum mechanics. Slater remembered this as follows:

As soon as this paper [Slater, 1929] became known, it was obvious that a
great many other physicists were disgusted as I [Slater] had been with the
group-theoretical approach to the problem. As I heard later, there were
remarks made such as “Slater has slain the ‘Gruppenpest.’ ” I believe that
no other piece of work I had done was so universally popular. [Slater, 1975,
p. 62]

Slater’s method rested on an approach developed by Hund who later became a colleague
of van der Waerden in Leipzig.39

Van der Waerden introduced two methods to determine the multiplet structure of an
atom with several electrons in his text book. He gave a very concise summary of the
group-theoretical procedure without going into details but referring the reader instead
to Weyl’s text book. Van der Waerden then turned to Slater’s alternative method. He
introduced it in a positive light:

However, there is a second method, in principle already older, recently ap-
plied successfully in particular by J.C. Slater, which gets by with much
simpler aids and which does not require the representation theory of the per-
mutation group.40 [van der Waerden, 1932, p. 120, emphasis in the original]

Van der Waerden went on to explain Slater’s method.41 Group-theoretically speaking,
Slater could avoid the permutation group by transforming the spin and the “place” of the
electrons simultaneously and by taking only those configurations into account which give
rise to antisymmetric wave functions. In a group-theoretic approach the permutation
group could operate on both spaces separately. Then van der Waerden described Slater’s
method, which was based on a table of configurations, then converted into a graphical
diagram and graphically analyzed. Instead of just copying this method, van der Waerden
optimized it. His main achievement was to do away with the graphical part and to
develop a purely computational algorithm instead. Firstly, van der Waerden shortened
the table of configurations so that it only contained configurations that gave rise to
an antisymmetric wave function and so that all configurations with negative values of
MS =

∑
ms were left out due to reasons of symmetry.

The following table (Table 1) shows van der Waerden’s table of configuration for three
electrons with n = 2 and l = 1, i.e. three 2p electrons.42 The content of the round
brackets symbolizes an electron with quantum numbers n, l,ml and spin ±1/2. The left-
hand side of each row is an abbreviation for an antisymmetric wave function which is

38Slater [1929].
39Hund [1927].
40“Es gibt aber eine zweite, im Prinzip schon ältere, neuerdings vor allem von J.C. Slater erfolgreich

angewendete Methode, die mit viel einfacheren Hilfsmitteln auskommt und insbesondere die Darstel-
lungstheorie der Permutationsgruppe nicht benötigt.”

41van der Waerden [1932, p. 120-124].
42van der Waerden [1932, p. 121].
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ML MS

(2 1 1 +) (2 1 0 +) (2 1 -1 +) 0 3
2

(2 1 1 +) (2 1 0 +) (2 1 1 -) 2 1
2

(2 1 1 +) (2 1 0 +) (2 1 0 -) 1 1
2

(2 1 1 +) (2 1 0 +) (2 1 -1 -) 0 1
2

(2 1 1 +) (2 1 -1 +) (2 1 1 -) 1 1
2

(2 1 1 +) (2 1 -1 +) (2 1 0 -) 0 1
2

(2 1 1 +) (2 1 -1 +) (2 1 -1 -) -1 1
2

(2 1 0 +) (2 1 -1 +) (2 1 1 -) 0 1
2

(2 1 0 +) (2 1 -1 +) (2 1 0 -) -1 1
2

(2 1 0 +) (2 1 -1 +) (2 1 -1 -) -2 1
2

Table 17.1: Van der Waerden’s table of configurations for three 2p−electrons

given by the following expression (e.g. for the first row):∑
P∈S3

δPPψ(2 1 1 |q1)ψ(2 1 0 |q2)ψ(2 1 − 1 |q3)u1v1w1

in which S3 is the permutation group of three elements, δP is the sign of the permutation,
qf a system of space coordinates of the f−th electron (f = 1, 2, 3) and ui, vj , wk(i, j, k =
1, 2) are vector components in spin space with a 1 in the index indicating spin +1/2 and
a 2 indicating spin −1/2. In the second column one adds up the ml and in the third the
spin of the electron configuration, giving rise to numbers ML and MS .

Secondly, van der Waerden gave a clear-cut procedure of how to find the pairs L, S
of an arising multiplet directly from the table of configurations. The procedure was as
follows: First, one has to choose the greatest value for MS in the table (in this case
3/2). Together with the value ML from the same row (in this case 0) it gives rise to a
multiplet with L = ML and S = MS . In case of more rows with the same value MS ,
you choose the row with the greatest value ML. Then you delete from the table all rows
with values MS = S, S − 1, . . . , 0 and ML = L,L − 1, . . . ,−L once. (In the example of
S = 3/2, L = 0, one deletes two rows: 1st, 4th). Then you start the procedure again
from the beginning. In the example this leads to the multiplets 4S, 2D, 2P.

Van der Waerden’s third way of optimizing Slater’s method was to give three rules.
Some of these rules were already implicitly used by Slater in his examples. The first
rule stated that one could neglect the electron of a full shell (same n, l for 2(2l + 1)
electrons). The second one described how to construct the multiplets of the whole
system from multiplets arising from subsystems. As subsystems he considered electrons
in the same shell, i.e. sets of equivalent electrons (same n, l). The third rule made use of
the symmetry of the multiplet structure within a shell to determine the multiplets. At
the end of the passage, van der Waerden gave a list of the possible multiplets occurring
in shells up to l = 2. This list could be used as a table of reference by the working
physicist when determining the multiplet structure of an atom with several electrons.

So, van der Waerden took on board the concerns of those physicists who were interested
in easy calculational techniques. He restricted the use of group theory to a minimum.
When it was possible to use a mathematically simpler method he did not hesitate to do
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so. This again is a very pragmatic attitude, which is not at all in line with the modern
algebraic way of reasoning. The inclusion of Slater’s method into his book might also
indicate that it was a method used by the physicists in Leipzig—after all Slater’s method
was based on method developed by Hund.

Van der Waerden’s approach to Slater’s method also differed considerably from Weyl’s
and Wigner’s. Both of them explained the group-theoretic approach and gave all the
mathematical details. Weyl did not mention Slater’s method explicitly in his second
edition of 1931, but implicitly referred to it.43 In his preface Weyl alluded also to
Slater’s method:

It has recently been said that the “group plague” will gradually be taken out
of quantum physics. This is definitely not true with respect to the group of
rotations and of Lorentz-transformations. As to the group of permutations,
its study really seems to include a detour due to the Pauli principle. Nev-
ertheless, the representations of the group of permutations must remain a
natural tool of theory, as long as one takes the existence of spin into account,
but neglects its dynamic effect and as long as one wants to have a general
overview of the resulting circumstances.44 [Weyl, 1931, p. viif]

Weyl acknowledged that the permutation group could be avoided—at least to a certain
extent—because of the Pauli principle, a principle which was also at work in Slater’s
method. Yet, he also insisted that the representation theory of the permutation group
could not be avoided generally. Van der Waerden presented Slater’s method as a short-
cut around the representation theory of the permutation group for determining the
multiplet system.

What about Wigner? Like van der Waerden, he mentioned Slater’s theory. However,
Wigner explained why Slater’s method worked from a group-theoretic point of view. He
groupified Slater’s method, so to speak. In this way, he could also determine its range
of applicability. Slater’s method was restricted to particles of spin one half. The group-
theoretic method, however, worked for particles with arbitrary spin. So, Wigner pointed
to a physical reason which spoke in favour of the more complicated group-theoretic
method.

43Slater’s article was mentioned in two footnotes but only because of Slater’s innovative approach in
perturbation theory to calculate energy levels [Weyl, 1931, p. 173, fn. 4; p. 314, fn. 15].

44“Es geht in jüngster Zeit die Rede, daß die
”
Gruppenpest“ allmählich wieder aus der Quantenphysik

ausgeschieden wird. Dies ist gewiss unrichtig, bezüglich der Rotations- und Lorentz-Gruppe. Was die
Permutationsgruppe anlangt, so scheint ihr Studium in der Tat wegen des Pauliverbots einen Umweg
einzuschließen. Dennoch müssen die Darstellungen der Permutationsgruppe ein natürliches Werkzeug
der Theorie bleiben, solange die Existenz des spins berücksichtigt, seine dynamische Einwirkung aber
vernachlässigt wird und man die daraus resultierenden Verhältnisse allgemein überblicken will.” The
given translation is closer to the German original than that of the English edition of 1950. The
appreciative mentioning of Slater’s works together with those of D. R. Hartree and Dirac by Weyl at
the end of the paragraph (from which the above quote was taken) is done in the context of numerical
methods in perturbation theory and thus, in my opinion, does not refer to Slater’s method to avoid
group-theoretic reasoning (see also previous footnote).
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Conclusion

The examples chosen to illustrate van der Waerden’s approach failed to give a really
coherent picture. The first example of the spinor calculus shows that van der Waerden
developed a calculus at the request of Ehrenfest, that he tried to use as little mathematics
as possible. No modern algebra went into this work. Instead a calculus was modelled
on the tensor calculus. The second example—groups with operators—shows that he
confronted the physicists with a new concept of modern algebra. However, the purpose
of the concept was only to give an introduction to representation theory. Moreover,
van der Waerden used the concept in a very limited way, adapted to the representation
theory of groups. The third example shows that van der Waerden was a pragmatic
person who included and improved Slater’s method for reasons of simplicity. This is
quite remarkable for a book dealing with group-theoretic methods.

What can we conclude from this? Van der Waerden did not aim to apply modern
algebraic methods to quantum mechanics. It was not his main interest to demonstrate
the power of group theory. I think he really intended to help those physicists like
Ehrenfest to understand these new methods and to be able to work with them. Of
course, by doing so he helped to spread and advance the new method.

However, I think, this was not intended as “fighting back” as J. Mehra and H. Rechen-
berg put it pointedly.45 In my opinion, it was intended as a contribution to assist
physicists—not in an arrogant way, but rather in a friendly, helpful way. This is indi-
cated by the influence of “local” physicists on van der Waerden’s research.46
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Courant, R. and Hilbert, D. (1924). Methoden der mathematischen Physik, volume 1.
Springer-Verlag, Berlin, 1st edition.

Dirac, P. A. M. (1936). Relativistic wave equations. Proceedings of the Royal Society
of London, 155: 447–459.

Dold-Samplonius, Y. (1994). Bartel Leendert van der Waerden befragt von Yvonne
Dold-Samplonius. Internationale Zeitschrift für Geschichte und Ethik der Natur-
wissenschaften, Technik und Medizin, 2(3): 129–147. Engl. transl.: Interview with
Bartel Leendert van der Waerden, Notices Am. Math. Soc. 44, No. 3, 313–320,
1997.

Dold-Samplonius, Y. (1997). In memoriam: Bartel Leendert van der Waerden. Historia
Mathematica, 24(2): 125–130.

45Mehra and Rechenberg [chap. III.4(e) 200].
46Another example of this influence is the chapter on molecular spectra in [van der Waerden, 1932] which

apparently was influenced by discussions with Hund [Kleint and Wiemers, 1993, p. 205, fn. 26].

335



Martina R. Schneider

Ehrenfest, P. (1932). Einige die Quantenmechanik betreffende Erkundigungsfragen.
Zeitschrift für Physik, 78: 555–559.

Eisenreich, G. (1981). B. L. van der Waerdens Wirken von 1931 bis 1945 in Leipzig.
In Beckert, H. and Schumann, H., editors, 100 Jahre Mathematisches Seminar
der Karl-Marx-Universität, Leipzig, pages 218–244. VEB Deutscher Verlag der
Wissenschaften, Berlin.

Frei, G. (1993). Dedication: Bartel Leendert van der Waerden. Zum 90. Geburtstag.
Historia Mathematica, 20(1): 5–11.

Frei, G. (1998). Zum Gedenken an Bartel Leendert van der Waerden (2.2.1903–
12.1.1996). Elemente der Mathematik, 53(4): 133–138.

Frei, G., Top, J., and Walling, L. (1994). A short biography of B. L. van der Waerden.
Nieuw Archief voor Wiskunde, IV/12(3): 137–144.

Goenner, H. (2004). On the history of unified field theory. Living Reviews in Relativity,
7(2): 1–151. Online Article: cited June 2nd, 2004, www.livingreviews.org/lrr-
2004-2.

Gross, H. (1973). Herr Professor B. L. van der Waerden feierte seinen siebzigsten
Geburtstag. Elemente der Mathematik, 28: 25–32.

Hawkins, T. (2000). Emergence of the theory of Lie groups. An essay in the history of
mathematics 1869–1926. Sources and Studies in the History of Mathematics and
Mathematical Physics. Springer, New York, Berlin, Heidelberg.

Hund, F. (1927). Symmetriecharaktere von Termen bei Systemen mit gleichen Partikeln
in der Quantenmechanik. Zeitschrift für Physik, 43: 788–804.

Infeld, L. and van der Waerden, B. L. (1933). Die Wellengleichung des Elektrons in der
allgemeinen Relativitätstheorie. Sitzungsberichte der Preussischen Akademie der
Wissenschaften, 7/10: 380–401. Corrections in: 11/13: 474.

Jahn, H. A. (1935). Rotation und Schwingung des Methanmoleküls. Annalen der
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18 Engineering Entanglement: Quantum
Computation, Quantum
Communication, and Re-conceptualizing
Information

Chen-Pang Yeang

Introduction: the EPR Paradox and Entanglement

Very few issues in the history of quantum mechanics have undergone so many twists as
entanglement. According to the received view, the idea of entanglement was proposed as
a paradox to challenge quantum mechanics. Albert Einstein, the major opponent of the
Copenhagen interpretation, disagreed with Werner Heisenberg and Niles Bohr’s denial
of physical reality without the intervention of measurement, which they claimed to be
an implication of quantum mechanics. From the late 1920s to the early 1930s, Einstein
exchanged a series of arguments with Bohr regarding the consistency of the Copenhagen
interpretation. The pinnacle of this debate was a thought experiment that Einstein,
his assistant Nathan Rosen at the Institute for Advanced Study, and the Russia-born
physicist Boris Podolsky came up in 1935.

What is now famous as the Einstein-Podolsky-Rosen (EPR) experiment works as
follows: Generate two identical particles at some location and let them move away. Ac-
cording to quantum mechanics, these two particles together constitute a single quantum
state that can be expressed by a wave function. Prepare the two particles at a particular
quantum state1 (the “EPR” or “entangled” state) so that they correlate perfectly with
each other. For the EPR state, it can be shown that when one makes a momentum
measurement at particle 1 and obtains the result p, she can be sure that were she to
measure the momentum of particle 2 she would get -p. Similarly, when she measures
the position of particle 1 and obtains x, she is guaranteed to get -x-x0 from measuring
the position of particle 2 (x0 is a constant). In brief, when the two-particle system is
at the EPR state, measuring the momentum or position of one particle is sufficient to
determine the other particle’s momentum or position.

This seemingly straightforward scenario was nonetheless turned into EPR’s weapon
against the completeness of quantum mechanics. From Heisenberg’s interpretation of the
uncertainty principle, one cannot determine simultaneously the momentum and position
(or any other non-commutating conjugate pair) of a particle, because one measurement
would perturb the particle’s original state and thus affect the accuracy of the other

1The wave function is Ψ=(x1,x2)=

Z ∞
−∞

ei2π/h(x1−x2+x0)p dp . See Albert Einstein, Boris Podolsky, and

Nathan Rosen, “Can quantum-mechanical description of physical reality be considered complete?”
Physical Review, 47 (1935), 779, equation (10).
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measurement. In the above thought experiment, however, one can determine particle
2’s momentum or position without any measurement-induced perturbation, since all the
measurements are done at particle 1. To EPR, that means both momentum and position
are pre-existing physical properties (in EPR’s words, “elements of physical reality”) of
particle 2. Constrained by the uncertainty principle, quantum mechanics cannot yield
accurate predictions of the second particle’s momentum and position at the same time.
But it does not imply (contra Bohr and Heisenberg) that nature prohibits simultaneous
determination of both physical quantities. Rather, it indicates that quantum mechanics
fails to capture all the elements of physical reality. Quantum mechanics is incomplete.2

The entangled state epitomized physicists’ efforts to understand the strange, counter-
intuitive characteristics of quantum mechanics. Since the founding of the “new” quantum
mechanics in the mid-1920s, physicists have tried to grapple with various consequences
of the theory that appeared contradictory to the established worldview: An object does
not proceed along a trajectory but has the probability to be everywhere. Particles “in-
terfere” with one another to form wavelike patterns. Entities far apart have non-local,
spontaneous correlations. Measurement determines physical reality. Entanglement was
not the only scenario for illustrating and exploring these odd features of quantum me-
chanics. Nor did it start as a very conspicuous one. (The EPR paper did not incur
much response in the first two decades after its publication.) With a few physicists’
rediscovery and elaboration in the 1950s–60s, however, entanglement became one of the
most important avenues for the study of quantum logic and the axiomatic foundation of
quantum physics.

For instance, the maverick American physicist David Bohm used entanglement in de-
veloping his non-local hidden-variable interpretation of quantum mechanics. In 1957,
Bohm and his collaborator Yakir Aharonov of Haifa, Israel, reformulated the EPR sce-
nario from its original momentum-position basis into a simpler basis involving spins3. In
Bohm and Aharonov’s version, each of the two particles was described by two quantum
states—spin up (|0〉) and spin down (|1〉)—instead of the continuous states representing
momentum and position. Then the wave function of the EPR state was

|EPR〉 =
1√
2

(|0〉 |1〉 − |1〉 |0〉) (18.1)

This reformulation of the EPR state turned out to be essential. In his visit to the United
States in 1964, the Irish particle physicist John Stewart Bell of CERN discovered a way
to respond to EPR’s paradox based on the Bohmian entangled state. Bell found that if
quantum mechanics were incomplete (as EPR held) and the two particles of the Bohmian
entangled state were determined by two sets of unknown parameters independent of each
other (i.e., two sets of local hidden variables), then the probabilities of the events for the
two particles would follow the so-called “Bell inequalities.” However, the probabilities
of such events obtained from quantum mechanical calculations did not obey the Bell
inequalities. Therefore, any local hidden-variable theory of quantum mechanics must be
contradictory.4

2Ibid, 777–780.
3David Bohm and Yakir Aharonov, “Discussion of experimental proof for the paradox of Einstein, Rosen,
and Podolsky,” Physical Review, 108 : 4 (1957), 1070–1076.

4John S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1 (1964), 195–200; reprinted in
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From Einstein, Podolsky, Rosen, to Bohm, Aharonov, Bell, and their followers in the
1960s–70s, those working on entanglement were preoccupied with understanding the
conceptual foundation of quantum mechanics. They treated the entangled state as a
model scenario to demonstrate how weird the quantum world is and to interpret why
it is the case. To the physicist community, the EPR problem was associated with the
meta-theoretical issues of quantum mechanics, such as realism, quantum logic, axiomatic
formulation, hidden-variable interpretations, completeness, and measurements.

Nevertheless, an epistemic change has emerged in the past thirty years. Since the
1980s, a number of scholars have revived the study of entanglement for a quite different
reason. In addition to the meta-theoretical concerns with the foundation of quantum
mechanics, they broadened their attention to the pragmatic aspects of entanglement.
Some of them even set aside the question of why quantum mechanics is so strange and
rather focused on how to utilize the strange properties of quantum mechanics. Their
answer gave rise to a new field known as quantum information.

How did such an epistemic shift occur? This paper examines the rise and ongoing
development of quantum information, the applications of quantum principles to com-
putation, communications, and other information processing problems. Although en-
tanglement is not the only substantial element of quantum information, it nonetheless
constitutes the intellectual core of quantum information and has played a key part in
the history of this new field. Specifically, entanglement has been transformed from an
explanandum in the meta-theoretical inquiries of quantum mechanics into a resource that
facilitates tasks such as parallel computing, teleportation, super-dense coding, and cryp-
tography. In this paper, I will argue that the development of quantum information can
be viewed as a process in which scientists and technologists learned how to engineering
entanglement and related behaviors of single quantum states.

It is worth noting that “engineering” in the history of quantum information has sev-
eral unconventional senses, all of which are significant in different ways. First, unlike
most applied outgrowths of quantum mechanics-microelectronics, chemistry, material
science—that deal with macroscopic physical systems with many atoms or molecules,
quantum information treats single atoms and coherent quantum states. Thus, the rel-
evant engineering is not doping materials with impurities or changing their statistical
mechanical conditions. Rather, it consists of preparing single atoms at simple quantum
states, carefully changing these states, and following their amplitude and phase varia-
tions. The manipulation of single, coherent quantum states has become an indispensable
aspect of engineering. Second, the part theory plays in engineering is no longer restricted
to modeling and analysis of some given working systems. In quantum information (as
well as in computer and communications sciences), theory is also used to gauge the per-
formance of all possible working systems and thus to predict the fundamental limit of
all solutions to an engineering problem. In other words, engineering consists of figuring
out not only what can be done, but also what cannot be done. Third, a major challenge
in quantum information is to find how to utilize quantum characteristics such as entan-
glement. As we will see, a quantum computer or quantum channel does not offer easy
access to the information it carries, and often it is not more effective than its classical
counterpart. Therefore, some “killer applications” are critical. In fact, the field began

John S. Bell, it Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum
Philosophy (Cambridge: Cambridge University Press, 2004), 14–21.
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to take off only after some specific algorithms, such as quantum factorization and quan-
tum search, were developed in the early 1990s. To this date, we may still characterize
quantum information as “an approach looking for problems.” In this sense, engineering
also included the identification of proper problems.

From the above discussion, it should be clear that the history of quantum informa-
tion involved multiple intellectual traditions of different communities. The most obvious
tradition was the one shared by the physicists working on the EPR paradox and related
meta-theoretical issues in quantum mechanics. Yet these physicists/philosophers were by
no means the only historical actors in the development of quantum information. There
were also down-to-the-earth contributors who cared more about the nitty-gritty details
of calculations and experiments than about the philosophical implications: mathemati-
cians and computer scientists preoccupied with universal computing, algorithms, and
complexity, information theorists trying to approach the channel capacity with better
communications codes, experimental atomic physicists working on purifying and manip-
ulating single atoms, and optoelectronic engineers designing laser circuits. These peoples
entered the history of quantum information at different stages.

Conceiving Quantum Computers

The origin of the idea of quantum computers was closely related to the discussions on
universal computation in the first half of the twentieth century. In 1936, the Ameri-
can logician Alonzo Church and the English mathematician Alan Turing independently
proposed a solution to David Hilbert’s Entscheidungsproblem. Their proposal ended up
with what is now known as the “Church-Turing thesis:” every “computable” function
(i.e., function that can be computed by an algorithm) can be computed by a certain
generic procedure. In Turing’s version, such a generic procedure was a “universal Turing
machine.” The Turing machine was a general computing architecture, not a real com-
puter. It comprised a program, a finite-state control, an infinite one-dimensional tape,
and a read/write head (see Figure 1). When the machine executed a computing task, the
program instructed the finite-state control to move the read/write head according to the
machine’s internal state and the data being accessed on the tape’s cell. The read/write
head could read the data on the cell, overwrite the data, or simply skip to the next cell.
The Church-Turing thesis asserted that this primitive architecture could perform all the
tasks any digital computer could carry out (see Fig. 18.1).5

The Church-Turing thesis and the universal Turing machine laid out the foundation
for modern computer science. However, they also left a longstanding puzzle: Like all
the digital computers, the Turing machine performs a discrete sequence of operations
that are irreversible—a simple way to understand why it is the case is to observe that all
these computing operations can be represented by logic circuits containing AND, OR,
and NOT gates; but the AND and OR gates are not reversible operators since they take
two inputs but give only one output. Nevertheless, many physical processes in nature
(including those in classical and quantum mechanics) are reversible. Thus, why and how
is it possible to implement a universal computer with a physical means? An obvious
5Alan Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings
of the London Mathematical Society, [series 2] 42 (1936–37), 230–265; Michael A. Nielsen and Isaac L.
Chuang, Quantum Computation and Quantum Information (Cambridge: Cambridge University Press,
2000), 122–125.
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Figure 18.1: Universal Turing Machine

answer is thermodynamics and statistical mechanics, since they describe irreversible
physical processes. Yet, the universal Turing machine as an irreversible process has its
disorderliness (or entropy) decrease with time, which is apparently inconsistent with the
second law of thermodynamics. So the problem remains unsolved.

In the 1960s–80s, the close study of this problem led to the expansion of a new area,
physics of computation. Rolf Landauer and Charles Bennett at IBM Thomas Watson
Research Center, Tommaso Toffoli at MIT Laboratory of Computer Science, and Edward
Fredkin at Boston University were the leading figures in this area. It would be beyond
the scope of this paper to delve into its immense literature. Suffice to point out that
the problem of implementing the irreversible universal computer with a physical process
yielded two related problems: Is it possible to make a reversible universal computer?
Can we simulate every physical process with a universal computer? To deal with the
first problem, Bennett, Fredkin, and Toffoli respectively introduced reversible Turing
machines and reversible logic circuits.6 The grappling of the second problem made room
for the notion of quantum computers.

The idea of quantum computing began to appear in the 1970s. But perhaps the first
influential literatures on this subject were introduced at the conference “Physics and
Computation” that Fredkin, Landauer, and Toffoli co-organized at MIT in May 1981.
At the conference, both Paul A. Benioff of the Argonne National Laboratory and Richard
Feynman, then professor at Caltech, presented this idea. Benioff’s was a model of clas-
sical Turing-like computation that could be implemented with quantum kinematics and
dynamics7. Feynman’s was something different. He started his presentation by remark-
ing that he wanted to talk about the problem of “simulating physics with computers.”8

6Charles H. Bennett, “Logical reversibility of computation,” IBM Journal of Research and Development,
17 : 6 (1973), 525–532; Edward Fredkin and Tommaso Toffoli, “Conservative logic,” International
Journal of Theoretical Physics, 21 : 3/4 (1982), 219–253.

7Paul A. Benioff, “Quantum mechanical Hamiltonian models of discrete processes that earse their own
histories: application to Turing machines,” International Journal of Theoretical Physics, 21 : 3/4 (1982),
177–201.

8Richard Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics,
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Classical physics, according to Feynman, may be efficiently simulated by conventional
digital computers such as the Turing machines, since the relevant physical problems can
be described as differential equations and solved numerically by algorithms. And this
approach applies to a stochastic physical system as long as some randomized features
are introduced into the Turing machines. But the same approach would encounter diffi-
culties in simulating quantum physics, for the quantum wave functions do not represent
ordinary probabilities. Instead, they exhibit a variety of strange features pertinent only
to quantum mechanics (such as interference, indeterminancy, non-locality, and the viola-
tion of the Bell inequalities). In fact, in order to simulate a quantum system, a classical
computer needs an exponentially huge memory to cover the entire Hilbert space. (An
N -level quantum system with R particles has NR configurations in total.) Therefore,
Feynman argued, a more efficient means to simulate quantum physics is the quantum
computer. He went further to propose a universal quantum simulator comprising a
lattice of spin-up or spin-down particles (like an Ising model) with nearest-neighbor in-
teractions that could be freely specified, and speculated that this system could be used
to simulate many quantum field problems.9

Feynman’s quantum machine was more a simulator than a computer in Turing’s sense.
The individual pushing the idea of quantum computer further toward the Turing-like,
algorithmic direction was David Deutsch. Born in Haifa, Israel, Deutsch received his
undergraduate education at Cambridge and Oxford and spent some years as a physics
graduate student at the University of Texas at Austin. Deutsch’s original interest lay
in cosmology. While in Austin, he studied quantum field theory in general relativistic
space-time. The Austin years shaped his intellectual path. As he later recalled, the
scientists that gave him most influence on his work were Dennis Sciama, John Wheeler,
and Bryce de Witt, all taught in the Physics Department of UT Austin when Deutsch
studied there. De Witt played an especially important part. In Deutsch’s own words,
“he was the one who introduced me to Everett’s many-worlds interpretation of quantum
mechanics, and to the wider implications of quantum field theory, and it was because
of his take on both the formalism and interpretation of quantum mechanics that I got
interested in quantum computers.” 10

Deutsch did not follow his mentors in Texas to pursue cosmology and astrophysics,
though. He returned to England, obtained a position as a researcher in the Department
of Astrophysics at Oxford University, and started working on quantum computing. In
1985, he published a seminal paper on the topic in Proceedings of the Royal Society
of London. Entitled “Quantum theory, the Church-Turing principle, and the universal
quantum computer,” this paper began with a challenge to classical universal comput-
ers that was similar to Feynman’s: The universal Turing machine can compute every
computable function, but can it be used to simulate every finitely realizable physical
system? Like Feynman, Deutsch gave a negative answer to the question, owing to vari-
ous constraints of the classical computation model. To fulfill both the mathematical and
the physical universality, Deutsch developed a quantum version of the universal Tur-
ing machine. This quantum universal Turing machine contained the same elements as

21 : 6/7 (1982), 467.
9Ibid, 474–476.
10Filiz Peach’s interview with David Deutsch in Philosophy Now, 30 December 2000

(http://www.qubit.org/people/david/Articles/PhilosophyNow.html); “David Deutsch,” in Edge:
The Third Culture (http://www.edge.org/3rd culture/bios/deutsch.html).
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its classical counterpart—a program, a finite-state controller, a tape, and a read/write
head. Contrasting the classical computer, however, the internal states of this quantum
computer and its data recorded on the tape memory were both quantum states following
the quantum principles such as Hilbert-space expansion, superposition, non-locality, etc.
Moreover, all operations of the machine, including the transition from one internal state
to another and the writing of a piece of quantum data on the tape, corresponded to
unitary operators on quantum states and thus are reversible. Deutsch showed that this
quantum Turing machine was able to compute every mathematical function that was
computable by a classical Turing machine or a randomized classical Turing machine.
Moreover, since the quantum Turing machine was reversible and operates on quantum
mechanical principles, it could be used to simulate efficiently the classical and quantum
physical systems. Feynman’s dream was fulfilled.11

The history of quantum computing would have been much more limited if Deutsch
had stopped here. Although the universal quantum Turing machine could do anything
that classical Turing machines could do, it was not clear at this moment whether this
quantum computer could do anything that the classical computers could not do (except
for simulating quantum physics) or perform any task more efficiently than the classi-
cal computers. Without the last two features, the quantum computers were at best
equivalent to conventional computers, meaning it did not make sense to explore further
the quantum computers from the practical point of view. Deutsch was aware of this
problem and had a solution to it. He contended that the quantum computers were not
only equivalent to classical computers; they were more efficient than the latter for some
kinds of computing tasks (in addition to simulating quantum physics). The fundamen-
tal superiority of quantum computers, Deutsch argued, was based upon what he called
“quantum parallelism,” a basic property of quantum mechanics. Deutsch demonstrated
the idea of quantum parallelism with a simple example. In the quantum world, the state
of a particle can be a superposition of all basis states. Prepare a particular, “mixed”
quantum state in an N -state system:

|ψ〉 =

(
|0〉+ |1〉+ . . .+ |N − 1〉

)
√
N

.

Couple this particle with another particle at state |0〉. The composite two-particle system
has the quantum state

|ψ0〉 =

(
|00|〉+ |10〉+ . . .+ |N − 1, 0〉

)
√
N

.

Deutsch showed that there exists a quantum operation (or a quantum program) that
leaves the first “slot” of each term unchanged while registers the result of evaluating a
function f at the second “slot:” . Thus the composite state after the operation becomes

|ψ0〉 7→ |φ〉 =

(
|0, f(0)〉+ |1, f(1)〉+ . . .+ |N − 1, f(N − 1)〉

)
√
N

.

This final state has a great computational advantage: It contains all the values of the
function f at 0, 1,. . . , N − 1 in a single wave function, and this result is obtained only
11David Deutsch, “Quantum theory, the Church-Turing principle, and the universal quantum computer,”

Proceedings of the Royal Society of London A, 400 : 1818 (1985), 97–107.
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with a single quantum operation. The implication: parallel information processing is
possible with a serial quantum computer.12

Quantum parallelism and entanglement are the manifestations of the same quantum
characteristics: The states of multiple particles can be expressed as linear combinations
of the basis states, and the composite resulting state is the sum of couplings between
the terms in these linear combinations. Deutsch’s identification of the potential appli-
cations of these characteristics marked a significant step toward quantum computation.
Nevertheless, quantum parallelism was not easy to use as it appeared to be. Although
Deutsch’s simple example showed the promise of getting f(0), f(1),..., f(N − 1) at the
output state |φ〉 , it was nonetheless difficult to retrieve all these values at the same time,
since measuring |φ〉 with respect to any of the state |i, f(i)〉 would inevitably collapse
the original form of |φ〉 and destroy the information it contained about other f(.)’s.
This did not mean that quantum parallelism was doomed useless, but it did imply that
more careful thoughts and more creative schemes were required to exploit quantum par-
allelism. Deutsch himself started developing one. Instead of retrieving all the f(.)’s, he
sought to obtain a global property of f(.) (a property involving multiple evaluations of
f) from |φ〉. With the even simpler binary case in which N = 2 and f took only the
value of 0 or 1, he demonstrated that the value f(0)

⊕
f(1) (

⊕
stands for the logical

operation “Exclusive OR”) could be determined by certain appropriate measurements
of |φ〉.13

A Computer Looking for Algorithms

Deutsch became an advocate and devotee of quantum computation after the publication
of his 1985 paper. In the second half of the 1980s, he moved to the Mathematical
Institute of Oxford and worked on a general theory of quantum logical circuits to replace
the less tractable quantum Turing machines. In computer science, a conventional digital
computer was constituted of logical circuits with a few building blocks such as wires,
sinks, and the AND, OR, and NOT gates. Deutsch’s aim was to develop a theory for
the necessary building blocks for all quantum logical circuits that shared the essential
features of the classical logical circuits. The culmination of this work was a paper
published in Proceedings of the Royal Society of London in 1989.14 In this paper, Deutsch
started to use the states |0〉 and |1〉 as the quantum counterparts of the classical bits
0 and 1. (In 1995, a quantum information theorist Benjamin Schumacher at Kenyon
College of Ohio coined the term “qubits” to denote these quantum bits |0〉 and |1〉.15)
Deutsch also proposed a set of elementary building blocks for two-qubit quantum logical
operations: the “swap gate” exchanging the order of the first and the second qubits,
and the important “controlled-NOT gate” that left the first qubit intact while flipped
the second qubit if the first qubit read 1. (This was an analogy of the “Toffoli gate,”
a reversible two-bit logical operation Toffoli had developed in the 1970s.) In the early
1990s, some one-qubit operations such as the Pauli spin matrices and the so-called
“Hadamard matrix” were also added to the repertoire of the quantum logical gates.

12Ibid, 111–113.
13Ibid, 112
14David Deutsch, “Quantum computational networks,” it Proceedings of the Royal Society of London

A, 425:1868 (1989), 73–90.
15Benjamin Schumacher, “Quantum coding,” Physical Review A, 51 : 4 (1995), 2747.
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Despite the increasing knowledge on the foundation of quantum computation, the
question of application remained: What is the quantum computer useful for? As Deutsch
had observed, the idea of quantum computing might not be worth pursuing if there were
no algorithm for this computer that was more efficient than the existing approaches to a
certain computational task. In other words, a quantum computer must have impressive
algorithms with practical potential. The developments of such algorithms in the 1990s
marked the real take-off of quantum computation.

The first initiative was taken in Oxford. As early as 1985, Deutsch had come up
with a quantum parallel algorithm that solved a simple problem: determining whether
f(0)

⊕
f(1) is 0 or 1. Although this did not address any “real” mathematical problem,

it showed a vague but promising direction to go. To expand the algorithm in 1985,
Deutsch sought the collaboration of another Oxford alumnus Richard Jozsa. Jozsa re-
ceived his Ph.D. in physics at Oxford University under the supervision of the mathemat-
ical physicist Roger Penrose. Like Deutsch, Jozsa started as a cosmologist but ended
up a specialist in the physics of computation. In 1992, the two colleagues published an
algorithm, based on Deutsch’s 1985 scheme, to solve a less straightforward problem.16

The so-called “Deutsch-Jozsa algorithm” tackles the following problem: Consider a
binary functions f that takes integer argument from 0 to 2n − 1. The function f is
either constant (0 or 1) for all values of the argument, or balanced in the sense that
f(x) = 0 for half of the x between 0 to 2n − 1 and 1 for the other half. The goal is to
determine whether f is constant or balanced with the least number of operations. For
the classical algorithms, the only general approach to this problem is to check the value
of f(x) one by one, and it may take as many as 2n−1+1 checks before getting the answer.
Nevertheless, Deutsch and Jozsa argued, an algorithm using the property of quantum
parallelism can significantly reduce the number of operations. Key to the Deutsch-Jozsa
approach is to prepare mixed (n+1) qubits exhausting all the quantum states from |0〉 to

|2n − 1〉 using the “Hadamard gates” (a Hadamard gate transforms |0〉 into
(|0〉+ |1〉)√

2

and |1〉 into
(|0〉 − |1〉)√

2
). The overall output is then applied to the generalized controlled-

NOT operation with n controlling qubits (representing a number x) and 1 signal qubit
(representing a number y). While the first n qubits remain unchanged (x), the signal
qubit after the gate becomes y

⊕
f(x). Finally, the first n qubits (x) are employed by

the Hadamard gates again (see Figure 2 for the exact procedure). Deutsch and Jozsa
showed that after all these operations, the first n qubits offer a straightforward test for
the nature of f—it is constant if all the qubits are zero, and is balanced otherwise.

The strength of the Deutsch-Jozsa algorithm is its few number of operations compared
to the conventional solutions to the same problem. While the conventional algorithms
may take as many as 2n/2+1 steps to determine the nature of f , the quantum algorithm
takes a single step, for the information about all values of f is contained in the output
quantum state. This is a significant saving of computational time, or, the reduction of
computational complexity.

The Deutsch-Jozsa algorithm demonstrated the possibility of engineering the strange
properties of quantum mechanics by turning them into computational resources. But

16David Deutsch and Richard Jozsa, “ Rapid solutions of problems by quantum computation,” Proceed-
ings of the Royal Society of London A, 439 : 1907 (1992), 553–558.
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Figure 18.2: Deutsch-Jozsa Algorithm

the problem this algorithm aimed to solve was still artificial as well as insignificant, if
not straightforward. Not until the mid-1990s did quantum computing begin to attack
some “real-world” problems. Enter the American mathematician Peter Shor.

A native of California, Peter Shor was a mathematical prodigy-he won the Interna-
tional Olympiad and the Putnam Competition while in college. He received his B.S. from
Caltech in mathematics and Ph.D. from MIT in applied mathematics. After graduation,
he spent a year as a postdoc at the University of California in Berkeley and eventually
landed a research position at the AT&T Bell Laboratories. Shor’s early mathematical
interests focused on statistical and geometrical problems in computer science. His Ph.D.
dissertation was about the probabilistic analysis of the “bin-packing” problem: to pack a
number of objects with different volumes and shapes into the least number of fixed bins.
From the 1980s to the early 1990s, he published in a variety of areas including discrete
and computational geometry, applied probability, bin packing and scheduling, and com-
binatorics.17 Compared with Deustch and Jozsa, therefore, Shor received less training
in quantum physics but was more sensitive to the ongoing development in computer
science.

Shor’s involvement with quantum computers began in 1994, when he proposed a fa-
mous quantum algorithm capable of tackling several important problems in number
theory. In a conference paper read at the IEEE Annual Symposium on Foundations
of Computer Science, Shor claimed that he could use the property of quantum paral-
lelism to solve the so-called “order-finding” problem with a quantum algorithm that
had a significantly lower time complexity than the traditional approaches.18 The order-
finding problem can be stated as follows: Consider two positive integers x and N , where
N > x. The order of x modulo N is defined as the smallest positive integer r so that
xr ≡ 1(modN) (note that A ≡ B(modN) when A − B is a multiple of N). The order-
finding problem has been considered difficult. So far, no classical algorithms have been
developed to solve the problem with the complexity (number of steps) lower than the
polynomial orders of N . And most available algorithms do not go beyond trying different
values of r one by one in the modulo equation. That is, there is not yet an “efficient”
classical algorithm to perform order finding.19

Shor’s approach to this apparently intractable problem relied on Deustch’s idea of

17http://www-math.mit.edu/ shor/pubs.html.
18Peter W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” Proceedings

of the 35th Annual Symposium on Foundations of Computer Science (1994), 124–134.
19Nielsen and Chuang (2000), 226.
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quantum parallelism, an entanglement-like resource to facilitate certain computations.
First, Shor noticed that a Fourier transform could be employed on an arbitrary quantum
state. Like Deutsch’s parallel state that contained all the information about a function,
this “quantum Fourier transform” condensed all the spectral data of the input state
into the output superposition state. And since the quantum Fourier transform was a
quantum operator, it could be implemented with the components of standard quantum
circuits such as Hadamard gates and phase rotators. In Shor’s circuit for the quantum
Fourier transform for N elements, moreover, the number of operations was in the order
of O((logN)2) , which was considerably lower than the complexity O(N logN) of the
Fast Fourier Transform, the quickest classical algorithm for spectral analysis.20

Second, Shor showed that the quantum Fourier transform was a tool to do phase
estimation—i.e., estimating the phase ϕ of a given operator U ’s eigenvalue (U |u〉 =
ei2πϕ |u〉). The reason that the quantum Fourier transform was useful for such a task
was clear: The phase estimation was equivalent to the operation of period finding, which
could be done with spectral (Fourier) analysis. Shor developed a circuit constituting of
Hadamard gates, a controlled-NOT gate, and a quantum Fourier transformer for the
purpose of phase estimation.

Third, phase estimation was quite close to order finding, for both belonged to a gen-
eral class of period-finding operations. In fact, Shor developed a formulation of the
order-finding problem in terms of the phase-estimation problem. Thus, the order-finding
problem was solved with a more efficient approach using quantum parallelism, since the
major building block of the new approach—the quantum Fourier transform—had a sig-
nificantly lower complexity than its classical counterparts.

Third, phase estimation was quite close to order finding, for both belonged to a general
class of period-finding operations. In fact, Shor developed a formulation of the order-
finding problem in terms of the phase-estimation problem.21 Thus, the order-finding
problem was solved with a more efficient approach using quantum parallelism, since
the major building block of the new approach—the quantum Fourier transform—had a
significantly lower complexity than its classical counterparts.

However, what was the use of solving the order-finding problem beyond satiating the
curiosity of some number theorists? Shor argued that the order-finding problem could be
applied to tackle two other problems with enormous practical implications: factorization
of a large integer and finding the discrete logarithm of a number with respect to a cyclic
group. The factorization problem seeks to obtain the factors of an integer equaling to
the product of two large prime numbers, whereas the discrete logarithm problem is,
roughly, to find the minimum solution r of the equation xr ≡ p(modN) for given x, p,
and N . Both problems are crucial in contemporary cryptography. The factorization of
the product of two large prime numbers, for instance, has been the theoretical backbone
of today’s most popular public-key encryption scheme—the RSA algorithm that Ron
Rivet, Adi Shamir, and Leonard Adlerman developed in the 1970s. The best classical
algorithm to factorize a large number N has the order of complexity no better than
O(N1/3) , and this intractable time prevents any effective way of breaking the encrypted
code. Nevertheless, Shor’s quantum algorithm for factorization can achieve a complexity
as low as O((logN)2log(logN)log(log(logN))), which is improved exponentially over the

20Shor (1994), 127–128.
21Ibid, 128-129.

351



Chen-Pang Yeang

classical algorithms. With Shor’s algorithm, therefore, the security of most current
communications systems is at stake.22

The quantum factorization and discrete-logarithm algorithms developed in 1994 were
the first algorithms for quantum computers to solve “real-world” problems. Compared
with the Deutsch-Jozsa scheme, Shor’s algorithms were more “practical.” Within two
years, the computer scientist Lov Grover proposed another major quantum algorithm
for practical applications. Like the factorization and discrete logarithm scheme, this
algorithm was also originated from the Bell Laboratories.

Lov Kumar Grover was born in India. After obtaining a Bachelor’s degree in Indian
Institute of Technology in Delhi, he moved to the United States for further study and
work. Grover once taught in the Department of Electrical Engineering at Cornell Univer-
sity, but later left Cornell to join the Bell Laboratories as a researcher. In the mid-1990s,
he became aware of Shor’s work, probably through the internal communications at the
Bell Labs. The idea of using quantum characteristics in algorithm design gave him a
clue to solving a problem that had concerned him—the search problem.

Searching a database is a common task in information processing and computer sci-
ence. Yet this trivial work becomes extremely time consuming when the size of the
database is huge. Suppose in a set of N elements there are some element x that satisfies
the condition f(x) = 1 (the other elements y have f(y) = 0). The aim is to find all the
x’s among the N elements. Since the entire data set does not need to have a regular
structure, however, it is difficult to come up with a search scheme that saves time in
general. So far, the most efficient classical algorithm is to check the elements one by
one, which takes O(N) steps.

Grover got a different idea from quantum computing, though. In 1996, he proposed
a quantum search scheme that would reduce the algorithmic complexity from O(N)
to O(

√
N). In his own words, “quantum mechanics helps in searching for a needle in a

haystack.”23 The central idea underlying Grover’s quantum search algorithm is quantum
parallelism, too. Since superposition quantum states can carry the information about
the f(.) values of all the elements in the data set, we may save significant time by making
use of such superposition quantum states. Specifically, Grover’s search algorithm begins
with the preparation of a superposition state containing all the elements of the data
set. Then a series of identical operations are employed on the state. The aim of these
iterative operations is to “rotate” the quantum state toward the subspace corresponding
to the solution f(x) = 1 (Figure 3). Thus, after each iterative operation, the quantum
state moves closer to the solution state. Grover showed that it takes about O(

√
N) steps

to align the quantum state with the solution state, the objective of the search.24

The quantum factorization, discrete-logarithm, and search algorithms developed in the
1990s marked a significant step in the history of quantum computing. Before, quantum
computing was either entertained as an alternative formulation to the Turing machine
model or exploited to tackle only fabricated problems. Shor’s and Grover’s quantum
algorithms solved “real-world” problems important to pure as well as applied mathe-
maticians. They represented the initial success—at least at the theoretical level—of
22Ibid, 130–133; Peter W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer,” SIAM Journal of Computing, 26 : 5 (1997), 1484–1509.
23Lov K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical Review

Letters, 79 : 2 (1997), 325–328.
24Ibid, 326–328.
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Figure 18.3: Deutsch-Jozsa Algorithm

harnessing the strange properties of quantum mechanics and turning the entanglement-
like behaviors of the wave functions into valuable resources for the solution of practical
problems. The introduction of the quantum factorization, discrete-logarithm, and search
algorithms turned quantum computing from a confined and esoteric subject mainly inter-
ested to theoretical physicists into an active research area for mathematicians, computer
scientists, and electrical engineers.

Contemplating Quantum Communications

As physicists and computer scientists were seeking algorithms for quantum computers,
another idea of quantum information was being considered. The idea was to use the
strange properties of quantum mechanics in the transmission of information. Histori-
cally, the research on communications systems had a close relationship with the study
of computation—the rise of modern communications engineering in the 1940–60s was
owing to the revolution of digital computing, information theory and computer science
had shared some common mathematical tools, both areas in the early stage were un-
der the same disciplinary rubric of “information science,” etc. In the case of quantum
communications and computing, the connection was built into the core methodology
and problematiques. Both exploited and manipulated the fundamental characteristics
of wave functions, but with different purposes. Quantum computing aimed at devel-
oping efficient algorithms to reduce computational complexity. By contrast, quantum
communications set the goal of finding information transmission schemes, or “coding,”
with a higher rate, more fault tolerance, and more security. Moreover, while quantum
computing utilized a broader realm of quantum phenomena such as parallelism and
superposition, quantum communications relied directly on entanglement.

It is natural to connect entanglement with communications problems. The corre-
lation between the two particles of an entangled pair had invited attempts to devise
information-transmission schemes. Since Einstein, Podolsky, and Rosen, scholars had
disputed about whether information transmission based on the entangled state would
lead to unlawful consequences such as superluminal action or time reversal. Yet, most
discussions on this topic before the 1970s focused on the consistency and completeness
of quantum mechanics. A pioneering effort to turn entanglement into communications
resource was made by the American researcher Charles Bennett.

Charles Bennett was a native of Massachusetts. He obtained B.S. from Brandeis Uni-
versity in 1964 and Ph.D. from Harvard University in 1970, both in chemistry. Bennett’s
training was physical chemistry; he conducted doctoral dissertation project concerned
molecular dynamics. After graduation, he spent two years as a postdoc at Argonne Lab-
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oratory and eventually took a position at the IBM Research Center in New York State
in 1972. At the time, the IBM Research was a center for exploring cutting-edge comput-
ers. For instance, the Corporation had invested on the research into superconducting
logical circuits as a hopeful candidate for the computers of the next generation. Rolf
Landauer had also established his research group on the physics of computation at IBM.
When Bennett joined IBM, he worked under Landauer, who changed his interest from
molecular dynamics to the relationship between physics and information. In the 1970s
and early 1980s, Bennett contributed to various subjects in the physics of computation,
including the formulation of a reversible universal computer and a reinterpretation of
“Maxwell’s demon” in the context of computation.25

Bennett began to pay close attention to entanglement in the early 1980s. The recent
success of realizing the EPR experiment in laboratory 26 gave him the motivation of using
the entangled states in communications. Bennett’s first thought was quantum cryptog-
raphy, the application of quantum characteristics to encrypting messages. This idea
had existed for a while. In the 1970s, a physics student Stephen Wiesner at Columbia
University had thought of certain “quantum money” that could withstand counterfeit.27

Wiesner’s proposal was not taken seriously, but Bennett’s was. In 1982–84, he collab-
orated with the computer scientist Gilles Brassard in the Départment d’Information et
de Recherche Opérationnelle at Université de Montréal to develop a scheme of quantum
cryptography. The key principle of this scheme is that the quantum state of a particle
is changed permanently after a measurement. Suppose a person sends a message coded
into, say, the polarized state of a photon, to another person. If an eavesdropper is trying
to tap this message, then he has to make a measurement of the photon’s state, which
changes it permanently.

Consequently, the received message differs from the sent message. With some protocol
that the sender and the recipient exchange via another non-quantum channel, such a
discrepancy can be detected. And since this discrepancy marks eavesdropping, both
parties can drop the message of concern. In general, this procedure guarantees only
the non-eavesdropped messages to get through. Encryption upholds!28 With the help
of Bennett colleague John Smolin, Bennett and Brassard supervised the building of an
experimental demonstration for quantum cryptography at IBM in 1989.29

Bennett and Brassard’s quantum cryptographic protocol applied quantum principles
to protect the security of communications. More fundamentally, they had shown that

25http://www.research.ibm.com/people/b/bennetc/chbbio.html.
26Alain Aspect, Phillipe Grangier, and Gérard Roger, “Experimental realization of Einstein-Podolsky-

Rosen-Bohm Gedanken Experiment: a new violation of Bell’s inequalities,” Physical Review Letters,
49 : 2 (1982), 91–94; Alain Aspect, Jean Dalibard, and Gérard Roger, “Experimental tests of Bell’s
inequalities using variable analysis,” Physical Review Letters, 49 : 25 (1982), 1804–1807; M.A.Horne
and Anton Zeilinger, “Einstein-Podolsky-Rosen interferometry, new techniques and ideas in quantum
measurement theory,” D.Greenberger (ed.), Annals of the New York Academy of Sciences, 480 (1986),
469.

27Stephen Wiesner, “Conjugate coding,” SIGACT News, 15 (1983), 77.
28Charles H. Bennett and Gilles Brassard, “Quantum Cryptography: Public Key Distribution and Coin

Tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing,
(Bangalore India, December 1984) 175–179.

29http://www.research.ibm.com/people/b/bennetc/chbbio.html; Charles H. Bennett and Gilles Bras-
sard , “The dawn of a new era in quantum cryptography: the experimental prototype is working,”
ACM SIGACT News, 20 (1989), 78–83.
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one might use quantum states of particles as particular “channels” for information trans-
mission; for instance, one could code the information into the polarized states of photons
and send out the photons as information carrier. What are the characteristics of such
quantum channels? In addition to encryption, what are the advantages of employing
the quantum channels? Can they help increase the rate of information transmission,
arguably the primary raison d’être of communication engineering? In the early 1990s,
Bennett and his collaborators discovered a few interesting ways of manipulating the EPR
states that offered clues to answer the above questions. Specifically, they found means to
appropriate entanglement in implementing effective information-transmission systems.

The first finding came in 1992. Bennett and Stephen Wiesner suggested that a specific
way of manipulating an EPR state led to a high-rate information transfer. Later known
as “superdense coding,” Bennett and Wiesner’s scheme worked as follows (Figure 4):
Suppose Alice wants to send a two-bit piece of information to Bob, who is far away from
her. Either Alice or Bob or a third person prepares a two-particle entangled state:

|ψ〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉) (18.2)

(Note this state is different from the one Bohm and Bell used in (1). Yet both states
exhibit the perfect correlation between the two particles that the EPR condition de-
mands.) Now, deliver the first qubit of |ψ〉 to Alice and the second qubit to Bob. Since
both qubits are from the same EPR state, they should have a perfect correlation even
though they are possessed by two individuals far apart. After each of them obtains the
respective qubit, Alice performs one of the four operations on the qubit she gets, and
these operations can be numerated with two binary numbers:

00 no operation α |0〉+ β |1〉 7→ α |0〉+ β |1〉
01 phase flip α |0〉+ β |1〉 7→ α |0〉 − β |1〉
10 state swap α |0〉+ β |1〉 7→ β |0〉+ α |1〉
11 phase flip+state swap α |0〉+ β |1〉 7→ β |0〉 − α |1〉

The operation Alice performs on her qubit depends on the message she intends to
send to Bob: If she wants to send 00, then she leaves the qubit intact; if she wants to
send 01, then she performs phase flip, etc. After the operation, Alice sends the qubit to
Bob via a quantum channel. Upon receiving Alice’s qubit, Bob possesses two entangled
particles with the overall quantum state having one of the four possibilities:

00 |φ〉 = 1√
2
(|00〉+ |11〉

01 |φ〉 = 1√
2
(|00〉 − |11〉

10 |φ〉 = 1√
2
(|10〉+ |01〉

11 |φ〉 = 1√
2
(|01〉 − |10〉 (3)

Since the states in (3) are orthogonal to each other, Bob can devise a measuring in-
strument to distinguish |φ〉 perfectly among the four possibilities. By measuring the
quantum state of the two entangled particles, therefore, Bob can figure out whether
Alice sends 00, 01, 10, or 11, meaning that he is able to retrieve the information Alice
transmits. Moreover, the transmission of this two-bit information is achieved with the
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communication of only one qubit from Alice to Bob. In other words, the rate of infor-
mation transmission is doubled using EPR and the quantum channel! In 1992, Bennett
and Wiesner published their scheme in Physical Review Letters.30

Figure 18.4: Superdense Coding

Bennett and Wiesner’s proposal turned out to be only the first step toward a more
unintuitive result in quantum communications. In the 1992 paper, they pointed out
that the essence of their scheme was to split the two qubits of an EPR pair, manipulate
a qubit at one side, and return the result of manipulation in some way to the other
side. The superdense coding was just a special case of a more generic procedure like
that. The paper also discussed the conditions in which some “ancilla,” an additional
quantum state, was coupled with one qubit of the EPR pair. The incorporation of the
ancilla gave the communications system more freedom to manipulate, which facilitated
the production of more novel effects. An immediate one was “quantum teleportation,”
the faithful transport of a quantum state from one place to another.

The work on quantum teleportation in 1993 resulted from a multinational collabora-
tion involving the U.S., Canada, Israel, and France. The participants included Bennett,
Brassard, Brassard’s colleagues Claude Crépeau (who was also affiliated with the École
Normale Supérieure in Paris) and Richard Jozsa at the Université de Montréal (Jozsa
had moved to Montréal in 1985), Asher Peres at Technion-Israel Institute of Technology,
and William Wootters at Williams College.31 Their starting point was the longstanding
question whether the long-range correlation between the two elements of an EPR pair
can be used in information transfer. Since Einstein, scholars had focused on resolving
any scenario that might violate the laws of physics. An example is the demonstration
that instantaneous information transfer is impossible with an EPR pair, which saves the
premise of relativity that nothing travels faster than light. Yet, Bennett et al. were
not concerned with the meta-theoretical problems of compromising EPR with existing
30Charles H. Bennett and Stephen J. Wiesner, “Communication via one- and two-particle operators on

Einstein-Podolsky-Rosen states,” Physical Review Letters, 69 : 16 (1992), 2881–2884.
31C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. Wootters, “Teleporting an Un-

known Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels,” Physical Review
Letters 70 : 13 (1993), 1895–1899.
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physical laws. Instead, they were interested in what can be done with entanglement.
Although the EPR state cannot be used to perform instantaneous information transfer,
they argued, it can facilitate perfect transmission, or more precisely, a faithful repro-
duction, of a quantum state. Here is the scheme of Bennett et al. to achieve quantum
teleportation (Figure 5).

Suppose two far separated individuals Alice and Bob share an EPR pair. Like the
case of superdense coding, Alice possesses one qubit while Bob owns the other qubit of
the entangled state |EPR〉 = 1√

2
(|0〉 |0〉 + |1〉 |1〉). Alice’s task is to transmit to Bob a

quantum state |ψ〉 = α |0〉 + β |1〉 that she possesses but does not have any knowledge
of (i.e., she does not know the values of α and β). To achieve this end, Alice interacts
her qubit of the EPR pair with the unknown quantum state |ψ〉. Her exact operations
consist of a controlled-NOT gate taking |ψ〉 as the controlled qubit and a Hadamard gate
on |ψ〉. Although these gates operate on |ψ〉 and Alice’s qubit of |EPR〉, they modify
the joint quantum state of |ψ〉 and |EPR〉, because Bob’s EPR qubit and Alice’s EPR
qubit are perfectly correlated. After simple quantum mechanical calculations, it can be
shown that the resultant joint state is the superposition of four distinct terms: Alice’s
qubits are |00〉 while Bob’s qubit is α |0〉+β |1〉, Alice’s qubits are |01〉 while Bob’s qubit
is α |1〉 + β |0〉, Alice’s qubits are |10〉 while Bob’s qubit is α |0〉 − β |1〉, Alice’s qubits
are |11〉 while Bob’s qubit is α |1〉 − β |0〉. This result indicates that Bob now possesses
all the information needed to reconstruct |ψ〉, and he can do so as long as he knows the
exact state of Alice’s qubits. So Alice’s next step is to measure her two qubits to see
whether the outcome M1M2 is 00, 01, 10, or 11. Then she transmits these two classical
bits M1 and M2 via a classical channel to Bob. Upon receiving M1 and M2, Bob decides
which operation to take against his qubit: no action at all for 00, a state swap for 01, a
phase flip for 10, a state swap and a phase flip for 11. In all the four conditions, Bob’s
qubit output is guaranteed to be α |0〉+β |1〉, a faithful reproduction of the original |ψ〉.

Figure 18.5: Quantum Teleportation

The quantum teleportation provides a prototypical case for quantum communications.
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Its arrangement exhibits certain important features common to a lot of more sophisti-
cated quantum communication schemes. First, entanglement is the crucial resource for
the system. The protocol of the system starts with two communicative parties sharing
different elements of an EPR pair. Often the message is coded on a separate quan-
tum state rather than an EPR qubit. Yet the message state has to “interact” with the
EPR qubit in some algorithmic manner in order to exploit EPR’s correlation property.
Second, the access to the quantum information is a tricky issue. Unlike classical infor-
mation processing, the transmitter and receiver of a quantum communications system
cannot freely copy a message or read a message without disturbing it. In the case of
teleportation, for instance, Alice does not have any knowledge of the information she
sends to Bob. Nor can she keep a copy of the message state afterwards, for the message
state is collapsed after the measurement. Carefully designed, quantum-algorithmic-like
operations are necessary in the management of information flow. Finally, “classical”
channels may play an important part in quantum communications. Sometimes a quan-
tum channel has to be augmented with conventional digital transmission in order to take
full advantage of entanglement.

Quantum Information: What’s Next?

From the 1980s to the mid-1990s, the pioneering works of Deutsch, Jozsa, Shor, Grover,
Bennett, Brassard, Wiesner, and a few others had opened up the field of quantum
information. The Deutsch-Jozsa, factorization, discrete logarithm, and search algo-
rithms showed the promise of quantum parallelism in tackling computational problems.
The ideas of quantum cryptography, superdense coding, and teleportation demonstrated
the potential of entanglement in communications engineering. By the beginning of the
twenty-first century, quantum information science had become a cutting-edge area with
many participants from diverse disciplines and all parts of the world. An online “who’s
who” for quantum information science features more than two hundred scholars from
North America and Europe as well as East Asia, Middle East, and Latin America. The
people studying quantum information had expanded into a significant, international
community. What are their research agendas? What do they try to do? What is the
next after the surge of innovations in the 1980s–90s?

Physical realizations of quantum computers and quantum communications systems
have been a primary concern for those working in this area. Deutsch and Jozsa’s, Shor’s,
and Grover’s algorithms, as well as Bennett et al.’s EPR-related communications pro-
tocols existed only on papers when they were proposed. Since the 1990s, physicists and
engineers have tried to implement these ideas in laboratories. It would be a daunt-
ing task to trace the numerous experimental endeavors on quantum information in this
paper. Suffice to observe that the implementation of quantum computers and com-
munication systems has been built upon a different set of knowledge and skills from
conventional computer engineering, electronic engineering, and material science. Unlike
the computers and electronics we are using today, quantum computers and communica-
tions systems are difficult to realize using semiconductor materials. In fact, the making
of these quantum information devices seems to concern not the choice and engineering of
specific materials, but the ability to manipulate single atoms and photons and prepare
pure quantum states. Thus, atomic physics and optoelectronics have played more im-
portant parts in quantum information experiments than condensed-matter physics and
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semiconductor electronic engineering.
The first notable success of quantum information experiments came from the physical

implementation of simple quantum communications schemes. In 1996, researchers at the
Universität Innsbruck in Austria and Los Alamos National Laboratories reported pro-
duction of the superdense coding phenomenon in laboratory. In 1997–98, the Innsbruck
group, and the research teams at the Università Roma, Italy, and Caltech succeeded
in the experimental realization of quantum teleportation.32 All these physicists used
photons (more specifically, laser) in their implementation of quantum communication
schemes. The choice of laser had good historical reasons: After the invention of laser in
the 1960s and the development of optical fibers in the 1970s, optoelectronics had become
a major means of high-bandwidth digital communications. In the process of designing
efficient fiber networks, optoelectronic engineers and applied physicists had accumulated
rich knowledge and skills in preparing and handling pure quantum states of photons
such as the coherent state and the squeezed state. These became handy techniques for
the experimenters working on EPR. In fact, the first successful laboratory productions
of the EPR pairs in the early 1980s were accomplished by atomic physicists using laser
apparatus. By the 1990s, therefore, the EPR photon-pair generator consisting of beam
splitters and nonlinear parametric amplifiers had become an available device for the
quantum information experimenters.

Although optoelectronics may be an effective way of implementing quantum com-
munications systems, its applications in quantum computers have encountered some
problems. Some have argued that photons are more difficult to interact with and to
store than atoms, so a more feasible quantum computer should be made of the latter. In
the mid-1990s, researchers proposed to use trapped ions to implement quantum comput-
ers. A technique invented in the 1970s by the German atomic physicists Hans Dehmelt
and Wolfgang Paul, respectively, the ion trap utilized an electromagnetic field to confine
charged particles within a small volume.33 The ion trap was originally adopted to the
studies of atoms or smaller elementary particles, and hence were more familiar to atomic
physicists and particle physicists. This technique was brought to quantum computing,
because it offered means to prepare and manipulate atomic particles at simple quan-
tum states. Another popular candidate for the physical implementation of quantum
computers is Nuclear Magnetic Resonance (NMR). NMR was another product of the
mid-century boom of atomic physics (like laser and ion traps). Chemists and biomedical
engineers had spent decades to elaborate and improve the device; by the 1990s, it had
become a mature laboratory technology. Since a proposal in 1995, the NMR quantum
computer has attracted much attention of quantum information scientists. The major
advantage of NMR over ion traps or laser is that NMR functions at the macroscopic
level: the data is registered at thousands or even millions of spinning nuclei instead of a
few atoms or photons. But this advantage is also NMR’s serious shortcoming: it is much
more difficult to control the quantum state of a sea of spinning nuclei than that of several

32D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A, Zeilinger, “Experimental
quantum teleportation,” Nature, 390 : 6660 (1997), 575–579; D. Boschi, S. Branca, F. De Martini,
L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state
via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, 80 : 6 (1998),
1121–1125; A. Furusawa, J.L. S¯rensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, and E.S. Polzik,
“Unconditional quantum teleportation,” Science, 282 (1998), 706–709.

33http: //nobelprize.org/nobel prizes/physics/laureates/1989/index.html.
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atoms or photons. Recently, quantum information scientists have also proposed to ex-
tend the candidacy to superconductors, quantum dot, and ordinary semiconductors. But
none of these approaches—including optoelectronics, ion traps, and NMR—has reached
the stage of practicality. To date, there has not yet been a quantum computer with more
than a few qubits, let alone a machine with sufficient qubits indispensable to realize the
strength of the factorization, discrete logarithm, and search algorithms.

A major problem for the physical implementation of quantum computers and commu-
nications systems is noise. A single, coherent quantum state is very easy to collapse by
a slight interaction with its environment. While experimenters’ challenge is to maintain
the purity of quantum states and remove the sources of noise, theorists’ task is to develop
algorithms, schemes, and protocols that are more robust to noise. Since the mid-1990s,
much of the theoretical work on quantum information science has focused on this issue.
Shor’s factorization algorithm, Grover’s search scheme, and Bennett et al.’s superdense
coding, for instance, all perform well in an idealized world. But how would they function
in the real, noise-infected world? Can we find ways to save their performance with the
presence of disturbance? A popular topic among quantum information scientists is quan-
tum error-correction codes. Peter Shor in 1995 and Andrew Steane of Oxford University
in 1996 respectively devised error-correction codes for qubits. Similar to classical error-
correction codes, their approaches were to interact the data qubits and some redundant
qubits with quantum operations equivalent to parity check.34 The ideas of quantum
error-correction coding inspired theoretical works along several directions: In quantum
computing, it led to the development of fault-tolerant computing gates that guarantee
at least some degrees of performance for quantum algorithms in a noisy environment.

In quantum communications, the similarity between quantum error-correction codes
and classical error-correction codes has encouraged theorists to construct a comprehen-
sive quantum communications science analogous to the existing classical communications
science. The most important development has been the building of a quantum informa-
tion theory parallel to the Shannon-like information theory. Like Shannon’s followers,
the quantum information theorists are seeking the capacity of a quantum channel and
consequently the best possible performance of a quantum communication system. They
are also looking for the applications of the knowledge about channel capacity to the
efficient design of error-correction, data-compression, and cryptographic codes. As of
2007, scholars believe that they still know “only a little of quantum information theory.”

Quantum information devices are not yet a reality, if not an impossibility. Despite
conspicuous financial support from NSF, DARPA, and other major funding agencies
around the world, they remain research ideas and crude experimental prototypes that at
best show uncertain promises.35 Will there eventually be quantum computers or com-
munications systems? Is the entire field a hype or hope? Although our task is not to

34A famous example is Peter Shor, “Fault-tolerant quantum computation,” Proceedings of the 37th
Annual Symposium on Foundations of Computer Science (1996), 56–65. Also see Nielsen and Chuang
(2000), 425–499.

35Rolf Landauer, IBM’s chief physicist of computation considered by many as a godfather of quantum
computation, once suggested that all papers on quantum computing should carry a footnote: “This
proposal, like all proposals for quantum computation, relies on speculative technology, does not in its
current form take into account all possible sources of noise, unreliability and manufacturing error, and
probably will not work.” Seth Lloyd, “Obituary: Rolf Landauer (1927–99),” Nature, 400 : 6746 (1999),
720.
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answer these questions, we can nonetheless observe from such questions what kind of
pursuit have the studies of quantum information become. In this paper, I trace how
the research into the foundation of quantum mechanics has evolved into an expanded
technological project. The process started with physicists/philosophers’ epistemological
and ontological questions about entanglement, non-locality, and interference—what they
are, how to understand them, etc. Gradually, however, the central research agendas were
amended to pragmatic questions such as how to produce, manipulate, and make use of
them. With the introduction of specific quantum algorithms and quantum communi-
cations protocols, entanglement and related properties had been turned from puzzles
to be explained into resources for information processing. Engineering entanglement
has become equally important to, if not dominated over, pondering the interpretation of
quantum mechanics. Does this epistemic transformation indicate that quantum mechan-
ics has reached a mature stage so that we stop worrying about its conceptual foundation
and feel comfortable using it? I don not know. But I believe this story tells us as much
about the technological nature of today’s scientific practice as about our understanding
of quantum mechanics.
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