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Chapter Three: Setting the record straight
on the theorem of corresponding states

3.0 Common misconceptions about the theorem of corresponding states
and the contraction hypothesis

In his well-known book of 1895, Lorentz proved that, to first order in v/c, the source free

Maxwell equations are invariant under a transformation we now recognize as the Lorentz

transformation for the space-time coordinates and the electromagnetic field, to first order in v/c

(Lorentz 1895, p. 84). This result is known as the theorem of corresponding states. The phrase

“corresponding states” refers to pairs of solutions of the source free Maxwell equations, one

describing a situation in a frame at rest in the ether, the other describing a situation in a frame in

uniform motion through the ether. The solutions in such pairs are related to each other via the

embryonic Lorentz transformation. With the help of the theorem of corresponding states,

Lorentz could offer a very general account of the negative results of first order ether drift

experiments in optics.

In an important paper published in 1899, both in a Dutch and a slightly different English

version (Lorentz 1899a, 1899b), Lorentz introduced a new transformation under which the

source free Maxwell equations are exactly invariant. Up to an undetermined constant, which

Lorentz would eventually set equal to unity (Lorentz 1904b), this new transformation is what we

now recognize as the exact Lorentz transformation. Lorentz made the exact version of the

theorem of corresponding states the basis for a theory that predicts negative results for almost

any ether drift experiment in optics, both first and second order experiments.

There is an important difference between the theory based on the first order version of the

theorem of corresponding states and the theory based on the exact version. To understand

where this difference is coming from, a few words need to be said about the ontology of

Lorentz’s theory.1 Lorentz held a dualistic ontology of ether and matter. He subscribed to a

stationary ether and an atomistic view of matter. The only interaction between ether and matter

in his theory is via charged particles—originally called ‘ions,’ later called

‘electrons’—generating disturbances in the ether corresponding to electric and magnetic fields

and experiencing forces (the so-called Lorentz force) from these fields. So, two corresponding

                                                
1 The ontology of Lorentz’s theory remained pretty much the same throughout the development of the theory,
as can be seen by comparing Lorentz 1895 (introduction, pp. 1–8) to Lorentz 1916 (section 5, pp. 8–10).
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states, i.e., a pair of electromagnetic field configurations, are always associated with two

corresponding configurations of material particles, interacting via unknown intermolecular

forces and carrying the charge distributions responsible for the electromagnetic field

configurations. Lorentz used the term ‘corresponding states’ strictly for electromagnetic field

configurations. It will be convenient to use the terms in a somewhat wider sense, in which it

includes both the electromagnetic field configurations and the configurations of particles

carrying the charge distributions generating these fields. I trust no confusion will arise because

of this somewhat wider usage of the term.

To derive negative results for ether drift experiments on the basis of the theorem of

corresponding states, Lorentz has to assume that, when given a certain velocity with respect to

the ether, a material system initially at rest in the ether and generating a particular

electromagnetic field configuration will change into the material system generating the

corresponding state of that electromagnetic field configuration in the co-moving frame. It is at

this juncture that Lorentz’s first order theory, i.e., the theory based on the first order theorem of

corresponding states, is very different from Lorentz’s exact theory, i.e. the theory based on the

exact theorem of corresponding states.

In the first order theory, we can simply assume that the configuration of the material system

will not change at all when it is set in motion (except obviously for the addition of an overall

velocity). Lorentz does not even mention this assumption explicitly. The assumption is just part

of the tacit assumption of pre-relativistic physical theory that as a rule physical phenomena

satisfy a Galilean principle of relativity, electromagnetic phenomena being the exception to that

rule. As a consequence, Lorentz’s first order theory predicts negative results of ether drift

experiments without adding any new physical hypotheses to the purely mathematical theorem of

corresponding states. In the exact theory, however, the configuration of a material system at rest

in the ether will have to change upon setting the system in motion if it is to generate the

electromagnetic field configuration in the moving frame that is the corresponding state of the

electromagnetic field configuration generated by the system at rest in the ether.

Lorentz largely focused on optical experiments that eventually boil down to the observation

of patterns of light and darkness. From the first order theorem of corresponding states, it

immediately follows that patterns of light and darkness in two corresponding states are the

same. From a modern point of view, one would prima facie expect complications, even to first

order, having to do with the relativity of simultaneity, but patterns of light and darkness are by

their very nature stationary situations, so the relativity of simultaneity does not come into play.

Lorentz’s explanation of first order ether drift experiments in optics is then simply that a certain

configuration of optical components producing a certain pattern of light and darkness while at
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rest in the ether will produce that same pattern of light and darkness when it is in uniform

motion through the ether.

From the exact theorem of corresponding states, it follows that patterns of light and

darkness in corresponding states, though similar, are no longer the same. The pattern in the

moving frame will be shortened in the direction of motion (as well as rescaled by the

undetermined factor mentioned above) compared to the pattern in the corresponding state in the

frame at rest in the ether. In order to predict negative result in all experiments probing such

patterns of light and darkness in a moving frame, we have to make the assumption that the

material part of the system under consideration, the configuration of optical components, will be

shortened (and rescaled) in the same way as the patterns of light and darkness themselves. This

assumption, of course, is strongly reminiscent of the contraction hypothesis Lorentz and

FitzGerald had (independently) introduced earlier to account for the negative result of the

Michelson-Morley experiment.

I will call the assumption that needs to be added to the exact theorem of corresponding

states in order to predict negative results for all optical experiments that eventually boil down to

the observation of some pattern of light and darkness the generalized contraction hypothesis. It

generalizes the original Lorentz-FitzGerald contraction hypothesis in two ways. First, the

hypothesis accounts not only for the Michelson-Morley experiment but for all experiments that

eventually boil down to the observation of patterns of light and darkness (such as, say, the

Kennedy-Thorndike experiment, that I will discuss in sections 3.2 and 3.3). Second, the

generalized contraction hypothesis involves much more than a change in the dimensions of a

material system when set in motion through the ether, the only effect for which the original

contraction hypothesis gave a definite prediction.

Given my usage of the term ‘corresponding states,’ the generalized contraction hypothesis

can be formulated as the hypothesis that corresponding states physically transform into one

another. If one uses the term ‘corresponding states’ strictly for the electromagnetic field

configurations, as Lorentz did, we have to be more careful. The generalized contraction

hypothesis says that a material system (i.e., a particular configuration of particles) generating a

particular electromagnetic field configuration in a frame at rest in the ether turns into the

material system generating the corresponding state of that electromagnetic field configuration in

a frame in motion through the ether when it is given the velocity of that frame. The reader, I

trust, will already see the advantage of using the term ‘corresponding states’ in the somewhat

broader sense in which I use it.

Comparing two corresponding states of a system that are assumed to physically transform

into one another upon the appropriate change in the system’s velocity we see that the

generalized contraction hypothesis entails far more than the Lorentz-FitzGerald contraction



4

effect. In the course of this chapter, we will see that it entails (not surprisingly, I may add, since

the generalized contraction hypothesis turns Lorentz’s theory into a Lorentz invariant theory)

the relativistic velocity dependence of the characteristic frequency of a light source, the

relativistic expressions for aberration and Doppler effect, and (assuming that Newton’s second

law holds in the limit of low velocities) the relativistic transformation equations for force and

mass. The relations between frequencies, forces, and masses are explicitly mentioned in the

dazzling final section of Lorentz’s 1899 paper that I will analyze in great detail in section 3.3.

To my knowledge, Lorentz never mentioned the results for aberration and Doppler effect, even

though the relevant calculations are a completely straightforward generalization of proofs in his

1895 book that the classical formulae for aberration and Doppler effect drop out of his first

order theorem of corresponding states (as I will show in sections 3.1 and 3.3).

As we will see, Lorentz did not simply add the generalized contraction hypothesis to his

exact theorem of corresponding states. His strategy was to introduce and to argue for more

specific assumptions from which the generalized contraction hypothesis could then be derived.

The two assumptions Lorentz actually made are the relations for forces and masses that I listed

above among the consequences of the generalized contraction hypothesis. In the context of

observations of patterns of light and darkness, these two relations are not just necessary but

sufficient conditions for the generalized contraction hypothesis.

In sections 3.1, 3.3, and 3.5, I will work out the details of the picture just sketched. In doing

so, I will pay special attention to some common misconceptions about Lorentz’s theory in the

extensive secondary literature on the subject.2 Let me mention what I consider to be the two

most serious points of confusion. The confusion on the first point has been recognized before,

notably by Rynasiewicz (1988) and Darrigol (1994b). For the second point, however, I have not

found a source which unambiguously gets this right.

(1) Many authors (e.g., Goldberg, Miller, Schaffner) have claimed that Lorentz looked upon

the Lorentz transformed quantities playing a role in the theorem of corresponding states as the

quantities measured by the moving observer. It is true that, under the influence of Einstein’s

work, Lorentz would eventually come to adopt that interpretation, but it is completely foreign to

his thinking prior to 1905. Before 1905, the Lorentz transformed quantities were no more than

mathematical auxiliaries for Lorentz. I want to suggest that Poincaré is the main culprit  for this

widespread misunderstanding of Lorentz’s work. Around 1900, Poincaré already adopted the

physical interpretation of the quantities in the theorem of corresponding states that Lorentz

himself would only embrace after 1905 (see Darrigol 1994b). However, Poincaré writes about

                                                
2 I am grateful to Ofer Gal for suggesting to importing some material in overly lengthy footnotes discussing
such misconceptions into the body of the text. This greatly improved the overall structure of this chapter.
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this interpretation as if it were Lorentz’s, and Lorentz, it seems, never took exception to

Poincaré’s misrepresentation of his views.

(2) Many authors (e.g., McCormmach, Miller, Pais, Schaffner, Scribner) have suggested

that with the exact theorem of corresponding states, the Lorentz-FitzGerald contraction

somehow got absorbed into the Lorentz transformation equations. As I explained above, this is

not the case. The successors to the original contraction hypothesis (either the generalized

contraction hypothesis or the more specific assumptions from which it can be derived) still need

to be added as physical assumptions to the purely mathematical theorem of corresponding

states.

This last remark naturally leads me to an issue I address in section 3.2, the section dealing

with the original contraction hypothesis. The issue is the alleged ad-hoc-ness of Lorentz’s

theory that I already discussed in the introduction to part two. Amplifying a well-known

argument by Grünbaum, I will argue that neither the original contraction hypothesis nor its

successors added to the exact theorem of corresponding states are ad hoc in the usual

falsificationist sense of that term. However, a clear distinction needs to be made between these

two cases. The testability of the original contraction hypothesis is severely limited by the fact

that the hypothesis does not make any definite predictions about the effect the changes in the

dimensions of moving systems have on other properties of those systems. In the case of the

generalized contraction hypothesis (or of the hypotheses from which it is derived) we have no

such limitations. The statement that corresponding states physically transform into one another

amounts to very definite predictions of the effect of the contraction on other phenomena, thus

opening up the possibility of many different tests of the hypothesis (or conjunction of

hypotheses).

It should be noted that these definite predictions are always of the same kind: the effects are

such that ether drift can not be detected. I do not want to deny that this is a very unsatisfactory

situation. My point is that what is unsatisfactory about it is not that it compromises the theory’s

testability. The task at hand, as I see it, is to articulate what is. A promising way to find out, it

seems to me, is to carefully re-analyze the charges of ad-hoc-ness leveled at Lorentz’s theories

by Einstein, Poincaré, and others, keeping in mind that it is extremely unlikely that there is a

close connection between those charges and Popper’s later charge that the contraction

hypothesis is not falsifiable. This is a project beyond the scope of this dissertation, but I will

make some remarks (in chapter four) about the direction in which I would want to look.

Let me say a few words about section 3.4 and about some subsections of section 3.5 that I

have not touched upon so far. In section 3.4, I consider the electron model that Lorentz

proposed in 1904. I want to emphasize that Lorentz’s main motivation in developing this model

was to provide an underpinning for the velocity dependent concept of mass he needed in the
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context of what I called the generalized contraction hypothesis. As we already saw in chapter

two, Lorentz’s original purely electromagnetic model was inconsistent. As I will show in section

3.4, this inconsistency presented Lorentz and his contemporaries with a dilemma: either give up

the electromagnetic view of nature that held out the promise of eventually being able to derive

the generalized contraction hypothesis from electrodynamics or accept that some ether drift

experiments ought to give positive results, which, in modern terms, of course would be

tantamount to giving up the relativity principle. In the secondary literature, there is no clear

statement of this basic dilemma, mainly because of the lack of understanding I mentioned of the

role the generalized contraction hypothesis plays in Lorentz’s mature theory. In the face of the

dilemma, Lorentz unambiguously chose to keep what we now recognize as the principle of

relativity and to give up the electromagnetic view of nature. So, it came to pass that in the early

years of special relativity, in the context of the important debate over Kaufmann’s experiments

on the velocity dependence of high-speed electrons in β-radiation, the important dichotomy was

not Lorentz versus Einstein, but Lorentz-Einstein versus Abraham, the champion of the

electromagnetic view of nature.3

In section 3.5, I turn to Lorentz’s reaction to Einstein’s 1905 paper, as documented in his

lectures at Columbia University in New York in 1906, published as The theory of electrons, first

in 1909 and again in 1916 with numerous new and interesting footnotes (Lorentz 1916). In this

context, I will also examine Lorentz’s lectures on relativity in Leiden from the period

1910–1912 (Lorentz 1922). I will show how Lorentz took from Einstein the important insight

that the Lorentz transformed quantities of his theorem of corresponding states are the quantities

measured by the moving observer. At first, Lorentz did not take over Einstein’s expressions for

the transformation of charge and current density, (correctly) objecting to Einstein’s derivation

of these expressions. In one of the footnotes in the second edition of The theory of electrons,

Lorentz provided a more satisfactory derivation of these relations, thus finally achieving full

invariance of Maxwell’s equations, including the source terms, in the context of his own theory.

I will also briefly examine the two arguments, one good, one bad, that Lorentz routinely offered

for sticking to his own theory, despite his admiration for Einstein’s work.

I will also look at a curious twist in the history of the issue concerning the transformation of

charge and current density, a twist that illustrates a general point that I made earlier. In 1906,

Poincaré had already given a derivation of the transformation of charge and current densities

which is mathematically equivalent to Lorentz’s derivation of 1915 (Poincaré 1906; Lorentz

                                                
3 As can be inferred from a remark by Sommerfeld in the discussion following an important lecture by Planck
in 1906, many physicists felt that the Einstein-Lorentz approach, favored by Planck, was conservative, even old-
fashioned, whereas the Abraham approach, favored by Sommerfeld and by Minkowski for instance (Galison
1979), was still considered to be on the cutting edge at that time (see Planck 1906 and section 3.4).
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1916). In accordance with his understanding of the auxiliary quantities in Lorentz’s theorem of

corresponding states as the quantities measured by a moving observer, Poincaré had claimed

that the auxiliary charge and current densities that Lorentz had used in 1904 were wrong and

that the quantities he derived were the correct ones. Since Lorentz looked upon the quantities he

introduced as mathematical auxiliaries, they obviously can not be wrong. As Rynasiewicz (1988,

p. 73) has put it: “One is free to stipulate definitions as one pleases.” Lorentz’s definitions

were just clumsy, as he himself later admitted (see Holton 1969, p. 321). However, he did not

straighten out Poincaré in 1906. Neither did he cite Poincaré’s derivation when he published his

own mathematically equivalent derivation in 1915. This is quite uncharacteristic for Lorentz.

What I want to emphasize is that the fact that Lorentz never challenged Poincaré’s creative

misreading of his work has probably contributed strongly to the subsequent misinterpretation

of his work by historians of science.

I want to make one last general remark before I get down to business. As will be clear from the

title of chapter three and from what has been said both in this introduction and in the

introduction to part two, I am engaged in what Ted McGuire would call “revisionist history.”

To use one of McGuire’s favorite metaphors, one does not find historical facts ‘as pebbles

by the seashore.’ McGuire’s point is sometimes understood as throwing into doubt whether

historical events really took place at all. This is to trivialize the point. Of course, historical events

did happen.4 So, the surviving texts and artifacts, the tangible evidence that certain events

actually did happen, are, in a sense, no different from pebbles by the seashore and other debri

left on the beach by the changing tides. McGuire’s point is that these pebbles do not constitute

the historical facts the historian works with. To pursue the analogy, the historian has to bear in

mind that he or she is not the first to go for a stroll on the beach to collect some pebbles.

Generations of historians have done so before and it is obviously an illusion to think that such

beachcombers have left the pebbles in their pristine state. In at least one way, this is a good

thing. If it were not for the beachcombers, the elements would long since have reclaimed the

pebbles altogether. But the interference can also do considerable harm. The historian will only

preserve the pebbles that seem particularly interesting, while others are allowed to simply

disappear underneath the sand. Moreover, the pebbles deemed worthy of preservation will be

rearranged in ways pleasing to the eye of the preserver. These two effects clearly distort our

view of the beach as it was before the beachcombers arrived upon the scene.

A pessimist may say that the distortions will be so drastic that we can never hope to

reconstruct what the beach looked like before it became a beach resort. I am an optimist. I think

                                                
4 As Keith Parsons likes to say, borrowing a phrase from Bertrand Russell, this is so obvious that it takes an
extremely intelligent person to deny it.
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there are cases—and I think that the case of the development of Lorentz’s theory is one of

them—in which we can correct for these distortions. In other words, I believe that there are

cases where we have enough clues to reconstruct the original configuration of the pebbles that

have been preserved. The reconstruction may then give us some clues where to look for

additional pebbles. If we actually find such pebbles in the places where we expect to find them

on the basis of our reconstruction, we can take this as a sign that we are on the right track.  

In retelling the story of the development of Lorentz’s theorem of corresponding states, I will

focus almost exclusively on the first step in the process I just described, i.e., on undoing some

of the misinterpretations of the texts that have traditionally been deemed the milestones in this

development: a few sections of the so-called Versuch of 1895 (Lorentz 1895), the final section

of the ‘Simplified theory ...’ of 1899 (Lorentz 1899a, 1899b, 1902), the famous 1904 paper

(Lorentz 1904b), reflecting the state of the theory just before the advent of special relativity and

widely read because of its inclusion in the Teubner anthology (Lorentz et al. 1952), and some

sections of The theory of electrons, the book based on Lorentz’s lectures in New York in 1906

(Lorentz 1916).5 I do not want to deny that these documents are crucial for understanding the

development of the theory. But they are not the only ones. Especially if we lift the arbitrary

restriction to optics, as I have urged we should, other documents need to be examined as well. In

the context of the Trouton-Noble experiment and the Kaufmann experiments, for instance, one

should look at Lorentz’s writings on the energy-momentum tensor and on the mass-energy

equivalence. The most serious limitation of the present study is that I have not systematically

gone through these additional documents. I hope to rectify this at some point, preferably in

collaboration with Lorentz expert A. J. Kox.

Even in its present form, my analysis illustrates the relevance of three documents that, I

think, have not received sufficient attention so far. The first is the contribution of Lorentz to the

Encyklopädie der Mathematischen Wissenschaften (Lorentz 1904a) that I cited in section 1.4.

The other two documents are the published versions of two lecture series, the first given in

Leiden in 1910–1912 (Lorentz 1922), the second given at Caltech in 1922 (Lorentz 1927).

Reading these lectures in conjunction with the famous 1906 lectures of The theory of electrons,

one gets a clear sense of, on the one hand, Lorentz’s deepening appreciation of the theory of

relativity—both the special and the general theory (see Kox 1988, Janssen 1992)—and his

tenacity in clinging to absolute simultaneity and a classical ether on the other. If these lectures

are cited at all, it is to illustrate this tenacity (see, e.g., Nersessian 1984, p. 117; 1986, p. 232).

To see the other side—Lorentz’s superb mastery of the formalism of the theory—we have to

                                                
5 In addition to these documents, one typically looks at Lorentz 1886, 1892a, 1892b as setting the stage for the
development of Lorentz’s theory for the electrodynamics of moving bodies based on the theorem of
corresponding states.
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start looking beyond optics, and consider, for instance, Lorentz’s lucid treatment of issues

concerning energy-momentum and E = mc2.
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3.1 The first order theorem of corresponding states (1895)

3.1.1 What is the theorem of corresponding states? The theorem of corresponding states is

a mathematical tool for solving problems in electrodynamics in a Galilean frame of reference

moving through the ether. Since Lorentz’s theory is based on the notion of a stationary ether,6 a

terrestrial observer will always use such a frame to describe the experiments in optics and

electrodynamics he or she performs in the laboratory.

The first version of Lorentz’s theorem of corresponding states, which can be found in his

book Attempt at a theory for electrical and optical phenomena in moving bodies (Lorentz

1895,7 sections 56–58, pp. 81–85), is restricted in two ways. First, it works only for those

problems in electrodynamics that can be solved with the source free Maxwell equations.

Second, terms of order v2/c2 and smaller are systematically neglected. These restrictions are

directly related to the application Lorentz had in mind when he derived the theorem, which was

to account in a general way for the negative results of first order ether drift experiments in

optics.8

In 1899 and 1904, Lorentz generalized the theorem of corresponding states so as to remove

the restrictions mentioned above, a task he would complete only in 1915, with the second edition

of his book The theory of electrons (Lorentz 1916). For a proper understanding of the

conceptual development of Lorentz’s theory, it is of paramount importance to carefully trace the

                                                
6 See Hirosige 1966, 1969 and Darrigol 1994a for a discussion of the ontology of Lorentz’s theory and its
development. See McGuire 1974 for a discussion of the tradition of ether theories in the context of which this
ontology should be evaluated.

I want to quote from Einstein’s assessment of the importance of Lorentz’s work in this area in an essay he
wrote at the request of the director of what would become the Museum Boerhave in Leiden on the occasion of an
exhibition commemorating the Dutch Nobel laureates Lorentz and Kamerlingh Onnes in 1953. Einstein wrote:
“Most of the younger generation are no longer fully aware of the decisive role played by H. A. Lorentz in
shaping the fundamental concepts of theoretical physics. The reason for this curious fact is that they have
absorbed Lorentz’s basic ideas so completely that they are virtually incapable of comprehending the boldness of
these ideas and the simplification they brought about in the foundations of physics” (Einstein 1953, p. 22).
Einstein goes on to sketch the complexity of electromagnetic theory at the start of Lorentz’s career, with four
fields instead of two, carried both by the ether and by ponderable matter. Einstein then writes: “It was at this
point that H. A. Lorentz performed his act of intellectual liberation [erlösende That]. With great logical
consistency, he based his research on the following hypotheses: The seat of the electromagnetic field is empty
space [...] This field is produced by atomistic electric charges, [on which the field in turn exerts forces]. The
only link between the electromotoric field and ponderable matter is the fact that elementary electric charges are
intimately connected with the atomistic constituents of matter” (ibid., pp. 22–23; the part I paraphrased is
inaccurately translated). Einstein emphasizes the crucial importance of these steps for the development of special
relativity: “Indeed, the essential step forward was precisely the reduction to Maxwell’s equations [in] empty
space, or—as it was then called—the ether” (ibid.).
7 This book is commonly referred to as the Versuch. It is the most important work of Lorentz that Einstein is
known to have read before 1905 (see Holton 1969, p. 318; Stachel et al. 1989, pp. 259–260).
8 Many of these experiments are discussed in Lorentz 1886. This article also discusses Michelson’s second order
experiment of 1881. Lorentz’s discussion partly inspired the Michelson-Morley experiment of 1887, a repetition
of Michelson’s 1881 experiment with improved accuracy (see, e.g., Swenson 1972, p. 88).  
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transition from the first order version to the exact version of the theorem. For my purposes, the

transformation of the theorem from a theorem in optics in 1895 to a theorem in electrodynamics

in general in 1899 and 1904 is less important. For a proper understanding of the perfection of

the theorem after 1905, it will be convenient to start dealing with the full Maxwell equations,

including the source terms, right away, which is what I will do.

Consider the diagram in Fig. 3.1. We have two (Galilean) inertial frames of reference, S0

and S, the former at rest in the ether, the latter in uniform motion through the ether at a velocity v
(ignore the third frame S′ for the time being). The x-axes of S0 and S are chosen in the direction

of v, so the components of v are (v, 0, 0). The coordinates of S0 are written as x0, the

coordinates of S are written as x. Likewise, I write t0 for the time in S0 and t for the time in S,

even though t0 and t refer to the same absolute Newtonian time. (x0, t0) and (x, t) are related to

each other via the Galilean transformation

x  = x0 – v t0,      t = t0. (3.1)

In S0, the electric field E and the magnetic field B satisfy Maxwell’s equations:

div0 E = ρ/ε0,    curl0 E = – 
∂B

∂t0
,

div0 B  = 0,    curl0 B = µ0ρu0 + 1
c2

 
∂E

∂t0
,

(3.2)

where E, B, the charge density ρ, and the current density ρu0 (the subscript ‘0’ to indicate that

u0 is a velocity with respect to S0) are all functions of (x0, t0). So, the derivatives in Eq. 3.2 are

with respect to t0 and x0, as is indicated by the subscript ‘0’ on the differential operators ∂/∂t0,

div0 and curl0. In 1895, Lorentz, as I already mentioned, actually considered the simpler case

where ρ = u0 = 0.

S0  S ′   
moving through

the ether
 

x , t, E, B 
 

field equations are
not  Maxwell’s equations

at rest in
the ether

 

x 0 , t 0, E, B  
 

field equations
are Maxwell’s equations

auxiliary frame
 

x ′,  t′ , E ′, B ′ 
 

to order v /c,
field equations

are Maxwell’s equations

x  = x0 – v t0

t = t0

x ′ = x
t′ = t – (v/c2)x
E′ = E + v  × B

B′ = B – 1

c2
 (v  × E)

S

Figure 3.1: Diagram to illustrate Lorentz’s first order theorem of corresponding states.
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Understood as functions of (x, t), the fields E and B satisfy a different set of field equations

which are obtained from Maxwell’s equations by replacing the time derivative ∂/∂t0 with the

differential operator ∂/∂t – v ∂/∂x and by replacing u0 with u + v, where u is a velocity with

respect to S. So, in S we have the equations

div E = ρ/ε0,    curl E = – 
∂B

∂t
 + v 

∂B

∂x
,

div B  = 0,    curl B = µ0ρ u + v  + 1
c2

 
∂E

∂t
 – v 

∂E

∂x
.

(3.3)

At this point, Lorentz introduced a set of auxiliary quantities with the help of which Eq. 3.3 can,

if terms of order v2/c2 are neglected, be written in the form of Maxwell’s equations in the

source free case, and in a form very close to Maxwell’s equation if the source terms are non-

vanishing. Lorentz replaced the real time t  or t0 with a parameter t′ which he called the “local

time” (Ortszeit, Lorentz 1895, p. 81). Moreover, instead of the real fields E and B, he

introduced the fictitious fields E′ and B′. The spatial coordinates stay the same. The primed

quantities are defined in terms of the real unprimed quantities belonging to the moving frame S

through

x ′ ≡ x ,      t′ ≡ t – (v/c2) x, (3.4)

E′ ≡ E + v  × B ,      B ′ ≡ B  – 1
c2

 v  × E. (3.5)

The primed quantities are thus stipulations and not assumptions about the time or the fields

measured by a moving observer. For a concise and unusually clear statement of this basic yet

widely misunderstood point, see Rynasiewicz 1988. Although around 1900 Poincaré already

interpreted these primed quantities, in particular the local time, as the quantities measured by the

moving observer (see, e.g., Darrigol 1994b, pp. 2–3, 49–50, 51, 58, 61), Lorentz would only

start using this interpretation, under the influence of Einstein, after 1905 (see section 3.5).9

                                                
9 The following quotations from some of the older secondary literature will serve to illustrate the confusion on
this point. In a discussion of the theorem of corresponding states in the Versuch, Goldberg writes: “The new
transformation concerned the measurement of time in frames of reference moving with respect to the ether frame
[...] Such a transformation equation no longer left the measurement of time an invariant. Though this was a
very bold and radical step to take, Lorentz had surprisingly little to say about the sharp departure such a
transformation equation represented [...] he made little comment on the meaning of the transformation save that
he clearly intended it to be little more than an aid to calculation” (Goldberg 1969, p. 986). What I find most
astonishing about this passage is the wild incongruence of this last remark with the preceding sentences.
Goldberg is not the only one being confused. He actually cites a draft of Schaffner 1969 in a footnote appended
to this passage. I will quote from two later papers by Schaffner. Schaffner is actually talking about the 1904
version of the theorem of corresponding states here, but the point is the same. “The t′ in equation (9) [see Eq.
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I want to draw attention to one particular passage in Poincaré’s writings that I suspect is

responsible for a lot of the confusion surrounding the interpretation of Lorentz’s work in the

historical literature. The passage I have in mind occurs in the section “The principle of

relativity” in Poincaré’s famous 1904 lecture in St. Louis. Poincaré vividly describes the

situation in ether theory around the turn of the century. While the dominant theories posit a

stationary ether, the experiments aimed at detecting the earth’s presumed motion through this

medium consistently give negative results. The task of explaining these experimental findings

theoretically, Poincaré writes “was not easy, and if Lorentz has got through it, it is only by

accumulating hypotheses” (Poincaré 1904, p. 99). Starting a new paragraph, he continues:

“The most ingenious idea was that of local time” (ibid.). Poincaré proceeds to explain that if an

observer in uniform motion through the ether synchronizes his clocks using what a modern

reader immediately recognizes as the light signaling method from Einstein 1905a, these clocks

will not read the true Newtonian time, but Lorentz’s local time. Poincaré does not indicate in

any way that this interpretation is entirely his own and is not to be found in any of Lorentz’s

writings up to this point. For Poincaré, the notion of local time clearly involves a physical

assumption. Poincaré assumes that the local time is, in effect, the time registered by moving

observers, which helps to account for the fact that such observers do not detect ether drift. After

making this point (ibid, pp. 99–100), Poincaré starts his next paragraph saying: “Unhappily,

that does not suffice, and complementary hypotheses are necessary; it is necessary to admit that

bodies in motion undergo a uniform contraction in the sense of the motion” (ibid., p. 100). So,

for Poincaré the notion of local time and the contraction hypothesis (to be discussed in detail in

sections 3.2 and 3.3) have essentially the same status. They are both physical assumptions. This

is a far cry from Lorentz’s understanding of the situation. He obviously looked upon the

contraction hypothesis as a physical assumption, but local time for him is no more than a

convenient purely mathematical auxiliary quantity. It neither is nor involves any physical

assumption. Perhaps the most clear-cut evidence for this interpretation is a well-known passage

                                                                                                                                                      
3.54 in section 3.3] represents the latest form of the “local time” which holds in moving electromagnetic
systems. It is still to be distinguished from the “true” Newtonian time holding in bodies in rest in the ether.
Transformations for d and h [read: E and B] were introduced by postulation, but they vary only slightly from
what would have been expected from a standard referral of a system of charges to a moving coordinate system”
(Schaffner 1970, pp. 335–336; italics in the original). Six years later, Schaffner has still not been able to pull
himself out of this muddle: “It will be useful to analyze the concept of local time in some detail. Lorentz seems
to treat it as a mathematical change of variable in its early forms. Even in the 1895 form (10) [i.e., Eq. 3.4],
however, it entails that clocks at different points in the moving system will be out of synchronization by a
factor vx/c2” (Schaffner 1976, p. 472). Miller also gets this wrong: “The hypothesis of local time was the basis
for the theorem of corresponding states that permitted systematic explanation of all optical phenomena to an
accuracy of first order in v/c” (Miller 1981, pp. 39–40; my italics).

In the light of the discussion in the introduction to part two, it is somewhat ironic that Zahar has not fallen
prey to the confusion of his critics Miller (1974) and Schaffner (1974) on this point. Zahar lucidly remarks: “Let
us incidentally note the purely mathematical origin of this notion of local time, which eventually led to
Poincaré’s and Einstein’s concepts of frame-dependent simultaneity” (Zahar 1989, p. 67; my emphasis).
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in the second edition of The theory of electrons, where Lorentz writes that before 1905 he had

been “clinging to the idea that the variable t only can be considered as the true time and that my

local time t′ must be regarded as no more than an auxiliary mathematical quantity” (Lorentz

1916, p. 321, note 72*). Reading Lorentz through Poincaré’s eyes, many historians seem to

have misunderstood this basic point, with disastrous consequences for their overall

interpretation of Lorentz’s use of corresponding states (see especially section 3.3).10

When terms of order v2/c2 and smaller are neglected, the fictitious fields E′ and B′

understood as functions of (x′, t′) satisfy equations very similar to Maxwell’s equations.11

                                                
10  Both Miller (1973) and Goldberg (1967) published on Poincaré before they published on Lorentz, so they
may have been influenced by Poincaré’s creative misreading of Lorentz’s work.
11 The easiest way to prove that these are indeed the equations for the auxiliary fields E ′ and B′ as functions of
(x′, t′) is as follows. Consider the equation for div′E′. Similar arguments can be given for the other three
equations, starting with (the components of) curl′E′ – ∂B′/∂t′, div′B′, and curl′B′ – (1/c2) ∂E′/∂t′,
respectively. I will write div′E′ in terms of the unprimed quantities, and then use Eq. 3.3 to show that, when
quantities of order v2/c2 are neglected, this expression is equal to ρ/ε0 (1 – v ux/c 2), as Eq. 3.6 says it is.

The inverse transformation of Eq. 3.4 is

x = x′,      t = t′ + (v/c 2) x′,

which means that the derivatives with respect to the primed variables are related to the derivatives with respect to
the unprimed variables as

∂
∂t′

,  ∂
∂x′

,  ∂
∂y′

,  ∂
∂z′

 = ∂
∂t

,  ∂
∂x

 + (v/c 2) ∂
∂t

,  ∂
∂y

, ∂
∂z

.

Inserting these relations along with Eq. 3.5 for E′, we find

 div′E′  =  ∂Ex
∂x

  +  (v/c 2) ∂Ex
∂t

  +  
∂Ey

∂y
  –  v ∂Bz

∂y
  +  ∂Ez

∂z
  +  v 

∂By

∂z
 .

Multiplying the first term on the right hand side by 1 – v2/c2 (which we are free to do, since quantities of order
v2/c2 are neglected in the end) and regrouping terms, we can write this equation as

 div′E′  =  ∂Ex
∂x

  +  
∂Ey

∂y
  +  ∂Ez

∂z
  –  v ∂Bz

∂y
  –  

∂By

∂z
  –  1

c2
 ∂Ex

∂t
  +  v

c2
 ∂Ex

∂x
 .

The first three terms in parentheses are just div E . The last four terms in parentheses are just the x-component
of curl B – (1/c2) (∂E/∂t – v∂E/∂x). Using Eq. 3.3 for these expressions and using the relation µ0 = 1/(ε0 c2),
we arrive at

div′E′ = ρ/ε0  –  v ρ

ε0 c2
 (ux + v)

= ρ/ε0 1  –  v ux

c2
  –  v

2

c2
 .

The last term in parentheses can be neglected, so this is indeed the equation for div′E′ in Eq. 3.6. The other
equations in Eq. 3.6 can be found in the same way.
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div ′ E′ = ρ/ε0 1 – v ux

c2
,    curl′ E′ = – 

∂B ′

∂t′
,

div ′ B ′ = 0,    curl′ B′ = µ0ρu + 1
c2

 
∂E′

∂t′
,

(3.6)

where ρ and u, like E′ and B′, are to be understood as functions of (x′, t′).

Combining Eq. 3.1 for the transformation (x0, t0) → (x, t) and Eq. 3.4 for the

transformation (x, t) → (x′, t′), we find that

x ′ = x = x 0 – v t0,      t′ = t – (v/c2)x = t0 – (v/c2)x0  + O(v 2/c2). (3.7)

A modern reader will immediately recognize this as the Lorentz transformation (x0, t0) → (x′, t′)

to first order in v/c (so that γ = 1). From a modern perspective, the derivation of Eq. 3.6 is

simply (part of) a proof, to first order in v/c, that Maxwell’s equations are invariant under

Lorentz transformation. From such a modern point of view, the primed quantities x′, t′, E′, and

B′ all belong to the Lorentz frame S′ moving at a velocity v with respect to the frame S0, just as

the unprimed quantities belong to the Galilean frame S moving at a velocity v with respect to the

frame S0. The four-vector  j′
µ
 ≡ (ρ′c, ρ′u′), representing the charge and current density in S′, is

related to the corresponding vector j0
µ in S0 via

ρ′c ≈ ρc – vc ρu0x ≈ ρc 1 – v ux

c2
,

ρ′u′ ≈ ρu0 – vc ρc = ρu,
(3.8)

in accordance with Eq. 3.6.

If we are just interested in optics, we can set ρ = u = 0 in Eq. 3.3 and Eq. 3.6. Eq. 3.6 then

reduces to:

div ′ E′ = 0,    curl′ E′ = – 
∂B ′

∂t′
,

div ′ B ′ = 0,    curl′ B′ = 1
c2

 
∂E′

∂t′
,

(3.9)

Suppose we have a solution of the source free Maxwell equations describing some field

configuration in the frame S0 at rest in the ether. If we copy this solution in terms of the

quantities of the auxiliary frame S′, we have a solution of the equations in Eq. 3.9. After all,

these equations have the exact same form as the source free Maxwell equations. If we then
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transform back to the quantities of S and neglect terms of order v2/c2 and smaller, we obtain a

new field configuration in the moving frame S that is also a solution of the field equations, at

least to first order in v/c. This field configuration in the moving frame and the field

configuration in the frame at rest that we started from, are called “corresponding states”

(correspondirende Zustände, Lorentz 1895, p. 85). The theorem of corresponding states is the

crucial result that was invoked in this construction of a solution for a problem in S from a

solution in S0. To paraphrase Lorentz’s own statement of the theorem in the Versuch (Lorentz

1895, section 59,12 p. 84):

If there is a solution of the source free Maxwell equations in which the real
fields E and B are certain functions of x0 and t0, the coordinates of S0 and the

real Newtonian time, then, if we ignore terms of order v2/c2 and smaller, there is

another solution of the source free Maxwell equations in which the fictitious

fields E′ and B′ are those same functions of x′ and t′, the coordinates of S and

the local time in S.

3.1.2 How the Lorentz invariance of the source free Maxwell equations to first order in

v/c and the general nature of patterns of light and darkness account for the negative

result of almost any conceivable first order ether drift experiment in optics. How did

Lorentz use this result to account for the negative result of first order ether drift experiments in

optics? Before I give the correct answer to this question, let me go over an incorrect answer that

trivializes the whole question. From a modern relativistic point of view, the moving observer

would actually measure the Lorentz transformed quantities of the frame S′ rather than the

Galilean transformed quantities of the frame S. Since we have just shown that, at least to order

v/c and in the free field case, these quantities satisfy Maxwell’s equations, it is immediately clear

that such an observer can never detect any ether drift by means of a first order ether drift

experiment in optics. However, as I already emphasized, for Lorentz these primed quantities

were no more than mathematical auxiliaries. Before 1905, Lorentz tacitly assumed that the

moving observer would measure the Galilean transformed quantities of the frame S. Hence,

Lorentz’s explanation in 1895 of the negative results of first order optical ether drift

experiments can not be this simple modern explanation.13

                                                
12 That the quantities t′, x ′, E ′, and B ′ were just mathematical auxiliaries for Lorentz with no physical
meaning is illustrated by the last paragraph of this section, which, in my notation, can be paraphrased as: once
E′ and B′ are known as functions of x′ and t′, and thus also as functions of x  and t, we can calculate E and B
from Eq. 3.5.
13 The simple explanation is suggested in the following passage. Immediately after presenting his statement of
the theorem of corresponding state which is fully equivalent to my statement above, Miller writes : “The
meaning of this statement, known as the theorem of corresponding states, is that the equations of
electromagnetism are unchanged to order v [read: v/c] when transformed to a system moving with uniform linear



1 7

The argument Lorentz actually did use runs as follows (Lorentz 1895, p. 86).14 Many

optical experiments—be it an experiment in geometrical optics or an experiment involving

interference, diffraction, or polarization—eventually boil down to the observation of some

pattern of light and darkness. Such patterns are easily described. In some regions the fields

vanish, in other regions they do not (at least not on average). Consider some field configuration

in S0 and its corresponding state in S. According to the theorem of corresponding states, the

same functions that give the real fields E and B as a function of the real coordinates x0 of S0

and the real time t0 for the configuration in S0 will give the fictitious fields E′ and B′ as a

function of the coordinates x = x′ of S and the local time t′ for the corresponding state of that

configuration in S. Suppose the configuration in S0 is such that at a point P with coordinates x0

= a it is dark. That means that the fields E and B vanish at this point, not just at one instant, but

over a stretch of time that is long compared to period of the light waves described by the fields

E and B. It follows that the fictitious fields E′ and B′ will vanish at x = a in the corresponding

state in S. Since the relation between the real and the fictitious fields is linear, this means that the

real fields E and B in the corresponding state will also vanish at x = a. It follows that the

patterns of light and darkness in the moving frame and the patterns of light and darkness in the

frame at rest are the same. If, in addition, one tacitly assumes, as Lorentz did, that the

configuration of optical components producing the patterns of light and darkness does not

change upon being set in motion with respect to the ether, this result amounts to a general

explanation for the negative result of almost any conceivable first order ether drift experiment.

The stationary nature of patterns of light and darkness plays a crucial role in this argument.

Without this property, the x-dependence of local time would lead to serious complications.

Suppose that in two points P0 and Q0 of S0, the fields vanish simultaneously with the respect to

the real Newtonian time. In the corresponding points P and Q of the moving frame S, the fields

will then vanish simultaneously with respect the local time. Since the local time depends on x,

this means that they will not vanish simultaneously with respect to the real Newtonian time. This

would invalidate Lorentz’s conclusion with regard to patterns of light and darkness.

Fortunately, patterns of light and darkness, by their very nature, are stationary situations. The

concepts of light and darkness only have meaning on time scales that are large compared to the

periods of the light waves used. So, when at P and Q it is dark at the same instant in local time,

it will also be dark at both points at the same instant in real time.

                                                                                                                                                      
relative motion with respect to the ether. Thus, to order v, optical phenomena occur on the moving earth as if it
were at rest” (Miller 1973, p. 221; my italics). As we already saw, Miller interprets the Lorentz transformed
quantities as the measured quantities for the moving observer. In that case, the inference of Miller’s “thus”
would be completely straightforward. Under Lorentz’s actual interpretation of these quantities, however, Miller’s
“thus” suppresses a subtle and non-trivial argument.
14 The argument is discussed briefly in McCormmach 1970b, p. 471; and in Darrigol 1994a, p. 288. For a later
statement by Lorentz himself of this argument, see Lorentz 1904a, pp. 265–268.
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3.1.3 How the Fresnel dragging coefficient and the classical formulae for aberration

and Doppler effect drop out of Lorentz’s first order theorem of corresponding states.

Lorentz presumably did not fully appreciate the complications arising from the x-dependence of

local time. Apart from the fundamental result on patterns of light and darkness, however, the

Versuch contains a few striking applications of the theorem of corresponding states in which

the x-dependence of local time does play an essential role. It turns out that the theorem of

corresponding states allows a very simple derivation of the Fresnel dragging coefficient15

(Lorentz 1895, sections 68–69, pp. 95–97) and of the classical formulae for aberration and the

Doppler effect (ibid., sections 60–61, pp. 87–89).16

Suppose a plane light wave of frequency ν is traveling in the positive x-direction of a frame

S0 at rest in the ether through some transparent object with a refractive index n at rest with

respect S0. The fields E and B describing this wave will only depend on the coordinates x0 and

the time t0 of S0 via

2πν t0  –  
x0
c/n  . (3.10)

From the theorem of corresponding states, it follows that, to first order in β, the fictitious fields

E′ and B′ for a similar light wave traveling through the same object when it is moving through

                                                
15 The Fresnel dragging effect, introduced by Fresnel in 1818 in a famous letter to Arago (see, e.g., Whittaker
1953, Vol. 1, pp. 108–113), ensures that light, when it strikes the surface of a transparent object moving
through a stationary ether, is refracted in accordance with Snell’s law of refraction (sin i = n sinr, with i, r, and n
the angle of incidence, the angle of refraction, and the index of refraction, respectively) applied in a frame of
reference moving with the object. Without the dragging effect, the law of refraction would hold in a frame at rest
in the ether even for refraction of light striking moving transparent objects, and, as a consequence, terrestrial
observers would be able to detect the earth’s presumed motion through the ether in refraction experiments. The
example usually given of a first order ether drift experiments on refraction whose negative result is explained by
the Fresnel dragging effect is an experiment suggested by Boscovich in 1776 and carried out by Airy in 1871
(see, e.g., Lorentz 1895, p. 89), in which stellar aberration is measured with a telescope whose tube is filled
with water. For an elementary discussion of how the Fresnel dragging effect explains that the water in the tube
does not affect the observed aberration angle, see Goldberg 1984, pp. 443–448. Parenthetically, I may add that
neither Boscovich, obviously, nor Airy, apparently, were motivated by the search for ether drift.

Goldberg also gives an elementary discussion of the famous Fizeau experiment of 1851, in which the Fresnel
dragging effect in moving water was measured directly, an experiment repeated with greater accuracy in 1886 by
Michelson and Morley and by Zeeman in 1914–1915 (see, e.g., Miller 1981, p. 281, note 3).

In 1892, Lorentz had already replaced Fresnel’s model of the dragging effect, involving excess ether present in
transparent material, by a more satisfactory model in terms of bound charged particles absorbing and re-emitting
radiation. Fresnel’s original model is easy to ridicule. The amount of excess ether depends on the index of
refraction of the material. The index of refraction, in turn, depends on the frequency of the refracted light
(dispersion). It follows that transparent matter must carry different amounts of excess ether for different
wavelengths!  Such criticism misses the point of Fresnel’s achievement. In modern terms, Fresnel showed that
the dragging effect is necessary if one wants to make the law of refraction, which is Lorentz invariant and not
Galilean invariant in the context of a wave theory, compatible with a Galilean principle of relativity.
16 These calculations are also discussed in Miller 1981, pp. 36–39.
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the ether at a velocity v = (v, 0, 0) will only depend on the coordinates x′ = x and the local time t′

in the moving frame S via

2πν t′  –  x′
c/n

 . (3.11)

Otherwise, a terrestrial observer, for instance, could use the light traveling through, say, a piece

of glass on earth to create a pattern of light and darkness already differing in first order of β

from the one we would expect to find if the earth were at rest in the ether. In other words, a

terrestrial observer would be able to detect the earth’s presumed motion through the stationary

ether in a first order ether drift experiment that eventually amounts to the observation of some

pattern of lightness and darkness. As we saw above, it follows from Lorentz’s theorem of

corresponding states that such experiments must give a negative result.

Since the real fields E and B are linear combinations of the fictitious fields E′ and B′, it

follows that the (x′, t′)-dependence of the real fields is also via the expression in Eq. 3.11 only.

Using the transformation from (x, t) to (x′, t′) in Eq. 3.4, we can find the (x, t)-dependence of

the fields describing the light wave in the moving object from their (x′, t′)-dependence given in

Eq. 3.11:

2πν t′  –  
x′
c/n

  =  2πν t  –  v
c2

 x  –  nc x  . (3.12)

From this equation, we read off that the light wave has velocity

 1 
v
c2

  +  nc
  =   c/n 

1  +  v
nc

  ≈  c/n – v/n2 (3.13)

in the x-direction with respect the frame S. Since S has velocity v in the positive x-direction with

respect to the frame S0 at rest in the ether, it follows that the light wave in the moving object has

a velocity

c
n  +  1 –  

1 

n2
 v (3.14)

in the x-direction with respect to the ether. In other words, the light wave is dragged along by the

moving transparent object at a fraction 1 – 1/n2 of that object’s own velocity through the ether.

The factor 1 – 1/n2 is just the famous Fresnel dragging coefficient.17

                                                
17 Cf. Miller 1981, pp. 278–279. As Miller explains, Lorentz’s 1895 derivation is mathematically equivalent to
Laue’s famous derivation in 1907 of the Fresnel dragging coefficient from Einstein’s relativistic addition
theorem for velocities. Conceptually, however, the two derivations are very different. The point of Laue’s



2 0

nn – v/c  
    

β

    

λ = c
ν

  

θ

nobs = 
n – v/c

 n  – v/c 
  

v

Figure 3.2: The classical Doppler and aberration effects.

The expressions for the classical Doppler and aberration effects drop out of Lorentz’s

theorem of corresponding states in pretty much the same way the Fresnel dragging coefficient

dropped out. Consider a plane light wave with frequency ν traveling through the ether in the

direction of the unit vector n, the normal on its wave fronts (see Fig. 3.2).

According to the classical formulae for the Doppler and aberration effects this wave will

have a frequency

νobs = 
c – v ⋅ n

λ
 = 1 – (v ⋅ n)/c  ν (3.15)

for an observer moving through the ether with a velocity v, where I used that the wavelength λ is

equal to c/ν, and it will be in the direction of the unit vector

nobs = 
n – v /c

 n  – v/c 
 ≈ 

n  – v/c

1 + (n⋅ v)/c
, (3.16)

                                                                                                                                                      
derivation is to show that the Fresnel dragging effect is essentially a kinematical effect in special relativity.
Given Snell’s law of refraction, it is a direct consequence of the relativity of simultaneity. This shows that any
Lorentz invariant model of refraction giving Snell’s law in the rest frame of the refracting material will
automatically yield the Fresnel dragging coefficient. For Lorentz, his 1895 derivation was simply a shortcut for
the derivation of the Fresnel dragging coefficient in the specific Lorentz invariant model of refraction he had
introduced in 1892 and for which he had shown explicitly that it yields the Fresnel dragging coefficient.

I have ignored a slight complication in both Lorentz’s and Laue’s calculations. With a Lorentz invariant
model for refraction in the rest frame of the refracting material that also takes into account dispersion, there will
automatically be another term in the dragging coefficient (see, e.g., Miller 1981, p. 281, note 3). For an elegant
and elementary discussion of this complication see Montanus 1992, section 2, pp. 402–404.
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where I used the result of simple calculation for the norm of the vector n - v/c.18

Suppose the light wave is coming from a source which is moving along with the observer at

a velocity v with respect to the ether. In that case, the Doppler and aberration effects in Eqs.

3.15–3.16, due to the motion of the observer, are canceled exactly by the Doppler and aberration

effects due to the motion of the source.19 So, νobs and nobs in Eqs.  3.15–3.16 would just be the

frequency and the direction the observer would measure if the experiment were repeated with

both the source and the observer at rest in the ether.

This means that if the light wave shown in Fig. 3.2 comes from a source moving with the

observer, the fields describing that light wave—both the fictitious field E′ and B′ and the real

fields E and B—can only depend on (x′, t′) via

νobs t′ – 
nobs ⋅ x ′

c  . (3.17)

Otherwise, the light waves could be used to the detect the earth’s motion through the ether (see

the argument I gave above in the context of the Fresnel dragging effect).

The (x′, t′)-dependence of the fields describing a light wave is, of course, independent of the

state of motion of the source. Eq. 3.17 therefore must be true of any light wave, not just of light

waves coming from a co-moving source.

What needs to be shown at this point is that Eqs. 3.15–3.17 give an accurate description of

a light wave of frequency ν in the direction n. After all, nothing said so far guarantees that

                                                
18 With the help of the vector diagram in Fig. 3.2 we can write

 n – v/c 2  = (1 – β cosθ)2 + β2sin2 θ = 1 – 2 β cosθ + β2.

Inserting that –v cosθ = n ⋅ v  and neglecting terms of order β2, we find

 n – v/c 2  ≈   1 + (n ⋅ v)/c .

19 Picture Wes Salmon enjoying the music of a small combo on an open deck of a cruise ship, and, say, a
saxophone player in this combo. So, Wes and the saxophone player are both moving with respect to the air
carrying the sound waves the saxophone player generates on his saxophone. Notice that the sound from the
saxophone reaching Wes’s ears does not come from the position of the saxophone player at that instant, but
from the position of the saxophone player a split second earlier, the time difference being equal to the time it
took the sound to cover the distance from the saxophone to Wes’s ears. However, since Wes has the same
velocity with respect to the medium carrying the sound waves as the saxophone player, he will have the
impression that the sound does come from the position of the saxophone the moment he actually hears its
sound. Unlike many other members in the audience, Wes is not puzzled by this at all, for he (and the physics
students on semester at sea) understand perfectly well that if source and observer have the same velocity with
respect to the medium, the effect due to the motion of the source is exactly compensated by the effect due to the
motion of the observer. A similar and perhaps more familiar argument applies to the frequency of the saxophone
sound. There will be a Doppler effect due to the motion of the source and a Doppler effect due to the motion of
the observer, but since source and observer have the same velocity with respect to the medium in this case, the
two effects cancel. In short, on a calm day, the combo on the open deck will sound exactly the way it sounds
when it is playing indoors.
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Lorentz’s theory sanctions the expressions for νobs and nobs in Eqs. 3.15–3.16 based on the

classical formulae for aberration and Doppler effect. What we do know is that the fields

describing a plane light wave of frequency ν in the direction n only depend on (x0, t0) via

ν t0 – n ⋅ x0
c (3.18)

Inserting Eq. 3.7 for the transformation from (x0, t0) to (x′, t′) into Eq. 3.17, one does indeed

obtain Eq. 3.18 as can easily be verified. Using Eq. 3.7, we can write:

t′ – 
nobs ⋅ x ′

c = t0 – 
v ⋅ x0

c2
 – 

n – v /c ⋅ x0 – v t0

c 1 + (n⋅ v)/c
 + O(β

2
)

= t0 – 
v ⋅ x0

c2
 – 1 – (n⋅ v)/c  

n ⋅ x0
c  – 

v ⋅ x0

c2
 – 

n ⋅ v
c  t0  + O(β

2
)

= 1 – (n⋅ v)/c  t0 – 
n ⋅ x0

c  + O(β
2
) (3.19)

Inserting this expression into Eq. 3.17 and using Eq. 3.16 for νobs, we arrive at Eq. 3.18:

νobs t′ – 
nobs ⋅ x ′

c = 1 + (n⋅ v)/c  ν 1 – (n⋅ v)/c  t0 – 
n ⋅ x0

c  + O(β
2
)

= ν t0 – 
n ⋅ x0

c  + O(β
2
).

 (3.20)

This shows that Lorentz’s first order theory of the Versuch does indeed give the classical

formulae for Doppler effect and aberration. In sections 3.3 and 3.5, I will show that Lorentz’s

exact theory gives the relativistic expressions for these effects.
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3.2 The original contraction hypothesis (1892/1895)

3.2.1 The Michelson-Morley experiment, the Lorentz-FitzGerald contraction, and

electrostatics in moving frames of reference. In the last chapter of the Versuch, entitled

“Experiments whose results do not allow explanation without further ado” (translation taken

from Holton 1969, p. 319), Lorentz turns to second order ether drift experiments, i.e.,

experiments with an accuracy of v2/c2. The most important experiment in this category is, of

course, the experiment of Michelson and Morley.20 Lorentz (1895, sections 89–92, pp.

119–12421) essentially repeats what he had said in a short article on the Michelson-Morley

experiment published three years earlier (Lorentz 1892b). His discussion of the experiment

consists of two parts. First, he shows how a contraction of moving bodies can explain the

negative outcome of the experiment. He then presents a plausibility argument for this

contraction hypothesis. If, Lorentz argues, it is assumed that the molecular forces holding

Michelson’s interferometer together are affected by the earth’s motion through the ether in the

same way as Coulomb-forces are affected, the interferometer will experience a contraction of the

kind needed to explain the negative result of the Michelson-Morley experiment. I will examine

these two parts of Lorentz’s account of the experiment in turn.

3.2.2 How the Lorentz-FitzGerald contraction accounts for the negative result of the

Michelson-Morley experiment. I will look at the experimental set-up of the Michelson-

Morley experiment in somewhat greater detail in section 3.3, but for my purposes in this section

it suffices to consider the situation illustrated in Fig. 3.3.

Consider light traveling back and forth along an arm of length L of a Michelson

interferometer moving through the ether at a constant velocity v making an angle θ with that

velocity. The velocity of the light with respect to the interferometer is the sum of the light’s

velocity with respect to the ether (the vectors of length c in Fig. 3.3) and the ether’s velocity –v

with respect to the interferometer.

                                                
20 See Swenson 1972 for a detailed discussion of the history of experiments of Michelson, Morley, and Miller,
including references to the extensive literature on this topic and facsimile reproductions of the classic papers of
Michelson from 1881 (the original second order ether drift experiment in Potsdam) and of Michelson and Morley
from 1886 (the repetition of the Fizeau experiment to measure the Fresnel dragging coefficient) and 1887 (the
classic experiment in Cleveland). Additional material can be found in a special issue of Physics Today of May
1987 (Vol. 40, No. 5) on the occasion of the centennial of the Michelson-Morley experiment, and in Goldberg
and Stuewer 1988, based in part on a symposium commemorating the centennial of the experiment. For those
who read Dutch, see Janssen 1988 for a concise summary of the importance of the experiment in the context of
19th century ether theory.
21 I will refer to the translation of these three sections in Lorentz et al. 1952, pp. 3–7. Holton has rightfully
commented on the selection of these three sections (and nothing else) from the Versuch for the infamous
Teubner collection (Blumenthal 1913): “Thus do scissor-wielding and extract-prone editors distort the appearance
of history” (Holton 1969, p. 319).
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Figure 3.3: Light traveling back and forth in the arm of a moving interferometer.

For both situations shown in Fig. 3.3, we have  

c2cos2δ + v 2sin2θ = c2, (3.21)

which shows that the angle δ on the left is equal to the angle δ on the right. Eq. 3.21 gives the

following expression for the cosine of this angle:

cosδ = 1 – β
2

sin2θ . (3.22)

With the help of Fig. 3.3, we can compute the time τ it takes light to travel back and forth for

this particular orientation of the interferometer arm

τ = L 

ccosδ – v cosθ
 + L 

ccosδ + v cosθ
 = 2cLcosδ 

c2cos2δ – v 2cos2θ
. (3.23)

Inserting Eq. 3.22 into Eq. 3.23, we can eliminate cosδ from the expression for τ:

τ = 2L
c  

1 – β
2

sin2θ

1 – β
2

. (3.24)

This equation shows that τ depends on θ, unless L also depends on θ in just the right way.

Basically, the rotating interferometer in the Michelson-Morley experiment was designed to

detect this θ-dependence of τ. After our detailed discussion of the geometry of the condenser in

the Trouton-Noble experiment in section 1.2, it is easily seen that the Lorentz-FitzGerald

contraction gives L just the right θ-dependence to make τ θ-independent.
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θ′ θ

L′ L

Figure 3.4: interferometer arm at rest in the ether (left);
and contracted arm moving through the ether (right).

On the right in Fig. 3.4 , we have an interferometer arm of length L moving through the ether at

an angle θ with its velocity v; on the left, we have an arm of length L′ at rest in the ether that

would turn into the arm on the right if, upon giving it the velocity v, it were to contract in the

direction of motion by a factor γ. The relation between the θ′-independent length L′ of the arm

at rest in the ether and the θ-dependent length L of the arm in motion through the ether is given

by (cf. the expression for a/a′ in Eq. 1.11 in section 1.2):

L = L′ 
1 – β

2

1 – β
2

sin2θ
. (3.25)

Inserting Eq. 3.25 into Eq. 3.24, we see that this does indeed make τ θ-independent, thus

accounting for the negative result of the Michelson-Morley experiment.

We can, of course, multiply the right hand side of Eq. 3.25 with an arbitrary function f(β)

without changing the prediction of a negative result in the Michelson-Morley experiment. This

amounts to assuming that objects moving through the ether at a velocity v not only contract by a

factor γ in the direction of motion, but are also stretched out by a factor f(β) in all three

directions. Lorentz was well aware of this possibility.22 If we assume that objects do indeed

                                                
22 In 1892, Lorentz wrote: “... the question would still remain whether the earth’s motion shortens the
dimensions in one direction, as assumed above, or lengthens those in directions perpendicular to the first, which
would answer the purpose equally well” (Lorentz 1892b, p. 223). In the Versuch, Lorentz elaborates on this
comment: “If, for example, the dimensions parallel to this direction [of motion] were changed in the proportion
of 1 to 1 + δ, and those perpendicular in the proportion of 1 to 1 + ε , then we should have the equation
ε – δ = 1

2
 v 2/c2 in which the value of one of the quantities δ and ε would remain undetermined” (Lorentz et al.

1952, p. 5). In my notation 1 + δ = f(β)/γ and 1 + ε = f(β). From

1 + ε
1 + δ

 = γ ≈  1 + 1
2

 v 2/c2,

it follows that ε – δ ≈ 1
2

 v 2/c2, the equation Lorentz gives.
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contract in this way when set in motion with respect to the ether, the time τ it takes light to travel

back and forth in an arm of a moving interferometer is given by

τ = 
2L′ f(β)

c 1 – β
2

 = γ f(β) 
2L′

c . (3.26)

The assumption of such a contraction of objects moving through the ether, Lorentz tells us in

1892, is the only way in which he has been able to reconcile the negative result of the

Michelson-Morley experiment with the basic assumption of a stationary ether he took from

Fresnel:

This experiment has been puzzling me for a long time, and in the end I have been able to
think of only one means of reconciling its result with Fresnel’s theory [of a stationary ether].
It consists in the supposition that the line joining two points of a solid body, if at first
parallel to the direction of the earth’s motion, does not keep the same length when it is
subsequently turned through 90o. (Lorentz 1892b, p. 221)

At the corresponding juncture in the Versuch, Lorentz added a footnote saying that he

meanwhile found out that FitzGerald had independently come up with the same idea (Lorentz et

al. 1952, p. 4).23

3.2.3 The problem of the empirical testability of the contraction hypothesis. Before I

move on to Lorentz’s plausibility argument for the contraction hypothesis, I want to look at one

other element of Lorentz’s 1892 and 1895 discussions of the contraction hypothesis. This

element, I think, is the main culprit in creating the false impression that the charge of ad-hoc-

ness that has often been leveled at the contraction hypothesis is simply to be understood as the

charge that it is impossible to subject the hypothesis to an empirical test.24 Lorentz concludes

his discussion of the contraction hypothesis in 1892 with the following observation:

                                                
23 For a detailed account of the origins of FitzGerald’s idea, see Hunt 1991, pp. 185–195. At the end of his
detailed historical analysis, Hunt acknowledges that Lorentz independently arrived at the same idea as FitzGerald.
In the very next paragraph, he gives his overall conclusion: “What does this account of the origin of
FitzGerald’s contraction hypothesis tell us, not just about the evolution of an important physical idea but about
the operation of the Maxwellian group? First, it shows how important personal interactions and seemingly
extraneous circumstances can be in the birth and dissemination of scientific ideas. Had it not been for
Heaviside’s campaign for recognition, for instance, or FitzGerald’s tiff with the Royal Dublin Society, the story
of the FitzGerald contraction might have been very different” (Hunt 1991, p. 195). Hunt—and Warwick for that
matter (see section 1.3)—rightfully insists on the importance of looking at scientific ideas in their proper
context. However, it strikes me as odd to reiterate that point at this juncture, where what we have, by Hunt’s
own admission, is a clear-cut case of independent discovery.
24 My diagnosis of the situation was partly inspired by the following comment by Leplin: “It is interesting to
note that Lorentz speaks in an adjacent paragraph of the difficulty of testing the hypothesis, suggesting that an
interferometer would be necessary, rendering the test circular. But no connection between the problem of
testability and the ad hoc character of the hypothesis is suggested” (Leplin 1975, p. 314). Leplin’s “adjacent
paragraph” is referring to the passage in the Versuch quoted below (Lorentz et al. 1952, p. 6)
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Since p/V [Lorentz’s notation for v/c] is equal to 1/10000, the value of p2/2V2 [the fraction
by which an object in the direction of motion is shorter than in directions perpendicular to the
direction of motion] becomes one two hundred millionth. A shortening of the earth’s diameter
to the extent of this fraction would amount to 6 cm. There is not the slightest possibility,
when comparing standard measuring rods, of noticing a change in length of one part in two
hundred million. Even if the methods of observation permitted, one would never detect by a
juxtaposition of two rods anything of the change mentioned, if these occurred to the same
extent for both rods. The only way would be to compare the lengths of two rods at right
angles to each other, and if one wished to do this by means of observing an interference
phenomenon, in which one beam of light travels to and fro along the first rod and the other
beam along the second, the result would be a reproduction of Michelson’s experiment. But
then the influence of the desired change in length would again be compensated by the change
in phase differences determined by expression (3) [i.e., in my notation,

T(θ=0) – T(θ=π/2) = lβ2, where I used Eq. 3.24 for τ]. (Lorentz 1892b, p. 223)

In the Versuch, we find essentially the same observation:

... the lengthenings and shortenings in question are extraordinarily small. We have v2/c2 =

10–8, and thus, if ε =0 [i.e., f(β) = 1], the shortening of the one diameter of the Earth would
amount to about 6.5 cm. The length of a meter rod would change, when moved from one
principal position into the other, by about 1/200 micron. One could hardly hope for success in
trying to perceive such small quantities except by means of an interference method. We should
have to operate with two perpendicular rods, and with two mutually interfering pencils of
light, allowing the one to travel to and fro along the first rod, and the other along the second
rod. But in this way we should come back once more to the Michelson experiment, and
revolving the apparatus we should perceive no displacement of the fringes. (Lorentz et al.
1952, p. 6).

So, Lorentz in the period 1892–1895 thought that the Michelson-Morley experiment provided

the only feasible empirical test of the contraction hypothesis. These passages, moreover, suggest

that it is the only conceivable test. This would make the contraction hypothesis a paradigm

example of an ad hoc hypothesis in the falsificationist sense of that term (see Popper 1959, p.

83). However, as has been emphasized by Grünbaum (1959) in response to Popper, the

situation is not quite that dire. To be sure, there is only a very small number of conceivable

empirical tests of the hypothesis as part of Lorentz’s theory in 1892 and 1895, not to mention

tests that would have been feasible at the time. However, the possibilities of testing the

hypothesis are not limited to the one experiment for which it was introduced, and the

possibilities are limited for a very different reason than the one given by Lorentz in the passages

quoted above. I will argue in section 3.4 that the problem of the limited testability of the

contraction hypothesis completely disappears in subsequent versions of Lorentz’s theory.25

                                                
25 Recall Popper’s reply to Grünbaum that I quoted in the introduction to part two: “Yet, as this hypothesis is
less testable than special relativity, it may illustrate degrees of adhocness” (Popper 1959, p. 83, note; emphasis
in the original). I will show that “special relativity” could be replaced by “later versions of Lorentz’s theory” in
this statement.
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Despite the possibility, at least in principle, of empirical tests of the contraction hypothesis

as part of Lorentz’s theory in 1892 and 1895, and despite the dramatic increase in the number

of conceivable tests of the hypothesis as part of Lorentz’s theory of 1899 and 1904, the strong

intuition lingers, as has been argued powerfully by Holton (1969), that the hypothesis is ad hoc.

Whatever feature of the theory is responsible for sustaining this intuition, it can not be a lack of

falsifiability of the hypothesis.26 In section 3.3, I will offer a suggestion as to which feature of

the theory is responsible for this intuition instead.

Grünbaum has gone to great lengths to argue that the contraction hypothesis is not ad hoc.

Holton has passionately argued that it is. As will be clear from what has been said above, the

views of these two eminent scholars—one a philosopher, the other a historian—on this

particular issue are perfectly compatible with one another.27 Holton (1969, section 8, “Against

an ad hoc physics,” pp. 322–334) rightfully insists on the historical fact that many of

Lorentz’s contemporaries shared Einstein’s intuition that the contraction hypothesis and

Lorentz’s theory in general were ad hoc. Grünbaum (1959; 1973, pp. 386–396, 721–724,

834–839 [Grünbaum’s response to Holton 1969]; 1976) rightfully insists on the philosophical

fact that the contraction hypothesis is not ad hoc in the falsificationist sense in which

philosophers typically use that term.28

The task at hand, as I see it, is to articulate what made Einstein and others denounce

Lorentz’s theory as ad hoc if not for falsificationist reasons. This approach, it seems to me, is

more fruitful than arguing over whether or not the contraction hypothesis and/or Lorentz’s

theory in general are ad hoc under some alternative definition of ad-hoc-ness that philosophers

                                                
26 By the time of the experiments of Rayleigh (1902), Brace (1904), and Trouton and Noble (1903) at the latest,
it was clear that the contraction hypothesis, despite Lorentz’s suggestions to the contrary in 1892 and 1895, can
actually be subjected to empirical tests.
27 For a discussion of the by now ancient dispute between Holton and Grünbaum over the history of special
relativity, specifically over the importance of the Michelson-Morley experiment for Einstein’s path to special
relativity, and, more generally, over the prospects of giving a rational reconstruction of the genesis of the
theory, see Gutting 1972. Grünbaum lost the battle over the Michelson-Morley experiment. It is generally
accepted by now that Einstein definitely knew about the experiment before 1905 (see, e.g., Holton 1988, pp.
477–480). However, there also seems to be complete consensus that this does not seriously affect the
conclusion in Holton 1969 that the Michelson-Morley experiment did not play a role of any great significance
in Einstein’s development of special relativity (see, e.g., Stachel 1982). That does not mean, however, that
Grünbaum has lost the war (see, e.g., Earman, Glymour, and Rynasiewicz 1982).
28 Miller, in my view, was mistaken when he wrote in his critique of Zahar 1973: “Zahar [1973, p. 220]
permits Grünbaum to easily dispose of Popper’s case for the ad hocness of the L. F. C.  [Lorentz-FitzGerald
contraction]” (Miller 1974, p. 41), to which he added in a footnote: “if one wishes to analyze the status of the
L. F. C.  c. 1900, a goal to which Zahar aspires, then Grünbaum’s argument is quite beside the point. The
reason is that Grünbaum’s argument turns upon the Kennedy-Thorndike experiment of 1932” (ibid.). I agree
with this last remark. However, Zahar was quite right to quickly grant Grünbaum his point against Popper. As
much as Miller, following Holton, might want to see the contraction hypothesis condemned as ad hoc, it is not
ad hoc in a falsificationist sense.
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have no trouble conjuring up.29 I completely agree with Grünbaum’s reaction to Leplin 1975:

“I do not see why all the logical features of Einstein’s ad hoc charge against the LFC [Lorentz-

FitzGerald contraction] have to be paradigmatic for that concept” (Grünbaum 1976, pp.

360–361). Grünbaum goes on to quote (approvingly) a list given by Holton (1969, p. 327) of

the different usage various scientists have made of the phrase ad hoc.

Without wanting to get bogged down in the fine points of ad-hoc-ery, I do want to add that

Zahar’s work, for all its flaws, provides at least an outline of a very strong argument for the

claim that the contraction hypothesis and similar hypotheses in later versions of Lorentz’s

theory are not ad hoc1 or ad hoc2 (i.e., that they do give novel predictions and that these

predictions are verified). Grünbaum based his argument on what is clearly no more than a toy

model of Lorentz’s mature theory. This lends his argument a striking simplicity, but at the price

of an undeniable precariousness. What saves the contraction hypothesis from being ad hoc, in

Grünbaum’s argument, are no more than two experiments, the experiment of Kennedy and

Thorndike (1932) and the experiment of Ives and Stillwell (1938) on the so-called transverse

Doppler effect. As Zahar has shown, a much stronger (but far more complicated) case can be

made on the basis of a more realistic model of Lorentz’s mature theory. One of my goals in this

chapter is to actually make the case along the lines of Zahar, without running afoul of the many

historical inaccuracies in his account of the development of Lorentz’s theory (see sections 3.3

and 3.5).

3.2.4 Variations on the Michelson-Morley experiment (Kennedy-Thorndike, Liénard).

The most famous test of the Lorentz-FitzGerald contraction hypothesis in the philosophical

literature is the experiment of Kennedy and Thorndike that I already mentioned above. It was

brought to the attention of philosophers of science by Grünbaum (1959) and plays an important

role in the work of Zahar (1973, pp. 219–220; 1989, p. 48). Consider Eq. 3.26. The time

τ = γ f(β)(2L′/c) it takes light to travel back and forth in the arm of an interferometer is

independent of the arm’s orientation with respect to the “ether wind,” but it still differs from

the time 2L′/c it would take if the arm were at rest in the ether. Rotating an interferometer while

v remains essentially constant, as Michelson and Morley did, we do not expect to find an effect.

However, observing the interference pattern in an interferometer over a period of time in which

we have reason to believe that the velocity of the earth with respect to the ether (or rather its

component in the plane of the interferometer) changes, we would expect to find an effect.

Kennedy and Thorndike tried to measure this effect. Not surprisingly, the result of their

                                                
29 See, e.g.,  Zahar’s “ad hoc1,” “ad hoc2,” and “ad hoc3” (Zahar 1973, p. 216; 1989, p. 12); and Leplin’s
(1975) manifold conditions of ad-hoc-ness.
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experiment, like that of Michelson and Morley, was negative. Otherwise, we would have a

violation of the principle of relativity.

The negative result of Kennedy and Thorndike can be accounted for in various ways in the

context of Lorentz’s theory of 1892–1895. The simplest solution would be to choose f(β) = 1/γ,

making τ independent of v as well as of θ. However, by 1904–1905, Lorentz had compelling

reasons, as we will see in sections 3.4 and 3.5, for setting f(β) = 1. The explanation of the

Kennedy-Thorndike experiment licensed by Lorentz’s theory from 1899 onward is, in fact,

somewhat more complicated. The explanation is that the period of light emitted by the light

source in the interferometer has the exact same velocity dependence as the time τ, so that their

quotient, i.e., the phase difference actually measured in both the Michelson-Morley experiment

and the Kennedy-Thorndike experiment, is velocity independent. I will return to this

phenomenon and to the Kennedy-Thorndike experiment in section 3.3.

Here I want to draw attention to another test of the Lorentz-FitzGerald contraction

hypothesis, proposed by Liénard (1898; discussed in Hirosige 1966, p. 24). As we will see in

section 3.3, this proposal played an important role in the development of Lorentz’s theory.

Consider Eq. 3.24 for τ and Eq. 3.25 for L. Inserting the latter equation into the former, we

found that τ is θ-independent under the contraction hypothesis, which accounts for the negative

result of the Michelson-Morley experiment. However, imagine that we repeat the experiment

with water or glass in the arms of the interferometer. It looks as if this experiment ought to give

a positive result. After all, it would seem that β = v/c in Eq. 3.24 for τ gets replaced by nβ,

where n is the index of refraction of the material through which the light is made to travel in the

arms of the interferometer, whereas Eq. 3.25 for L stays the same. For τ, we would then find

 τ = γ f(β) 
2 l′
c  

1 – n2β
2

sin2θ

1 – β
2

sin2θ
, (Eq. 3.27)

which would make τ θ-dependent. There are two complications. First, we have to take into

account the Fresnel dragging effect. Second, the index of refraction of the material we put in the

arms of the interferometer might be affected by the Lorentz-FitzGerald contraction (cf. Rayleigh

(1902) and Brace (1904)). Nonetheless, taking these complications into consideration, if need

be with the help of additional hypotheses, we can work out the prediction of Lorentz’s theory

for the experiment for Liénard and empirically check the result. This clearly constitutes a test of

the contraction hypothesis.

The Kennedy-Thorndike experiment and the suggestion by Liénard provide valuable hints

for understanding exactly why it is that the testability of the contraction hypothesis as part of

Lorentz’s theory of 1892 and 1895 is severely limited. The Lorentz-FitzGerald contraction may
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affect a wide range of phenomena, thus making it possible in principle to subject the contraction

hypothesis to a wide range of empirical tests, but Lorentz’s theory does not give definite

predictions for such experiments without additional assumptions about further effects of motion

through the ether on the relevant phenomena  (on the period of light emitted by a moving source

in the case of the Kennedy-Thorndike experiment, on the index of refraction of moving water or

glass in the case of Liénard’s suggestion). This problem, already present in the relatively minor

variations on the Michelson-Morley experiments considered above, can only get worse if we

start considering tests of the contraction hypothesis that are very different from the Michelson-

Morley experiment, such as, say, the Trouton-Noble experiment. The problem that Lorentz’s

theory does not give definite predictions without additional assumptions is a direct consequence

of the fact that, in Lorentz’s preliminary30 theory of 1892 and 1895, first order effects and

second order effects are treated separately. As I will show in section 3.3, the problem disappears

once this feature is removed in the more mature versions of Lorentz’s theory of 1899 and 1904.    

3.2.5 A “corresponding states”-like treatment of electrostatics in moving frames of

reference. In section 1.2, I already mentioned that Lorentz gave a plausibility argument for the

Lorentz-FitzGerald contraction hypothesis based on the relation F = diag (1, 1/ γ, 1/ γ) F ′

between the force F on a charge q in a static charge distribution in uniform motion and the force

F′ on that same charge q if that charge distribution were to be stretched out by a factor γ and at

rest in the ether. Since the relation is important in the context of both the Trouton-Noble

experiment and the Michelson-Morley experiment, as well as for the subsequent development

of Lorentz’s theorem of corresponding states, it will be worth our while to give a reconstruction

of the derivation of the result in the Versuch (Lorentz 1895, sections 19–23, pp. 31–37; see also

Zahar 1989, pp. 59–61).

Although the problem of electrostatics in moving frames is treated separately from the

problem of optics in moving frames in the Versuch, Lorentz proceeds in very much the same

way.31 With the help of some auxiliary quantities, he recasts the problem in the moving frame in

the form of a problem in a frame at rest in the ether for which the solution is already known.

The original problem can then be solved by taking the known solution for the problem in the

frame at rest in the ether, rewriting it in terms of the auxiliary quantities for the problem in the

frame moving through the ether, and, finally, performing a transformation from the auxiliary

quantities to the real quantities.

                                                
30 Recall that his 1895 book is called “Attempt at a theory ...”
31 This may be responsible for a curious misconception by Zahar (1989, sections 2.3–2.4, pp. 58–66), who
associates the theorem of corresponding states in the Versuch with these calculations in electrostatics rather than
with the calculations in optics. For a careful analysis of this point, which unfortunately was completely lost on
Zahar, see Miller 1974, pp. 33–37.
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In the case of electrostatics in the moving frame S, Lorentz wants to recover the following

equations that govern electrostatics in the frame S0 at rest in the ether:

Poisson equation:  ∆0φ = –ρ/ε0,
         

Lorentz force on a

test charge q at x0 = a:
 F = – q ∇0φ  x 0  = a

(3.28)

where ∆0 is the Laplacian in terms of the coordinates x0 of the S0 frame,  

∆0 ≡ 
∂

2

∂x0
2
 + 

∂
2

∂y0
2
 + 

∂
2

∂z0
2

, (3.29)

and where ∇0 is the gradient operator in terms of x0. The charge density ρ and the potential φ in

Eq. 3.28 are both functions of x0, but not of the time t0.

Suppose we have a static charge distribution in a moving frame, i.e., we have a charge

density ρ that is a function of the spatial coordinates x of the moving frame S, but not of the

time t = t0. Lorentz manages to cast the problem of finding the force a test particle at rest in S

experiences from the field of such a charge distribution in a form that, though not quite the

same, is very similar to Eq. 3.28. He introduces the potential function ω that satisfies the

Poisson-type equation

∆ – β
2
 

∂
2

∂x
2

 ω = –ρ/ε0, (3.30)

where ∆ is the Laplacian in the frame S, and where ω and ρ are functions of x. He shows that

the force on a test charge q at some arbitrary point x = a can be obtained from this potential

function ω through

F = –q 1 – β2  ∇ω  x = a. (3.31)

The derivation of Eqs. 3.30–3.31 is considerably more complicated than the two-line derivation

of Eq. 3.28. A static charge distribution in a moving frame will give rise to both an electric and a

magnetic field. Both these fields will contribute to the Lorentz force F. To write F as a gradient

of a potential function ω, as is done in Eq. 3.31 above, we therefore need to express the

components of both fields as derivatives of ω.
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For an electrostatic problem in the moving frame S (i.e., ρ = ρ(x), E = E(x), B = B(x), and u

= 0), the basic equations for E and B in Eq. 3.3 (i.e., Maxwell’s equations transformed to the

moving frame S) reduce to

div E = ρ/ε0,    curl E = v  
∂B

∂x
,

div B  = 0,    curl B = µ0ρv  – v
c2

 
∂E

∂x
.

(3.32)

To recast these equations in the form of Eq. 3.30, we use the well-known relation

curl curl A = grad (div A) – ∆  A, (3.33)

from vector calculus (where A(x) is some arbitrary well-behaved vector field), plus the fact that

we are free to change the order of differentiation in all equations we will encounter. Taking the

curl of the equation with curl E in Eq. 3.32, we find:

curl curl E = curl v 
∂B

∂x
. (3.34)

Using Eq. 3.33 for the left hand side, and Eq. 3.32 for curl B on the right hand side, we can

rewrite Eq. 3.34 as

grad (div E) – ∆  E = v  
∂

∂x
 µ0ρv  – v

c2
 
∂E

∂x
. (3.35)

Using that div E = ρ/ε0 (see Eq. 3.32) and that µ0 = 1/(c2ε0), and rearranging the various terms,

we can rewrite Eq. 3.35 as

∆ – β
2
 

∂
2

∂x
2

 E = 1
ε0

 

(1 – β
2
) ∂ρ/∂x

∂ρ/∂y

∂ρ/∂z

. (3.36)

A similar equation can be derived for B. Taking the curl of the equation with curl B in Eq. 3.32,

we find:

curl curl B = curl µ0ρv  – v
c2

 
∂E

∂x
. (3.37)
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Using Eq. 3.33 for the left hand side, and Eq. 3.32 for curl E on the right hand side, we can

rewrite Eq. 3.34 as

grad (div B) – ∆ B  =  µ0 curl ρv – v
c2

 
∂

∂x
 v 

∂B

∂x
. (3.38)

Using that div B = 0 (see  Eq. 3.32), that µ0 = 1/(c2ε0), that

 curl ρv = 0, v 
∂ρ

∂z
, – v 

∂ρ

∂y
, (3.39)

and rearranging the various terms, we can rewrite Eq. 3.38 as

∆ – β
2
 

∂
2

∂x
2

 B  = 1
ε0

 v
c2

 

0

–∂ρ/∂z

∂ρ/∂y

. (3.40)

At this point, Lorentz introduced the potential function ω, defined as the solution of the

Poisson-type equation

∆ – β
2
 

∂
2

∂x
2

 ω = –ρ/ε0, (3.41)

which is just Eq. 3.30. Using Eq. 3.41 to eliminate ρ from Eq. 3.36 for E and Eq. 3.40 for B,

and once again using the fact that we can change the order of differentiation at will, we find:

∆ – β
2
 

∂
2

∂x
2

 E = – ∆ – β
2
 

∂
2

∂x
2

 

(1 – β
2
) ∂ω/∂x

∂ω/∂y

∂ρ/∂z

, (3.42)

∆ – β
2
 

∂
2

∂x
2

 B  = v
c2

 ∆ – β
2
 

∂
2

∂x
2

 

0

∂ω/∂z

–∂ω/∂y

. (3.43)

A solution of Eqs. 3.42–3.43 is given by

E = – 1 – β
2

 
∂ω

∂x
, – 

∂ω

∂y
, – 

∂ω

∂z
,     B  = 0, v

c2
 
∂ω

∂z
, – v

c2
 
∂ω

∂y
 . (3.44)
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One can verify directly, as Lorentz (1895, p. 36) points out, that E and B in Eq. 3.44 satisfy the

original equations for these fields in Eq. 3.32. Inserting Eq. 3.44 into the various components

of F = q E + v  × B , we arrive at Eq. 3.31:

Fx = q Ex = – q 1 – β
2

 
∂ω

∂x
 ,

Fy = q Ey – vBz = – q 1 – β
2

 
∂ω

∂y
 , (3.45)

Fz = q Ey + vBy = – q 1 – β
2

 
∂ω

∂z
 .

To summarize the result so far: with the help of the function ω, Lorentz has been able to cast the

problem of electrostatics in a moving frame in the form of the following two equations, which

are very similar to the equations governing electrostatics in a frame at rest in the ether (see Eq.

3.28)

Poisson-type equation:  ∆ – β
2
 

∂
2

∂x
2

 ω = –ρ/ε0,

          
Lorentz force on a

test charge q at x = a:
 F = –q 1 – β

2
 ∇ω  x = a.

(3.46)

Lorentz now introduces some auxiliary quantities to give the equation for the potential function

exactly the form of the Poisson equation:

x′ = γx,     y′ = y ,     z = z′
 

ρ′ = ρ/γ,     ω′ = ω/γ.

(3.47)

Notice that

1 – β
2

 
∂

2

∂x
2
 = 

∂
2

∂x′
2

, (3.48)

and that

∇ω = diag γ2, γ, γ  ∇′ω′. (3.49)
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So, the first equation in Eq. 3.46 can be rewritten in the form of the Poisson equation

∆′ ω′ = –ρ′/ε0, (3.50)

where ∆′ is the Laplacian in terms of the auxiliary coordinates x′. The second equation in Eq.

3.46 can be rewritten as

F = – q diag (1, 1/ γ, 1/ γ) ∇′ω′  x ′ = diag (γ, 1, 1) a. (3.51)

Since Eq. 3.50 has exactly the form of the Poisson equation, we can look upon it as giving the

equation for the potential of the field generated by the charge distribution ρ(x0) = ρ′(x0 = x ′) at

rest in the ether. It follows from the relations x′ = γx and ρ′ = ρ/γ in Eq. 3.47 that this charge

distribution at rest in the ether differs from the moving one we are interested in only in that it is

stretched out by a factor γ in the direction of the x-axis. The force F′ a test charge q experiences

in the field generated by ρ(x0) = ρ′(x0 = x ′) in S0 is given by (see Eq. 3.28)

F′ = – q ∇′ω′ x′ = diag(γ 1 1) a.  (3.52)

Inserting Eq. 3.52 into Eq. 3.51, we find

F = diag (1, 1/ γ, 1/ γ) F ′. (3.53)

3.2.6 Lorentz’s plausibility argument for the Lorentz-FitzGerald contraction. In

section 1.2, I already explained how Eq. 3.53 can be turned into a general strategy for dealing

with electrostatics in moving frames (see the discussion following Fig. 1.6). Here, I want to

look at how the result was used by Lorentz to make the Lorentz-FitzGerald contraction

hypothesis plausible.

Lorentz argued that we obtain a contraction of the type needed to account for the negative

result of the Michelson-Morley experiment (more specifically, a contraction with f(β) = 1), if we

assume that Eq. 3.53 not only holds for Coulomb forces but also for the intermolecular forces

holding a Michelson interferometer together. This argument can be found in virtually identical

form in Lorentz 1892b (p. 222) and in Lorentz 1895 (see Lorentz et al. 1952, p. 7). I will quote

the earlier version, mainly to show that Lorentz had already derived Eq. 3.53 in 1892, even

though he only published the result in 1895 (cf. Miller 1974, pp. 33–37).
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Figure 3.5: Crude static model of the molecular structure of an arm of a Michelson interferometer;
on the left: at rest in the ether (“system C”); on the right: moving through the ether (“system B”)

Fig. 3.5 shows the systems C and B playing a role in the third paragraph of this quotation,

where the result for electrostatic forces mentioned in the first two paragraphs are applied to

molecular forces. Lorentz writes:

Let A  be a system of material points carrying certain electric charges and at rest with
respect to the ether; B the system of the same points while moving in the direction of the x-
axis with the common velocity p through the ether. From the equations developed by
me1)[32], one can deduce which forces the particle[s] in system B exert on one another. The
simplest way to do this,[33] is to introduce still a third system C , which just as A , is at rest
but differs from the latter as regards the location of the points. System C , namely, can be
obtained from system A by a simple extension by which all dimensions in the direction of the
x-axis are multiplied by the factor (1 + p2/2V2)[34] and all dimensions perpendicular to it
remain unaltered.

Now the connection between the forces in B and C amounts to this, that the x-
components in C are equal to those in B whereas the components at right angles to the x-axis
are 1 + p2/2V2 times large[r] than in B.[35]

We will apply this to molecular forces. Let us imagine a solid body to be a system of
material points kept in equilibrium by their mutual attractions and repulsions and let system B
represent such a body whilst moving through the ether. The forces acting on any of the
material points of B must in that case neutralize. From the above, it follows that the same can
not then be the case for system A  whereas for system C it can; for even though a transition
from B to C is accompanied by a change in all forces at right angles to the axis, this cannot
disturb the equilibrium, because they are all changed in the same proportion. In this way it
appears that if B represents the state of equilibrium of the body during a shift through the ether

                                                
32 The corresponding footnote gives a reference to p. 498 of a lengthy memoir he published earlier that year.
Presumably, the reference is to Eq. (61) on this page (Lorentz 1892a, p. 238), which gives an expression for the
Lorentz force a charge distribution experiences from its self-field (cf. Eq. 3.94 below).
33 This method is not to be found in Lorentz 1892a and was published only in Lorentz 1895.
34 Recall that in 1892 Lorentz wrote p/V for β. Hence, (1 + p2/2V2) is just γ to first order in β.
35 The Dutch original of this short paragraph contains a misprint, which may explain why it was reworded in
the translation. The literal translation of the Dutch is: “The relation between the forces in B and C comes down
to this, that the components in the direction of the x-axis in B are the same as in A  [this clearly should be C]
while the components perpendicular to the x-axis are 1 – p2/2V2 as large as in C” (Lorentz 1892b, p. 77 in the
original Dutch version).
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then C must be the state of equilibrium when there is no shift.[36] But the dimensions of B in
the direction of the x-axis are (1 – p2/2V2) times the corresponding dimensions of C whereas
the dimensions along directions at right angles to the x-axis are the same in both systems.
One obtains, therefore, exactly an influence of the motion on the dimensions equal to the one
which, as appeared above, is required to explain Michelson’s experiment. (Lorentz 1892b, p.
222)

Lorentz made it very clear, both in 1892 and in 1895, that this remarkable result should be seen

as a plausibility argument for the Lorentz-FitzGerald contraction, not as a derivation of the

contraction from a new hypothesis concerning the effect of ether drift on molecular forces.37

The paragraphs immediately preceding and immediately following the passage quoted above

contain numerous disclaimers to this effect:

Now, some such change in the length of the arms in Michelson’s first experiment and in
the dimensions of the slab[38] in the second one is so far as I can see not inconceivable. What
determines the size and shape of a solid body? Evidently the intensity of the molecular forces;
any cause which would alter the latter would also influence the shape and dimensions.
Nowadays we may safely assume that electric and magnetic forces act by means of the
intervention of the ether. It is not far-fetched to suppose the same to be true of the molecular
forces. But then it may make all the difference whether the line joining two material particles
shifting together through the ether, lies parallel or crosswise to the direction of that shift. It is
easily seen that an influence of the order of p/V is not to be expected, but an influence of the
order of p2/V2 is not excluded and that is precisely what we need.

Since the nature of the molecular forces is entirely unknown to us, it is impossible to
test the hypothesis. We can only calculate—with the aid of more or less plausible
suppositions, of course—the influence of the motion of ponderable matter on the electric and
magnetic forces. It may be worth mentioning that the result obtained in the case of electric
forces yields, when applied to molecular forces, exactly [a contraction in the direction of
motion of the required magnitude]

[The three paragraphs quoted above]
One may not of course attach much importance to this result;[39] the application to

molecular forces of what was found to hold for electric forces is too venturesome for that.
(Lorentz 1892b, pp. 221–223)

In 1895, Lorentz added very similar disclaimers to the presentation of his plausibility argument

                                                
36 Notice that Lorentz tacitly assumes here that the equilibrium state is unique.
37 On this issue, I am in complete agreement with Miller’s (1974, p. 39) and Schaffner’s (1974, p. 50)
criticism of Zahar (1973, p. 221; 1989, pp. 62–65) who claims that Lorentz wanted to derive the “LFC” from
the “MFH” (Zahar’s abbreviations for “Lorentz-FitzGerald Contraction” and “Molecular Force Hypothesis,”
respectively). Zahar also claims that “in his deduction of the LFC, Lorentz made use of his famous
transformation” (Zahar 1973, p. 221). This is probably related to Zahar’s identification (mentioned above) of the
theorem of corresponding states in the Versuch with the calculations in electrostatics rather than in optics.

In his efforts to convince Zahar of the error of his ways, Miller, I think, denounces Lorentz’s contraction
hypothesis of 1892 and 1895 a little more than necessary. I hope my comments plus an important passage I
will quote from Lorentz’s unpublished papers (a document not available to Miller in 1974) will serve both to
underscore the validity of Miller’s points against Zahar and to restore some balance in the assessment of
Lorentz’s achievement in 1892 and 1895 (see also Nersessian 1988)   
38 The Dutch original simply has “stone” (steen, Lorentz 1892b, p. 76).
39 A less ambiguous translation of the original Dutch would be: “Of course, not much weight can be attached to
this result” (Lorentz 1892b, p. 78 in the original Dutch version; my italics).
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Surprising as this hypothesis may appear at first sight, yet we shall have to admit that it is by
no means far-fetched, as soon as we assume that molecular forces are also transmitted through
the ether, like the electric and magnetic forces of which we are able at the present time to
make this assertion definitely. If they are so transmitted, the translation will probably affect
the action between the two molecules or atoms in a manner resembling the attraction or
repulsion between charged particles. Now, since the form and dimensions of a solid body are
ultimately conditioned by the intensity of molecular actions, there cannot fail to be a change
of dimensions as well.

[...]
It is worth mentioning that we are led to just the same changes of dimensions [needed for

the explanation of the negative result of the Michelson-Morley experiment] if we, firstly,
without taking molecular movement into consideration, assume that in a solid body left to
itself the forces, attractions or repulsions, acting upon any molecule maintain one another in
equilibrium, and, secondly—though to be sure, there is no reason for doing so—if we apply to
these molecular forces the law which in another place [i.e. section 23 of Lorentz 1895] we
deduced for electrostatic actions. (Lorentz et al. 1952, pp. 5–7; italics in the original)

To underscore that Lorentz’s hesitation to apply the result found for Coulomb forces to

molecular forces was entirely appropriate and not an instance of Lorentz being overly cautious, I

want to draw attention to a serious problem for Lorentz’s argument.40 According to an

elementary theorem in electrostatics named after Earnshaw who found it in 1831 (Pais 1988, p.

181), a system of charges can not be in stable static equilibrium unless there are other forces

present, besides the Coulomb forces, to prevent the charges from moving.41 The basic premise

of Lorentz’s argument is: if a system is in stable static equilibrium at rest in the ether, then a

contracted version of that system is in stable static equilibrium in uniform motion through the

ether (cf. Lorentz 1895, pp. 37–38). Earnshaw’s theorem shows that it is impossible to have a

system in stable static equilibrium under the influence of  Coulomb-type forces only. This

reduces Lorentz’s premise to a trivial and empty truth. It is reasonable to expect that the

implication will not change much when molecular motion is taken into account, but Lorentz

does not make any attempt to reassure his readers that this expectation is well founded.42 Once

                                                
40 I am grateful to Jon Dorling for drawing my attention to this problem.
41 Landau and Lifschitz (1984, p. 104) outline a very simple proof of this theorem. Suppose we want to build
up a charge distribution in stable static equilibrium. Consider adding the charge q to the total charge Q already
present at that moment. For the system to be in stable static equilibrium on the basis of its Coulomb
attractions and repulsions alone, q has to be put in at a point P where the potential φ  of the electric field due to
Q has an extremum. Hence, the first order derivatives of φ at P must be zero, while the second order derivatives
must be non-zero (otherwise we would have a point of inflection rather than an extremum) and must have the
same sign (otherwise we would have a saddle point rather than an extremum). It follows that ∆φ ≠ 0 at P. But
that contradicts that φ  is an electrostatic potential satisfying the Poisson equation ∆φ = –ρ/ε0. The point P
cannot be a point already occupied by one of the charges constituting Q. Hence ρ = 0 at P. That means that
∆φ = 0. So, we have a contradiction. It follows that φ  cannot have any extrema. This, in turn, implies
Earnshaw’s theorem.  
42 Although Lorentz does not mention Earnshaw’s theorem anywhere in either Lorentz 1892b or Lorentz 1895,
there are some clear indications that he realized that there is no such thing as static equilibrium. In the last
passage I quoted, he emphasizes this assumption along with the basic assumption that F = diag (1, 1/γ, 1/γ) F′
holds for Coulomb forces and molecular forces alike. In the final paragraph of his discussion of the Michelson-
Morley experiment in the Versuch, he writes: “In reality the molecules of a body are not at rest, but in every
“state of equilibrium” there is a stationary movement. What influence this circumstance may have in the
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again, this shows that Lorentz saw his argument from electrostatics as a plausibility argument

for the contraction hypothesis, not as a derivation. In the latter reading, we would have to

attribute a serious logical blunder to Lorentz. I see no grounds for such an uncharitable

interpretation of his text.

Having put Lorentz’s plausibility argument for the contraction hypothesis in proper

perspective, I want to emphasize that Lorentz appears to have been very confident in 1892 and

1895 to have hit upon the correct explanation of the Michelson-Morley experiment.43 This can

be gathered, for instance, from the following remarks in the concluding paragraph of Lorentz

1892b:

But for all that [i.e., all the reservations Lorentz expresses with respect to his plausibility
argument for the contraction hypothesis], it seems undeniable that changes in the molecular
forces and, consequently, in the dimensions of a body are possible of the order of p2/2V2.
This being so, Michelson’s experiment can no longer furnish any evidence for the question for
which it was undertaken [i.e., to decide between Stokes’ theory of an ether dragged along by
the earth and Fresnel’s theory of a stationary ether (see Swenson 1972; Janssen 1988)]. Its
significance—if one accepts Fresnel’s theory—lies rather in the fact, that it can teach us
something about the changes in the dimensions. (Lorentz 1892b, p. 223)

To conclude this section I want to quote from a document written years later in which

Lorentz looks back upon his introduction of the contraction hypothesis. The document is the

draft of a letter from Lorentz to Einstein dated January 1915,44 in which Lorentz responds to

some disparaging remarks by Einstein concerning the contraction hypothesis. Einstein had

recently written: “This type and manner of accounting for experiments with negative results

through hypotheses invented ad hoc is very unsatisfactory” (Einstein 1915, p. 70745). Lorentz

quotes this remark and adds the following interesting comments:

That is what Poincaré also said,[46] and I myself have agreed to that; I felt the need for a more
general theory, as I tried to develop later, and as has actually been developed by you (and to a
lesser extent by Poincaré). However, my approach was not so terribly unsatisfactory. Lacking
a general theory, one can derive some pleasure from the explanation of an isolated fact,[47] as

                                                                                                                                                      
phenomenon which we have been considering is a question which we do not here touch upon” (Lorentz et al.
1952, p. 7).
43 This point, in my opinion, does not get enough emphasis in Miller 1974.
44 This document—of paramount importance in this context—was discovered by A. J. Kox, to whom I am
indebted for alerting me to it and for providing me with his transcription of it. The document is now part of the
Archief H.A. Lorentz, Rijksarchief Noord-Holland, Haarlem, The Netherlands. Portions of this document are
quoted in Nersessian 1984, pp. 118–119, 172–173; 1986, p. 225, pp. 232–233; 1988, pp. 74–75.
45 As far as I have been able to tell, Einstein first made this point in print in the introduction of his 1907
review article on relativity (Einstein 1907c, pp. 412-413)
46 In his lecture at the Congrès international de Physique in Paris in 1900, Poincaré had sharply criticized what
he perceived to be an accumulation of hypotheses in Lorentz’s theory, sarcastically pointing out that
“hypotheses are what we lack the least” (Poincaré 1900a, p. 172)
47 Larry Laudan has argued that this is a perfectly respectable position to take: “If some theory T2 has solved
more empirical problems than its predecessor—even just one more—then T2 is clearly preferable to T1, and,
ceteris paribus, represents cognitive progress with respect to T1” (Laudan 1977, p. 115; italics in the original).
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long as the explanation is not artificial. And the interpretation given by me and FitzGerald
was not artificial. It was more so that it was the only possible one, and I added the comment
that one arrives at the [contraction] hypothesis if one extends to other forces what one could
already say about the influence of a translation on electrostatic forces. Had I emphasized this
more,[48] the hypothesis would have created less of an impression of being invented ad
hoc.[49] (Draft of a letter from Lorentz to Einstein, January 1915; emphasis in original)

                                                                                                                                                      
Laudan goes on to raise the question “why the admittedly ad hoc character of the Lorentz contraction constitutes
a decisive handicap against it in comparing it with special relativity. If the empirical problem-solving capacities
of the two theories are, so far as we can tell, equivalent, then they are empirically on a par; defenders of the view
that the adhocness of T2 [read: Lorentz’s theory] makes it distinctly inferior to Tn [read: special relativity] must
spell out why, in such cases, the comparable problem-solving abilities and equivalent degrees of empirical
support can be thrown to the winds simply by stipulating that ad hoc theories are intrinsically otiose” (ibid., p.
116). The passage from which these two quotations are taken is quoted in full (and approvingly) in Grünbaum
1976, pp. 358–359. I will take up Laudan’s challenge in chapter four and show that there are good reasons, in
this particular case, for preferring “Tn” over “T2,” reasons that (although I will not pursue the point in this
dissertation) can be seen as a new articulation of the ad hoc charge leveled against Lorentz’s theory.      
48 At this point Lorentz added a note with an important confession: “I must admit, however, that I only noticed
this, after [emphasis in the original] I had found the hypothesis.” This is hard to reconcile with Zahar’s
interpretation of Lorentz’s argument in support of the contraction hypothesis. I will just quote two passages
from Zahar’s work that are clearly refuted by the letter Kox discovered. “... the MFH arose out of considerations
which had nothing to do with Michelson’s experiment” (Zahar 1973, p. 22; italics in the original). “Lorentz did
nothing about the ‘crucial’ experiment [of Michelson and Morley] until he discovered his transformation
equations [by which Zahar means Eq. 3.47 for electrostatics, not Eq. 3.4–3.5 for optics]; the latter were not
discovered under the impact of Michelson’s result of which they are independent” (Zahar 1989, p. 65). Of course,
the ‘independence’-claim in the last sentence is still correct.
49 At this point, Lorentz adds what I think is a very perceptive comment (see section 3.3). Recall that Einstein
had written that “this type and manner of accounting for experiments with negative results through hypotheses
invented ad hoc is very unsatisfactory” (my emphasis). Lorentz writes: “whether it is the explanation of a
negative or a positive result that is at issue, hardly makes a difference, it seems to me.”
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3.3 The exact theorem of corresponding states and the “generalized
contraction hypothesis” (1899/1904)

3.3.1 The generalization of the theorem of corresponding states. As is clear from the title

of the book, the theory for optics in moving frames set forth in Lorentz’s Versuch of 1895 is

still provisional. The trouble is that the theory consists of two totally unrelated parts: the

theorem of corresponding states providing a general explanation for all first order ether drift

experiments and a set of special hypotheses to account for a handful of second order

experiments. Since the outcome of both first and second order experiments was always the

same, viz. that the earth’s motion through the ether has no influence whatsoever on the observed

phenomena, this distinction is highly artificial (cf. Poincaré 1900a, p. 172). Not surprisingly,

Lorentz set out to construct a general theory, valid to all orders of v/c, based on an exact version

of the theorem of corresponding states, that would give a unified account of the negative results

of both first and second order ether drift experiments.

The canonical exposition of this theory is Lorentz 1904b. In section 1.4, I already discussed

the explanation of the experiments of Trouton and Noble given in this paper. My exposition of

the theory in this section will follow Lorentz’s discussion in an earlier paper, entitled

“Simplified theory of electrical and optical phenomena in moving bodies” (Lorentz 1899a,

1899b, 190250). It was in the final section of this paper, that Lorentz laid the foundations of his

1904 theory.

In the last section of this 1899 paper, Lorentz turns to the Michelson-Morley experiment,

the contraction hypothesis, and the experiment proposed by Liénard in 1898 (see section 3.2):

Some time ago Liénard [1898] has emitted the opinion that, according to my theory, the
[Michelson-Morley] experiment should have a positive result, if it were modified in so far that
the rays had to pass through a solid or a liquid dielectric.

                                                
50 Miller (1973, p. 222) lists the following discussions of this paper in the secondary literature: Hirosige 1966,
pp. 24–27; Schaffner 1969, pp. 505–506; McCormmach 1970b, pp. 473–474. For (brief) more recent
discussions of this paper see Pais 1982, pp. 125–126, Zahar 1989, pp. 69–70, and Darrigol 1994a, pp.
294–295. Zahar missed the crucial last section of the paper; Darrigol did take notice of it, but failed to appreciate
its importance.

The publication history of Lorentz’s 1899 paper is rather complicated. It was first published in the Dutch
version of the Proceedings of the Amsterdam Academy (Lorentz 1899a). For the translation in the English
version of the Proceedings (Lorentz 1899b), Lorentz made some changes in the presentation of his results,
especially in the crucial final section 9 containing what we now recognize as the exact Lorentz transformation
up to an undetermined factor. A French translation was published as Lorentz 1902. This translation follows the
Dutch original rather than the emended English translation. There are some minor differences between the French
and the Dutch versions as well: section 6 in the Dutch version is broken up into two sections for the French
version, so the last section is now section 10. Moreover, the term ‘ion’ Lorentz still used in 1899 is replaced by
the new term ‘electron.’ I will follow the English version, but I will also quote (in translation) from the Dutch
original at places where the English deviates from the Dutch in an interesting way.
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It is impossible to say with certainty what would be observed in such a case, for, if the
explication of Michelson’s result which I have proposed is accepted, we must also assume that
the mutual distances of the molecules of the transparent media are altered by the translation.

Besides, we must keep in view the possibility of an influence, be it of the second order,
of the translation on the molecular forces.

In what follows I shall sh[o]w, not that the result of the experiment must necessarily be
negative, but that this might very well be the case. At the same time it will appear what
would be the theoretical meaning of such a result. (Lorentz 1899b, p. 268)

In the remaining three and a half pages of the article, Lorentz proceeds to develop the essential

structure of his 1904 theory which predicts a negative result for the experiment proposed by

Liénard as well as for any other optical experiment, no matter how accurate, that eventually boils

down to the observation of some pattern of light and darkness.

The basis of this theory is an exact version of the theorem of corresponding states. Lorentz

introduced new auxiliary quantities to give the equations for the electromagnetic field in a

moving Galilean frame S (see Eq. 3.3) the form of Maxwell’s equations, not just in the source

free case (as in the Versuch) but in two important special cases with sources present as well.

The first case is that of a static charge distribution at rest in S; the second that of bound

electrons whose oscillations around some fixed point of S are responsible in Lorentz’s theory

for the emission of light from a source at rest in S.

The new auxiliary quantities of the last section of Lorentz’s 1899 paper are a slight

modification of the auxiliary quantities that  are used in the rest of the paper. These, in turn, are

essentially a combination of the auxiliary quantities used separately in the Versuch, viz. the local

time from the first order theorem of corresponding states in optics (see Eq. 3.14) and the

stretched out x-coordinate from the calculations in electrostatics (see Eq. 3.47). The auxiliary

quantities in the final section of the 1899 paper, which are also the ones used in Lorentz 1904b,

are defined as51

x ′ ≡ diag(lγ, l, l) x,      t′ ≡ l t/γ – γ(v/c2) x , (3.54)

E′ ≡ diag(1/l2,  γ/l2,  γ/l2) E + v  × B ,

B ′ ≡ diag(1/l2,  γ/l2,  γ/l2) B  – 1
c2

 v  × E .
(3.55)

The quantity l is an undetermined factor that is only allowed to differ from 1 by a term in the

order of v2/c2 (Lorentz 1899b, p. 269; 1904, p. 176).52

                                                
51 The primed quantities in Eq. 3.54–3.55 are the double primed quantities of Eqs. (6), (8), and (9) in Lorentz
1899b, p. 269 (I denote as γ what Lorentz denotes as k); they are also the primed quantities of Eqs. (4)–(6) in
Lorentz 1904b, pp. 175–176.
52 This is the notation of Lorentz 1904b (pp. 175–176). In 1899, this factor is written as 1/ε. In 1904, as we
will see in section 3.4, Lorentz concluded that l = 1, albeit in a rather roundabout manner. In the English
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The fictitious fields E′ and B′ understood as functions of (x′, t′) satisfy equations very

similar to Maxwell’s equations without neglecting terms of any order of magnitude (cf. Lorentz

1899b, p. 269, Eqs. (Ie)–(IVe);53 Lorentz 1904b, p. 176, Eqs. 7–9)54

                                                                                                                                                      
version of his 1899 paper, he wrote: “I see, however, no means to determine it” (Lorentz 1899b, p. 270). In the
original Dutch version, he was not quite as pessimistic: “ε [or l] will have some determinate value, which it
will only be possible to ascertain through a further insight in the phenomena” (Lorentz 1899a, p. 522).
53 In the last section of his 1899 paper, Lorentz wrote down these equations for the special case where the
source terms describe the oscillating electrons in a moving light source. I will discuss this special case in a
somewhat simplified form at the end of this section.
54 As with the first order theorem of corresponding states (see section 3.1, Eq. 3.6), I will derive the equation
for div′E′ in Eq. 3.56. Similar arguments can be given for the other three equations, starting from (the
components of) curl′E′ – ∂B′/∂t′, div′B′, and curl′B′ – (1/c2) ∂E′/∂t′, respectively. I will write div′E′ in
terms of the unprimed quantities, and then use Eq. 3.3 to show that this expression is equal to

ρ/(ε0γ l 3) (1 – γ2 v ux/c 2), as Eq. 3.56 says it is.
The inverse transformation of Eq. 3.54 is

x = diag 1
lγ

, 1
l
, 1

l
 x ′,      t = 1

l
 γ  t′ + (v/c 2) x′ ,

which means that the derivatives with respect to the primed variables are related to the derivatives with respect to
the unprimed variables as

∂
∂t′

,  ∂
∂x′

,  ∂
∂y′

,  ∂
∂z′

 = 1
l
 ∂

∂t
,  1

γ
 ∂
∂x

 + γ (v/c2) ∂
∂t

,  ∂
∂y

, ∂
∂z

.

Inserting these relations along with Eq. 3.55 for E′, we find

 div′E′  =  1

l 3
 1

γ
 ∂Ex

∂x
  +  γ (v/c 2) ∂Ex

∂t
  +  γ  

∂Ey

∂y
  –  v ∂Bz

∂y
  +  γ  ∂Ez

∂z
  +  v 

∂By

∂z
 .

Substituting γ (1 – v2/c2) for 1/γ in the first term on the right hand side and regrouping terms, we can write
this equation as

 div′E′  =  1

l 3
 γ  ∂Ex

∂x
  +  

∂Ey

∂y
  +  ∂Ez

∂z
  –  v  γ  ∂Bz

∂y
  –  

∂By

∂z
  –  1

c2
 ∂Ex

∂t
  +  v

c2
 ∂Ex

∂x
 .

The first three terms in parentheses are just div E . The last four terms in parentheses are just the x-component
of curl B – (1/c2) (∂E/∂t – v∂E/∂x). Using Eq. 3.3 for these expressions and using the relation µ0 = 1/(ε0 c2),
we arrive at

div′E′ = 1

l 3
 γ ρ /ε0  –  γ v ρ

ε0 c 2
 (ux + v)

= γ ρ

l 3 ε0

 1  –  v ux

c 2
  –  v 2

c 2

= γ ρ

l 3 ε0

 1

γ2
  –  v ux

c 2

= ρ

γ l 3 ε0

 1  –  γ2 v ux

c 2
 .
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div ′ E′ = 
ρ

γ l3ε0

 1 – γ2 v ux

c2
,    curl′ E′ = – 

∂B ′

∂t′
,

div ′ B ′ = 0,    curl′ B′ = µ0ρdiag(γ/l3, 1/ l3,  1/l3)u + 1
c2

∂E′

∂t′
.

(3.56)

Combining the Galilean transformation (x0, t0) → (x, t) in Eq. 3.1 with the transformation

(x, t) → (x′, t′) in Eq. 3.54, we find:

x′ = l γ x0 – vt0 ,

y′ = l y0,

z′ = l z0,

       
t′ = l t0/γ – γ(v/c2) (x0 – v t0)

= l t0 1
γ
 + γ v

2

c2
 – γ(v/c2) x0

= l γ t0 – (v/c2) x0 .

(3.57)

If we set l = 1, Eq. 3.57 just gives the Lorentz transformation (x0, t0) → (x′, t′) as we know it

today. So, from a modern perspective, the derivation of Eq. 3.56 is simply (part of) a proof that

Maxwell’s equations are invariant under Lorentz transformation. From such a modern

perspective, the primed quantities x′, t′, E′, and B′ all belong to the Lorentz frame S′ moving at a

velocity v with respect to the frame S0, just as the unprimed quantities belong to the Galilean

frame S moving at a velocity v with respect to the frame S0. The four-vector j′
µ
 ≡ (ρ′c, ρ′u′),

representing the charge and current density in S′, is related to the corresponding vector j0
µ in S0

via

ρ′c = γ ρc – vc ρu0x = γρc 1  –  v ux

c2
  –  v

2

c2
=  

ρc
γ

 1  – γ2 v ux

c2
,

ρ′u′x = γ ρu0x – vc ρc = γρux, (3.58)

ρ′u′y = ρu0y = ρuy,

ρ′u′z = ρu0z = ρuz,

in accordance with Eq. 3.56 for l = 1.

                                                                                                                                                      

This is indeed the equation for div′E′ in Eq. 3.56. The other equations in Eq. 3.56 can be found in the same
way.
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3.3.2 A simplified treatment of electrostatics in moving frames. Before I turn to optics,

the focus of Lorentz’s considerations in the last section of his 1899 paper, I want show that

Eqs. 3.54–3.56 make it possible to give a very simple treatment of electrostatic problems in the

moving frame S. This same treatment is already possible with the help of the auxiliary quantities

introduced earlier in the 1899 paper,55 and can actually be found in section 5 of the paper

(Lorentz 1899b, pp. 259–261).

In the case of electrostatics in the moving frame S, u = 0, and E, B, and ρ are functions of x

only and not of the (real) time t. From Eq. 3.55, it follows that in that case E′, B′, and ρ will be

functions of x′ only and not of the local time t′. So, Eq. 3.56 reduces to:

div ′ E′ = 
ρ

γ l3ε0

,    curl′ E′ = 0,

div ′ B ′ = 0,    curl′ B′ = 0.
(3.59)

These equations have precisely the form of the equations for electrostatics in the frame S0 at rest

in the ether for a charge distribution ρ/γl3. The equations are easy to solve. First, we can set B′

= 0. To find the solution for E′, we introduce the potential ω′ and the auxiliary charge

distribution ρ′, defined through:

E′ ≡ –grad ω′,         ρ′ ≡ 
ρ

γ l3
. (3.60)

The charge distribution ρ′ is basically the same stretched out charge distribution Lorentz

considered in the Versuch (see section 3.2). The only difference is that this charge distribution

is not only stretched out by a factor γ in the x-direction, but also by a factor l in all three

directions.

With E′ = –grad ω′, the equation curl′ E′ = 0 is automatically satisfied. Inserting Eq. 3.60

into the equation for div E′ in Eq. 3.59, we find

∆′  ω′ = – ρ′/ε0, (3.61)

which is just the Poisson equation.

With the help of Eq. 3.55 for E′, the Lorentz force on a charge q at a fixed point of S in the

static charge distribution at rest in S can be written as

                                                
55 Except for the addition of the extra factor ε, only the definitions of t′ and B ′ are changed in the final section,
and neither t′ nor B′ play a role in electrostatics
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F = q(E + v  × B) = diag(l2,  l2/γ, l2/γ) qE′ (3.62)

The quantity qE′ in this equation is just the force F′ the charge q would experience at the

corresponding point in the stretched out charge distribution ρ′ at rest in S0. In other words,

F = diag(l2,  l2/γ, l2/γ) F′. (3.63)

For l = 1, Eq. 3.63 reduces to Eq. 3.53, which formed the basis for Lorentz’s plausibility

argument for the Lorentz-FitzGerald contraction hypothesis.56 Notice the tremendous

simplification of the derivation of this result achieved in 1899 as compared to the tedious

derivation in the Versuch (see Eqs. 3.32–3.53 in section 3.2).57

3.3.3 How the Lorentz invariance of the source free Maxwell equations, the hypothesis

that corresponding states physically transform into one another, and the general

nature of patterns of light and darkness can account for the negative result of almost

any conceivable optical ether drift experiment. I now turn to optics. I will dwell on this

subject at somewhat greater length than Lorentz himself and I will draw attention to some

logical features of his theory he never explicitly mentioned, neither in 1899 nor in 1904. The

purpose of my detailed discussion is to elucidate the basic structure of the theory which has

been widely misunderstood in the secondary literature (as I will illustrate with some quotations

below). In particular, I want to clarify the relation between two fundamental elements of the

theory, the purely mathematical theorem of corresponding states and the following physical

assumption, for which I want to coin the phrase generalized contraction hypothesis:

If a material system, i.e., a configuration of particles, with a charge distribution
that generates a particular electromagnetic field configuration in S0, a frame at

rest in the ether, is given the velocity v of a Galilean frame S in uniform motion

through to the ether, it will rearrange itself so as to produce the configuration of

particles with a charge distribution that generates the electromagnetic field

                                                
56 The undetermined factor l is essentially the same as the undetermined factor f(β) in the explanation of the
Michelson-Morley experiment on the basis of the contraction hypothesis (see section 3.2). Hence, the following
remark by Miller, though true in the context of the 1895 version of Lorentz’s theory, is no longer true in the
context of the 1899 version of the theory. Commenting on Lorentz’s 1892–1895 plausibility argument for the
contraction hypothesis, Miller writes: “Lorentz [...] emphasizes [Lorentz et al. 1952, p.5] that ε = 0 [i.e., f(β) =
1] may not be the correct choice; however, it is the only one which he can argue for on the basis of
electromagnetic theory” (Miller 1974, p. 39).
57 Darrigol failed to appreciate this when he wrote: “the benefit of the new transformation was meager and the
technique of corresponding states worked only for the cases that Lorentz had already been able to treat,
electrostatics and first order optics” (Darrigol 1994a, p. 295). The last part of this statement is somewhat
puzzling. As we will see below, and as Lorentz emphasizes in his paper (Lorentz 1899b, pp. 267–268), the
point of the new transformation (i.e., Eqs. 3.54–3.55) is to be able to deal with second order optics.
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configuration in S that is the corresponding state of the original electromagnetic

field configuration in S0.58

If we use the term ‘corresponding states’ to encompass both the electromagnetic field

configuration and the configuration of the material system generating it, the generalized

contraction hypothesis can be stated more concisely as: corresponding states physically

transform into one another.59 This assumption is independent of the theorem of corresponding

states.60 As we saw in the discussion of the Trouton-Noble experiment in chapter one, the

theorem of corresponding states can be used with and without the contraction hypothesis. The

following discussion of optics in the 1899–1904 version of Lorentz’s theory was, in fact,

inspired in part by Larmor’s ingenious, if not unproblematic, discussion of the Trouton-Noble

experiment (see sections 1.2 and 1.3).

In optics, we can set ρ = u = 0. Eq. 3.56 then reduces to:

div ′ E′ = 0,    curl′ E′ = – 
∂B ′

∂t′
,

div ′ B ′ = 0,    curl′ B′ = 1
c2

∂E′

∂t′
.

(3.64)

These equations have the exact same form as the source free Maxwell equations. So, we can

formulate an exact theorem of corresponding states (cf. section 3.1):

If there is a solution of the source free Maxwell equations in which the real
fields E and B are certain functions of x0 and t0, the coordinates of S0 and the

real Newtonian time, then there is another solution of the source free Maxwell

equations in which the fictitious fields E′ and B′ are those exact same functions

of x′ and t′, the coordinates of S and the local time in S.

                                                
58The idea behind this hypothesis is similar to the idea behind Lorentz’s plausibility argument for the Lorentz-
FitzGerald contraction in 1892 and 1895 that I discussed in section 3.2. However, as we will see, Lorentz no
longer invoked the dubious assumption of static equilibrium in this context (cf. Lorentz 1904b, p. 183, p. 191).
59 Another advantage of this more concise formulation is that it leaves open the precise nature of the material
system. In the historical context, the material system will always be a collection of classical particles
interacting according to some Newtonian force law, but, in a modern setting, as has been urged by John Norton,
one might want to consider a situation in which the material part of the system is described by, say, a Dirac
spinor field. The generalized contraction hypothesis then says that the configuration of the Dirac field in the
system at rest in the ether will turn into the Lorentz boosted version of that configuration upon setting the
system in motion.
60 It is not surprising that this point has been misunderstood by many modern authors. If all physical laws, not
just the laws governing the electromagnetic field, are Lorentz invariant, the generalized contraction hypothesis is
a direct consequence of the Lorentz invariance.
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We can also formulate an exact version of the general result in the Versuch concerning patterns

of light and darkness in corresponding states:61

If there is a field configuration in S0 which is a solution of the source free

Maxwell equations and which describes a certain pattern of light and darkness,

then its corresponding state in S describes a pattern of light and darkness that
differs from the pattern in S0 only in that it is contracted by a factor γl in the x-

direction and by factor l in the y- and z-directions.

The patterns of light and darkness in two corresponding states in optics are thus related to each

other in the same way the charge distributions in two corresponding states in electrostatics are

related to each other. The strategy for finding the force on a charge in a moving static charge

distribution, which was introduced in the Versuch and which I used in the discussion of the

Trouton-Noble experiment in sections 1.2 and 1.3, therefore suggests a similar strategy for

finding the pattern of light and darkness in optical experiments, such as the Michelson-Morley

experiments and variations on it such as the Kennedy-Thorndike experiment and the experiment

proposed by Liénard. As in the case of electrostatics, we need to distinguish between the case

without and the case with a physical contraction of the systems under consideration.

I consider the case without a physical contraction first. Consider Fig. 3.6 (cf. Fig. 1.8 for

the Trouton-Noble experiment in section 1.2). On the right, it shows a moving uncontracted

Michelson interferometer. The arm with mirror 2 makes an angle θ with the x-axis of the co-

moving frame Galilean frame S, also shown in the figure.

The task before is to compute whether it will be light or dark at the point P at the center of

the screen as a result of the interference of light coming from mirrors 1 and 2. Assuming that

the mirrors and the beam splitter reflect and refract the light in such a way that it travels along

the arms of the interferometer (a dubious assumption as we will see, but one that is routinely

made in discussions of the Michelson-Morley experiment), the result will depend solely on the

value of the phase difference

α = 
τ1 – τ2

T
(3.65)

between the light waves coming from the two mirrors, where τ1 (τ2) is the time it takes light to

travel from the beam splitter to mirror 1 (mirror 2) and back, and where T is the period of light

emitted by the source (for the sake of simplicity I will assume that this light is monochromatic).

                                                
61 Recall that in 1895 we had x ′ ≡  x  (see Eq. 3.4), whereas in 1899–1904 we have x′ ≡ diag(lγ, l, l) x (see Eq.
3.54). So, if it is light (dark) in a field configuration in S0 at x 0  = a, it will be light (dark) in the corresponding
state in S at x′ = a, i.e., at x = diag(1/lγ, 1/l, 1/l) a.
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If α has a half integer value, it will be totally dark at P; if α has any other value, there will be

light at P, the light being brightest if α has an integer value.

Light
source

Mirror 2

beam
splitter

Mirror 1

Screen

y

xPP′

Figure 3.6: Moving interferometer and its corresponding
state (without the Lorentz-FitzGerald contraction).

The field configuration in the interferometer moving along with the frame S will correspond

to a stretched out field configuration in S0. The stretched out version of the moving

interferometer is shown on the left in Fig. 3.6. If it is light at P, it will be light at P′. If it is dark

at P, it will be dark at P′. Hence, the phase difference α must be equal to the corresponding

phase difference

α′ = 
τ′1 – τ′2

T ′
(3.66)

in the stretched out interferometer at rest in the ether, where τ′1, τ′2, and T ′ are the analogues of

τ1, τ2, and T in the case of the moving interferometer.62 The period T ′ will not be equal to the

period T of the light used in the moving frame. It will be equal to the period of that light in local

time, not in real time. Since, at  a fixed point in S, the local time differs by a factor l/γ from the

real Newtonian time, it follows that

T ′ = (l/γ) T = l T 1 – β
2

. (3.67)

                                                
62 This is a slight simplification of matters. It may seem that we can only conclude that α = α′, if α  is a half
integer, so that it is totally dark at P and P′. I have never bothered to find a rigorous derivation for this claim,
but it is easy to see that the equality must hold in general. Imagine that we slowly move one of the mirrors in
the moving interferometer parallel to itself, thereby changing the length of one of the arms. As a consequence,
α  and α′ will change continuously. Every time α  takes on a half integer value, α′ must also take on a half
integer value. That means that α  and α′ can only differ by some integer value. Consideration of the full
interference pattern on the screen (especially of the number of rings) shows that this integer value can only be
zero.
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Since the stretched out interferometer is at rest in the ether, τ′1 – τ′2 is simply given by

τ′1 – τ′2 = 
2(L′1 – L′2)

c , (3.68)

where L′1 and L′2 are the lengths of the arms of the stretched out interferometer. Using Eq.

1.11 from section 1.2, multiplied by an overall factor l, for the relation between (L′1, L′2) and

(L1, L2), we find (cf. Eq. 3.25):

L′1 – L′2  =  lL1 
1 – β

2
sin2(θ + π/2)

1 – β
2

  – lL2 
1 – β

2
sin2θ

1 – β
2

. (3.69)

With the help of Eqs. 3.66–3.69, the phase difference α = α′ can be written as

α  =  2L1
cT

 
1 – β

2
cos2θ

1 – β
2

  –  2L2
cT

 
1 – β

2
sin2θ

1 – β
2

(3.70)

This is precisely the expression for α that follows from Eq. 3.24, the result of my examination

of the Michelson-Morley experiment in section 3.2. The conclusion is that Lorentz’s exact

theorem of corresponding states without assuming a physical contraction predicts a positive

result for the Michelson-Morley experiment.

As I already indicated, this new derivation of the prediction for the experiment does make it

clear that the standard treatment of the experiment involves some dubious tacit assumptions.

Looking at the stretched out interferometer in Fig. 3.6, one clearly sees that the stretched out

mirrors, even though they are at rest in the ether, do not reflect light according to the standard

law of reflection from geometrical optics if the light waves are to travel along the arms of the

interferometer as was assumed in the derivations of both Eq. 3.70 above and Eq. 3.24 in section

3.2.63 Presumably, this will not affect the result to order β2, but I, for one, have not been able to

prove this.64

                                                
63 Hicks (1902) would actually criticize the standard analysis of the Michelson-Morley experiment on the
grounds that it does not give a satisfactory treatment of the reflection of light by moving mirrors (see Swenson
1972, p. 142).   
64 Several years ago, I tried to derive, together with Xaveer Leijtens, an expression, valid to order β2, for the
phase difference α in the case of an uncontracted interferometer, using Lorentz’s exact theorem of corresponding
states without making the assumption that the light waves travel along the arms of the interferometer. First, we
constructed the images of a pointlike light source in the stretched out interferometer under the various reflections
occurring in the interferometer. In this way, we reduced the problem of the interference of light coming from the
two mirrors to the problem of the interference of the light coming from two virtual pointlike light sources.
Finally, we calculated the phase difference at the center of the interference pattern for this situation. The result of
our long, tedious, and error-prone calculation deviated significantly from the second order approximation of Eq.
3.70. Despite this result, I tend to believe that Eq. 3.70 is correct to order β2, my main reason being that a
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For my purposes here, the exact expression for the phase difference expected in the

Michelson-Morley experiment if there were no physical contraction is not terribly important. In

fact, a purely qualitative argument would do. Without the contraction hypothesis, the

corresponding state of the moving interferometer will change its shape as the moving

interferometer is rotated. This means that whether it is dark or light at P′ (and thereby at P) will

depend on the orientation of the moving interferometer. Without the contraction hypothesis,

Lorentz’s theory therefore predicts a positive result in the Michelson-Morley experiment (cf.

my reconstruction in section 1.3 of the argument Larmor (1902) offered for the Trouton-Noble

experiment).

I now turn to the case with a physical contraction. This case is illustrated in Fig. 3.7, which

is fully analogous to Fig. 3.6, the only difference being that the moving interferometer has now

undergone the Lorentz-FitzGerald contraction (cf. Fig. 1.7 for the Trouton-Noble experiment in

section 1.2).

The corresponding state of the moving contracted interferometer is simply the uncontracted

interferometer at rest in the ether. So, the shape of the corresponding state will not depend on

the orientation of the moving interferometer with respect to its velocity. As a consequence, we

now expect negative results, both in the Michelson-Morley experiment and in the variation on it

suggested by Liénard.

P′ P
y

x

Mirror 2

Mirror 1  

Screen

beam
splitter

Light
source

Figure 3.7: Moving interferometer and its corresponding
state (with the Lorentz-FitzGerald contraction).

                                                                                                                                                      
similar simplification in the case of the Trouton-Noble experiment (i.e., treating the stretched out condenser as
if it has the shape of a rectangle rather than a parallelogram) does not affect the expression for the turning couple
of the Coulomb forces exerted on the condenser the plates to order β2 (see section 1.2). However, even for θ = 0
and θ = π/2, when the stretched out interferometer has the shape of a rectangle, the problem of reflection still
comes into play for reflections at the beam splitter, whereas the corresponding problem in the case of the
stretched out condenser disappears for those two special values of θ.   
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In this case, the phase difference α, determining whether it is light or dark at the center P of

the screen in the moving interferometer, is exactly equal to the phase difference

α′ = 
2 L′1 – L′2

cT′
(3.71)

we would have if the interferometer were at rest in the ether. Hence, we also expect a negative

result in the Kennedy-Thorndike experiment.

Notice that the explanation of the negative result of this experiment involves a surprising

new element in Lorentz’s exact theory. The frequency of the light emitted by the light source in

the interferometer depends on the source’s velocity with respect to the ether. The frequency ν it

emits while moving at a velocity v differs by a factor l/γ from the frequency ν′ it would emit if it

were at rest in the ether.65 This immediately shows that the generalized contraction hypothesis

(which in this case tells us that the interferometer on the left of Fig. 3.7, both its material parts

and its electromagnetic field configuration, turns into the interferometer on the right when it is

set in motion through the ether with a velocity v) entails more than just a change of dimensions,

which was all the original contraction hypothesis told us. It entails many other effects of motion

through the ether on physical phenomena, not only the effect just mentioned concerning the

frequency of the light emitted by a moving source, but also, for instance, an effect on the

reflection of light by moving mirrors. This last effect can be seen upon inspection of Fig. 3.7.

The reflection (and refraction, I may add) is such that in the corresponding state light is

reflected (and refracted) according to the standard laws of geometrical optics. That means that

these laws do not hold in the Galilean frame S moving with the interferometer (cf. my brief

discussion of the Fresnel dragging coefficient in section 3.1). I will show below that the

generalized contraction hypothesis likewise affects the phenomena of Doppler effect and

aberration.

Because of its definite predictions about the effect of motion through the ether on all sorts

of phenomena rather than just on the dimensions of moving bodies, the generalized contraction

hypothesis does not face the problem of limited testability the original contraction hypothesis

was facing (see section 3.2). There is no shortage of empirical tests to which the new

hypothesis can be subjected. The new contraction hypothesis therefore passes with flying

colors the philosophical test of falsifiability, a test on which the old contraction hypothesis

earned no more than a marginal pass (thanks mainly to the Kennedy-Thorndike experiment). In

whatever sense the new hypothesis may still be ad hoc, there can be no doubt whatsoever that it

is not ad hoc in the usual falsificationist sense of that term. And this is true not just of the

                                                
65 From T ′ = (l/γ) T (see Eq. 3.67) it follows that ν = (l/γ) ν′.  
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generalized contraction hypothesis as such, but also for the more specific assumptions entailed

by the hypothesis considered separately. This is a direct consequence of the fact that these

assumptions are not introduced to account for isolated experiments but for the general

experimental indication that ether drift can not be detected, at least not by optical means.

Unless Einstein was deeply mistaken about the logical status of the contraction hypothesis

in Lorentz’s mature theory—and what complicates matters is that, at least to some extent, he

appears to have been—his denouncement of the contraction hypothesis as ad hoc must be

related to some other feature of Lorentz’s theory. The feature that immediately comes to mind is

the fact that the generalized contraction hypothesis and the specific assumptions it entails are all

aimed at explaining why a central element in Lorentz’s ontology, the stationary ether, is

completely invisible to us. As I will argue in chapter four, this is a very unsatisfactory situation

indeed. However, what is unsatisfactory about it can not be cast in falsificationist terms. In

terms of testability, it does not make any difference whether a theory predicts a positive or a

negative result. What counts is that it predicts a definite result. This, I take it, is Lorentz’s point,

when he wrote to Einstein in 1915, in a passage I already quoted at the end of section 3.2:

“whether it is the explanation of a negative or a positive result that is at issue, hardly makes a

difference, it seems to me.”

3.3.4 The status of the generalized contraction hypothesis for Lorentz. After this lengthy

discussion of the logical structure of Lorentz’s theory, I want to confront my analysis with

some passages from the actual text of Lorentz’s 1899 paper. Lorentz’s own statement of what I

called the generalized contraction hypothesis is as follows:

We shall not only suppose that the system S0 may be changed in this way into an imaginary

system S,[66] but that, as soon as the translation is given to it, the transformation really takes
place, of itself, i.e. by the action of the forces acting between the particles of the system, and
the aether. Thus, after all, S will be the same material system as S [this clearly should be S0].

The transformation of which I have spoken, is precisely such a one as is required in my
explication of Michelson’s experiment. (Lorentz 1899b, p. 270; italics in the original)

In his brief discussion of this paper, Pais quotes this last sentence and comments: “Thus the

reduction of the FitzGerald-Lorentz contraction to a consequence of Lorentz transformations is

a product of the nineteenth century” (Pais 1982, pp. 125–126). What can be derived from the

invariance of the source free Maxwell equations is, at best, the contraction of electromagnetic

field configurations, such as the interference pattern in a moving Michelson interferometer. The

                                                
66 By the ‘system S0’ and the ‘imaginary system S’ Lorentz means the corresponding configurations of
electromagnetic field plus particles and charges generating these fields in, what I called, the frames S0 and S. The
use of the word ‘imaginary’ is confusing in this context. I assume it simply refers to the fact that the state in S
is most easily described in terms of the fictitious—‘imaginary’—primed quantities.
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contraction of the material part of the interferometer still has to be added as an extra assumption,

unless we already know that all physical laws and not just Maxwell’s equations are Lorentz

invariant. It is a typical example of doing Whig history to attribute this insight to Lorentz in

1899.

Of course, one has to keep in mind that Pais was writing an Einstein biography, not a

monograph on the development of Lorentz’s theorem of corresponding states. However, I have

not been able to find a clear and correct statement of the relation between the exact theorem of

corresponding states and the generalized contraction hypothesis in the extensive secondary

literature focusing on this narrow subject either. The statements I was able to find range from

cryptic (Hirosige 196667) through vague and misleading (McCormmach 1970a, 1970b68) to

plainly wrong (Schaffner 1969, 1970;69 Miller 198070,71). This does not apply to Pais (whose

                                                
67 Hirosige writes that the new auxiliary quantities in the last section of Lorentz’s 1899 paper “were introduced
in order to show that Lorentz contraction was not a conventional fiction but a necessary requisite for the
correspondence of states” (Hirosige 1966, p. 26). He continues to make some more useful remarks: “the
dimensional relation between S0 and S just agrees with Lorentz contraction” (ibid.) and “Lorentz explains the
absence of influence of the motion of the earth not by showing the covariancy of Maxwell’s equations to higher
orders. He [...] satisfied himself with confirming the necessity of the contraction” (ibid., p. 27). To the extent
that I can make sense of these remarks, I think I agree with Hirosige.
68 McCormmach, in an otherwise very lucid paper, does not do much better than Hirosige. He writes: “Lorentz
made the contraction hypothesis an integral part of his theory in 1899 by generalizing his corresponding-states
theorem [...]  The contraction relations were no longer a special assumption, but a formal “transformation”
associated with an extended corresponding-states theorem” (McCormmach 1970b, p. 473). These statements may
be correct but they are too vague to be of any help to a reader looking for guidance in understanding Lorentz’s
reasoning. A few paragraphs later, however, McCormmach starts a sentence with: “The inclusion of contraction
relations in the corresponding states theorem ...” (ibid.). This strongly suggests Pais’s incorrect reading of this
passage, and is therefore highly misleading. In another paper published in 1970, McCormmach is more explicit
about his views on this matter. The following statement confirms what one would suspect on the basis of the
quotations I just gave, namely that McCormmach misunderstands Lorentz’s theory on this point: “From 1899
to 1904, Lorentz unified and simplified his theory by interpreting his dimensional contraction formula as a
universal coordinate transformation” (McCormmach 1970a, p. 49).
69 Schaffner simply blunders at this juncture. After quoting the passage from Lorentz 1899b, p. 269, with the
definitions of the new auxiliary space and time coordinates (see Eq. 3.54), he writes: “These modified
transformations allowed Lorentz to conclude that” (Schaffner 1969, p. 506). He then quotes the paragraph
starting with the sentence “The transformation of which I have spoken, is precisely such a one as is required in
my explication of Michelson’s experiment” (the last sentence of the quotation I gave and the sentence that was
also quoted by Pais). Schaffner leaves out the paragraph immediately preceding this sentence, thus suggesting
that “the transformation of which I have spoken” refers to the definitions of the new auxiliary space and time
coordinates rather than to the physical transformation of corresponding states into one another which
unambiguously is what “the transformation of which I have spoken” actually refers to! This was not simply a
slip on Schaffner’s part. A year later he writes: “Equation (6) [i.e., in my notation, x ′ = γ l x] represents the
transformation of length that captures the Lorentz-FitzGerald contraction” (Schaffner 1970 p. 335). In his
critique of Zahar, he makes the following even more revealing remark. Talking about the experiments of
Rayleigh and Brace and of Trouton and Noble, Schaffner writes: “Without further modifications, the Lorentz
electron theory would have required positive results for these experiments; with further modifications in the
transformation equations the theorem of corresponding states could be saved” (Schaffner 1974, p. 48). Later on
in that same paper, he speculates on why Einstein “did not move in the direction of developing a theory which
would have employed both the contraction hypothesis and the second order ‘local time’ transformation” (ibid., p.
65). Schaffner clearly conflates the mathematical theorem of corresponding states here with the physical
assumption that corresponding states actually transform into one another.
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native language is Dutch), but in fairness to the other authors it has to be said that they probably

did/do not read Dutch so they did not have the benefit of comparing Lorentz’s English text with

the Dutch original. This may be a good point to remind readers in this same predicament that

the French translation of this paper (Lorentz 1902) actually follows the Dutch rather than the

English version.

The statement in the original Dutch version of the paper is much shorter and occurs in the

middle of a dense paragraph, whereas the expanded statement in the English version is made

into a separate paragraph. Personally, however, I feel that the Dutch original is much clearer:

We shall assume that if an initially resting system S0 is brought into translation, it will, of
itself, go over into the system S. (Lorentz 1899a, p. 52172; italics in the original)

I want to draw attention to a subtle shift that can be discerned in comparing the original

Dutch statement of the hypothesis and the reworked English statement. The specific hypotheses

about the effect of motion with respect to the ether on particular physical phenomena that are

entailed by the generalized contraction hypothesis can, of course, be looked upon in (at least)

two different ways. They can be looked upon as consequences of the hypothesis which is itself

taken to be one of the basic postulates of the theory (along with Maxwell’s equations, the

notion of  a stationary ether, the notion of electrons etc.). They can also be looked upon as

necessary conditions for the hypothesis which is itself understood as a claim that needs to be

established on the basis of other premises. My presentation was clearly biased toward the

former alternative. This fits with the original Dutch statement of the generalized contraction

hypothesis, especially with the italicized ‘of itself.’ In the English version, however, Lorentz

qualifies ‘of itself,’ making it clear that the generalized contraction effect, the physical

transformation of corresponding states into one another, is not a primitive notion for him, but is

                                                                                                                                                      
70 Miller makes the same mistake as Schaffner: “More than ten interlocking postulates enabled Lorentz to
extend the 1895 theorem of corresponding states to apply to any order of accuracy” (Miller 1980, p. 73). Once
again, the “interlocking hypotheses” are needed, not for the validity of the exact theorem of corresponding states,
which is a purely mathematical theorem, but in order to guarantee that corresponding states actually transform
into one another. This misinterpretation by Schaffner and Miller is a natural consequence of their
misinterpretation of the auxiliary quantities occurring the theorem of corresponding states as postulates rather
than stipulations (see section 3.1).
71 A similar confusion can be found in a paper on Poincaré by Scribner. Talking about Lorentz’s 1904 theory,
he writes: “while [Lorentz] believed that the contraction of moving bodies in the direction of [...] motion (as
implied by the [Lorentz] transformation) was a real physical effect, he viewed the local time coordinates as
essentially a mathematical artifice” (Scribner 1964, p. 677; my italics). Earlier in his paper, Scribner (ibid., p.
674) clearly distinguishes between Lorentz and Poincaré’s interpretation of local time in the context of the
Versuch theory (see Davis 1994, p. 3). Yet, he still conflates mathematics and physics in Lorentz’s 1904 theory
72 The Dutch reads: “Wij zullen aannemen dat, indien een eerst rustend stelsel S0 in translatie gebracht wordt,
het van zelf in het stelsel S overgaat.” The Dutch ‘stelsel’ is ambiguous between ‘physical system’ and ‘frame
of reference.’ In this context, however, only the former reading makes sense. Cf. the French translation: “Nous
admettrons que, quand on imprime un mouvement de translation à un système S0 primitivement en repos, ce
système passe de lui même à l’état S.” (Lorentz 1902, p. 153; emphasis in original).
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to be derived from the action of forces. This is indicative of Lorentz’s general attitude toward

the generalized contraction hypothesis. His strategy is to look for a subset of the consequences

of the hypothesis that are not just individually necessary but jointly sufficient conditions for the

generalized contraction effect. The generalized contraction hypothesis can then be derived using

these conditions as premises in the derivation, premises for which Lorentz tried to find

independent support.73 When he wrote the sketchy last section of his 1899 paper, Lorentz may

have vacillated between giving the overarching generalized contraction hypothesis or a necessary

and sufficient subset of its consequences logical priority. In the end, however, he settled on the

latter alternative.

This is especially clear in his much more systematic presentation of the new theory in his

famous 1904 paper, as the following quotation from that paper demonstrates:

[...] I shall suppose that the forces between uncharged particles, as well as those between such
particles and electrons, are influenced by a translation [through the ether] in quite the same
way as the electric forces in an electrostatic system. In other terms, whatever be the nature of
the particles composing a ponderable body, so long as they do not move relatively to each
other, we shall have between the force acting in a system (Σ′) without, and the same system

(Σ) with a translation, the relation [F(Σ) = diag(l2, l2/γ , l2/γ) F(Σ′); cf. Eq. 3.63], if as
regards the relative position of the particles Σ′ is got from Σ by the deformation [diag(γl, l,
l)], or Σ from Σ′ by the deformation [diag(1/γl, 1/l, 1/l)].

We see by this that, as soon as the resulting force is 0 for a particle in Σ′, the same must
be true for the corresponding particle in Σ. Consequently, if, neglecting the effects of
molecular motion, we suppose each particle of a solid body  to be in equilibrium under the
action of the attractions and repulsions exerted by its neighbors, and if we take for granted that
there is but one configuration of equilibrium, [74] we may draw the conclusion that the system
Σ′, if the velocity w is imparted to it, will of itself change into the system Σ. In other terms,
the translation will produce the deformation [diag(1/γl, 1/l, 1/l)].

The case of molecular motion will be considered in § 12. (Lorentz 1904b, p. 183; italics
in original)

The reader will recognize the statement of the generalized contraction hypothesis toward the end

of this statement: “the system Σ′, if the velocity w is imparted to it, will of itself change into the

system Σ. In other terms,  the translation will produce the deformation [diag(1/γl, 1/l, 1/l)].” In

section 12, Lorentz introduces the assumption that the mass of all particles depends on their

velocity with respect to the ether in a certain way. The conjunction of the assumptions about the

effect of ether drift on masses and forces suffices to derive the generalized contraction

hypothesis in the context of optical experiments that eventually boil down to the observation of

a pattern of light and darkness.

                                                
73 The most important example in this category is the hypothesis of the velocity dependence of the mass of
electrons that is entailed by the generalized contraction hypothesis. In 1899, Lorentz notes that this is a
necessary condition for the generalized contraction effect (I will go over this part of Lorentz’s argument at the
end of this section). In 1904, he provides a detailed model of the electron whose mass exhibits the required
velocity dependence (see section 3.4).  
74 As an aside, I want to draw attention to the fact that Lorentz now explicitly mentions the assumption that the
equilibrium state is unique, an assumption he made tacitly in 1892 and 1895 (see section 3.2).
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The fact that Lorentz chose to derive the generalized contraction hypothesis from other more

specific hypotheses about the effect of ether drift on physical phenomena is largely responsible,

I think, for the impression of a proliferation of hypotheses that modern readers have come away

with after reading Lorentz 1904b (see, e.g., Holton 1969, pp. 323–324; Schaffner 1976, pp.

473–474). In fact, Lorentz and his contemporaries remained well aware of the fact that all these

hypotheses served the same purpose, i.e., they explain why corresponding states physically

transform into one another.75 A clear understanding of this point is crucial for a proper

assessment of Lorentz’s later attitude toward special relativity (see chapter four).

The conclusion of the final section of Lorentz’s 1899 paper clearly illustrates Lorentz’s

understanding of the status of the generalized contraction hypothesis. Implicitly referring to

Liénard’s proposal that motivated the discussion in the final section of the paper, Lorentz

writes:

If the hypothesis[76] might be taken for granted, Michelson’s experiment should always give a
negative result, whatever transparent media were placed on the path of the rays of light, and
even if one of these went through air, and the other, say through glass. This is seen by
remarking that the correspondence between the two motions [read: corresponding states] we
have examined is such that, if in S0 we had a certain distribution of light and dark (interference
bands) we should have in S  a similar distribution, which might be got from those in S0 by
the dilatations (6) [i.e, in my notation (see Eq. 3.54), x′ = diag(lγ, l, l) x], provided however
that in S  the time of vibration be kε times as great as in S0. The necessity of this last

difference follows from (9) [i.e, in my notation (see Eq. 3.54), t′ = l (t/γ – γ (v/c2)x)77]. Now
the number kε would be the same in all positions we can give to the apparatus; therefore, if
we continue to use the same sort of light, while rotating the instruments, the interference
bands will never leave the parts of the ponderable system, e.g. the lines of a micrometer, with
which they coincided at first. (Lorentz 1899b, pp. 272–273; italics in the original)

At the risk of oversimplifying matters, I want to briefly summarize the progress that is made in

the transition from the 1895 theory in the Versuch to the 1899 theory in the final section of

“Simplified theory of electrical and optical phenomena in moving bodies.” In 1895 the

theorem of corresponding states and the contraction hypothesis were utterly disjoint parts of the

                                                
75 Although I disagree with Miller’s interpretation of Lorentz’s theory (see above), I think his phrase
“interlocking hypotheses”  (Miller 1980, p. 73) nicely captures the situation.
76 This refers to the specific hypothesis about the velocity dependence of the mass of the electron and not to the
overarching generalized contraction hypothesis. The original Dutch version of this paragraph starts with “Were
all the assumptions mentioned correct ...” (Lorentz 1899a, p. 522; my emphasis).
77 Actually, we have to be a little more careful. The effect of motion with respect to the ether on the frequency
of the light emitted by the source in the interferometer follows from t′ = l (t/γ – γ (v/c2)x) and the generalized
contraction hypothesis. Notice that, when this slight inaccuracy is removed, the effect is introduced as a
consequence of the generalized contraction hypothesis. This shows that Lorentz did not intend to include this
particular consequence of the hypothesis in the subset of necessary and sufficient conditions for the hypothesis
from which he wanted to derive that corresponding states physically transform into one another.  

As an aside, I want to mention that this is the only passage in Lorentz’s pre-1905 publications that I know
of, where he mentions an instance of what we now recognize as the relativistic time dilation effect (cf. Lorentz
1916, pp. 208–209).
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theory. By 1899, however, the contraction has come to be firmly incorporated into the exact

version of the theory, the very idea of assuming a physical contraction arising in a natural way

from the mathematical theorem of corresponding states. As a consequence the 1899 theory

provides a general explanation for a broad class of both first and second order ether drift

experiments whereas in the 1895-theory the second order experiments had to be accounted for

one by one.

3.3.5 How the relativistic formulae for aberration and Doppler effect drop out of

Lorentz’s exact theorem of corresponding states and the generalized contraction

hypothesis. It is sometimes said that Lorentz’s theory is not empirically equivalent to special

relativity because it would fail to yield the relativistic expressions for stellar aberration and the

transverse Doppler effect. Arthur Miller has repeatedly made that claim.78  In fact, the relativistic

expressions for Doppler effect and aberration drop out of Lorentz’s exact theory of 1899 and

1904 in precisely the same way as the classical expressions drop out of Lorentz’s first order

theory of 1895 (see section 3.1). The only difference is that Lorentz, as far as I know, never

went through the exact analogues of these calculations in the Versuch. It is true, however, that it

is only after Lorentz’s reinterpretation, after 1905 and under the influence of Einstein, of the

primed quantities of his theorem of corresponding states that the predictions of his theory for

aberration and Doppler effect become fully equivalent to the relativistic predictions.

Fig. 3.8 combines Fig. 3.2 in section 3.1 and half of Fig. 3.7. On the left, we have a plane

light wave of frequency ν traveling through the ether in the direction of the unit vector n, the

normal on its wave fronts (cf. Fig. 3.2). On the right, we have a contracted interferometer

moving through the ether at a velocity v (cf. Fig. 3.7).

We can look upon the drawing on the left as a blown up snapshot of a small region in the

arm of the moving interferometer with mirror 1, a snapshot taken as a light wave is traveling

                                                
78 In his critique of Zahar, for instance, Miller writes: “Zahar [1973, p. 235] also makes the claim (repeats an
old mistake) that Einstein’s and Lorentz’s theories are observationally equivalent. Special relativity is not
observationally equivalent to Lorentz’s theory of 1904. The reason is that a theory of light containing Lorentz’s
ether cannot account exactly for the optical Doppler effect, nor for observations of stellar aberration” (Miller
1974, p. 42; italics in original). In a footnote, Miller refers to “a forthcoming work by the author” for a full
discussion of this point. Such a discussion can be found in Miller 1981, pp. 301–307. And earlier in his book,
Miller writes: “Lorentz’s theory did not predict a transverse Doppler effect, although Einstein made no mention
of this point” (ibid., p. 224). My calculations will show that Miller’s claim is wrong (thus giving a simple
explanation of Einstein’s taciturnity on this point!), as Miller generously conceded when, in 1988, I showed
him a manuscript, in Dutch, with a clumsy version of my calculations. Miller is right to point out that special
relativity is not observationally equivalent to Lorentz’s 1904 theory. However, Zahar was talking about the
post-1905 version of Lorentz’s theory, which actually is empirically equivalent to special relativity, although,
as will be clear from the discussion in chapters one and two, the equivalence required Lorentz to take over much
more from special relativity than (as Zahar wants to have it) the idea that the primed quantities of the theorem of
corresponding states are the quantities a moving observer actually measures.



6 0

from mirror 1 back to the beam splitter. The vector n – v/c points in the direction of this arm

(cf. Fig. 3.3 in section 3.2).

Screen

Light
source

beam
splitter

 
n – v/c

 n  – v/c 
  

n – v/c  
    

n

β

Mirror 1

Mirror 2

Figure 3.8: Aberration and Doppler effect in Lorentz’s exact theory of 1899 and 1904.

Since Lorentz’s theory—the exact theorem of corresponding states plus the generalized

contraction hypothesis—predicts that for a co-moving observer the interference pattern in the

moving interferometer will be no different from the interference pattern the observer would

measure if the experiment were to be repeated with both the observer and the interferometer at

rest in the ether, the light wave must have the direction

nobs = 
diag(γ, 1, 1)  n  – v/c

 diag(γ, 1, 1)  n  – v/c  
(3.72)

for the co-moving observer. After all, a light wave in the direction n – v/c will behave as a light

wave in the direction diag(γ, 1, 1) (n – v/c) in all experiments with this light wave carried out  by

the co-moving observer (cf. the contracted moving interferometer on the right of Fig. 3.7 and

the uncontracted interferometer at rest in the ether on the left). For the denominator in Eq. 3.72,

we can write:79

                                                
79 Writing n and v out in components, we find

 diag(γ, 1, 1) n  – v/c  2 = γ2 (nx – β)2 + ny
2 + nz

2.

Inserting ny
2 + nz

2 = 1 – nx
2 =  γ2 (1 – β2) (1 – nx

2), we can rewrite this as
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 diag(γ, 1, 1)  n  – v/c   = γ (1 – βnx) (3.73)

Inserting Eq. 3.73 into Eq. 3.72, we find

nobs = 1
γ (1 – βnx)

 

γ (nx – β)

ny

nz

(3.74)

This relation between nobs and n will hold no matter what the state of motion of the source is,

even though it was derived for light coming from a co-moving source. In other words, Eq. 3.74

gives the general formula for aberration we would expect on the basis Lorentz’s exact theory.

Notice that this formula is just the classical aberration formula corrected for the Lorentz-

FitzGerald contraction effect.

A completely analogous argument leads to the formula for the Doppler effect we would

expect on the basis of Lorentz’s theory. Consider Fig. 3.8 again. Due to the classical Doppler

effect, the light wave with frequency ν and direction n will have frequency (1 – βnx) ν (see Eq.

3.16) for an observer moving through the ether at a velocity v. On top of this effect, we need to

take into account that for a moving observer the frequency will differ by a factor γ/l from the

frequency for an observer at rest in the ether. After all, as we saw earlier in this section,

Lorentz’s theory predicts both that the frequency of light emitted by a moving source differs by

a factor l/γ from the frequency of the light emitted by the same source at rest in the ether, and

that the moving observer has no way of actually detecting this effect by observing patterns of

light and darkness in his laboratory. In this way, we arrive at the relation    

νobs = 
γ
l
 1 – βnx  ν. (3.75)

As with Eq. 3.74, this equation will hold no matter what the state of motion of the source is,

even though it was derived for light coming from a co-moving source.

There are two questions that need to be addressed at this point. First, does Lorentz’s exact

theory actually predict the formulae for aberration and Doppler effect in Eqs. 3.74–3.75?

                                                                                                                                                      

 diag(γ, 1, 1) n  – v/c  2 = γ2 (nx – β)2 + γ2 (1 – β2) (1 – nx
2)

= γ2 (nx
2 – 2 βnx + β2 + 1 – β2 – nx

2 + β2nx
2)

= γ2 (1 – β nx)2.

Taking the square root on both sides, we arrive at Eq. 3.73.
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Second, are these predictions the same as the predictions of the special theory of relativity? The

answers to these two questions are ‘yes’ and ‘yes, provided we set l = 1,’ respectively.

To prove these claims, I will proceed the same way I did in section 3.1 to verify that

Lorentz’s first order theory predicts the classical formulae for aberration and Doppler effect.

The (x′, t′)-dependence of the fields (fictitious and real) describing a light wave of frequency ν

in the direction n can only be through

νobs t′ – 
nobs ⋅ x ′

c  , (3.76)

otherwise we would run into conflicts with the general result concerning patterns of light and

darkness in Lorentz’s theory. On the other hand, we know that the (x0, t0)-dependence of the

fields describing a plane light wave of frequency ν in the direction n is given by

ν t0 – n ⋅ x0
c  , (3.77)

as can be seen upon inspection of Fig. 3.8. What needs to be shown is that if we substitute Eq.

3.57 for the transformation from (x0, t0) to (x′, t′) and Eqs. 3.74–3.75 for nobs and νobs into Eq.

3.76, we end up with Eq. 3.77. A tedious but essentially straightforward calculation shows that

this is indeed the case. Fortunately, there is a shortcut for this calculation, which at the same

time clarifies the relation of these calculations in Lorentz’s theory to the special relativistic

treatment of Doppler effect and aberration.

I define the following quantities

k′
µ
 ≡ νobs, νobsnobs ,       k0

µ
 ≡ ν, νn  . (3.78)

With the help of Eqs. 3.74–3.75, the relation between these quantities can be written as

νobs = 1
l
 γ ν – β (νnx) ,

νobsnobsx = 1
l
 γ νnx – βν ,

νobsnobsy = 1
l
 νny,

νobsnobsz = 1
l
 νnz.

(3.79)

In modern notation, we would write this as

k′
µ
 = 1

l
 Λ

µ
ν k0

ν, (3.80)
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just as we would write Eq. 3.57 as

x′
µ
 = l Λ

µ
ν x0

ν, (3.81)  

with x′
µ
 ≡ (ct′, x ′), x0

ν ≡ (ct0,  x0), and

Λ
µ

ν = 

γ –γβ 0 0

–γβ γ 0 0

0 0 1 0

0 0 0 1

 . (3.82)

With the help of Eq. 3.78 and x′
µ
 ≡ (ct′, x ′), Eq. 3.76 can be rewritten as

νobs t′ – 
nobs ⋅ x ′

c   = ηµν k ′
µ x ′

ν/c (3.83)

With the help of Eqs. 3.80–3.81, the right hand side of Eq. 3.83 can be rewritten as

ηµν k ′
µ
 x ′

ν
/c = ηµν 1

l
 Λ

µ
ρ k0

ρ  l Λ
ν

σ x0
σ/c  = ηρσ k0

ρ x0
σ/c, (3.84)

where in the last step I used the defining relation ηµν Λ
µ

ρ Λ
ν

σ = ηρσ of the Lorentz

transformation. The last expression in Eq. 3.84 is just an alternative way of writing the

expression in Eq. 3.54.

This proves that Lorentz’s exact theory does indeed predict the formulae for aberration and

Doppler effect in Eqs. 3.74–3.75. The fact that these equations can be rewritten in the form of

Eqs. 3.79–3.80 shows that, for l = 1, Lorentz’s predictions simply reduce to the relativistic

predictions.

This still does not constitute a full proof that Lorentz’s exact theory and special relativity are

empirically equivalent as far as aberration and Doppler effect are concerned. From a relativistic

point of view, we have only dealt so far with the case of how an observer in a frame moving with

respect to the ether measures the frequency and the direction of light that has a certain

(different) frequency and direction for an observer in the ether frame. We have not dealt with

the “reverse case” of how an observer in the ether frame measures the frequency and the

direction of light that has a certain (different) frequency and direction for an observer in the

frame moving with respect to the ether. Lorentz would only consider such reverse cases after

1905, under the influence of Einstein. As we will see in section 3.5, it is clear from Lorentz’s
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understanding of such reverse cases in general that his theory will always give the same

predictions for Doppler effect and aberration as special relativity.80

3.3.6 The generalized contraction hypothesis and the velocity dependence of the mass

of electrons. As we have seen, the generalized contraction hypothesis, the assumption that

corresponding states physically transform into one another, entails much more than a change in

the dimensions of bodies when they are set in motion with respect to the ether, the only effect

for which the original contraction hypothesis gave a definite prediction. Perhaps the most

surprising effect entailed by the hypothesis and certainly the effect that gets most attention in

the final section of Lorentz’s 1899 paper is the dependence of the mass of electrons responsible

for the emission of light on their velocity. The argument roughly runs as follows. Consider an

oscillating electron generating an electromagnetic wave in a light source in the frame S0 at rest in

the ether. The oscillation will satisfy Newton’s laws of motion. Now consider that same

electron in the corresponding state in the Galilean frame S moving through the ether at a velocity

v. In terms of the auxiliary quantities in Eq. 3.54 its motion will be exactly the same as the

motion in the system at rest. This, in turn, implies that in terms of the real quantities, it will not

satisfy Newton’s laws of motion, unless the electron’s mass depends on its velocity in a

specific way.

The actual calculations are very simple. The oscillation in the light source at rest in the ether

frame S0 will have to satisfy Newton’s second law

                                                
80 The relativistic expression for the Doppler effect was first verified in a celebrated experiment by Ives and
Stillwell (1938). In their conclusion, the experimenters write that their results “may [...] be claimed to give
more decisive evidence for the Larmor-Lorentz theory” (Ives and Stillwell 1938, p. 266; my emphasis; quoted
and discussed in Swenson 1972, p. 237).

It is interesting to notice that the 1899 version of Lorentz’s theory gives the correct predictions for the
experiments of Michelson and Morley, Kennedy and Thorndike, and Ives and Stillwell. In 1949, H. P.
Robertson, well-known for his work in general relativistic cosmology, especially for the (Friedman-Lemaître-)
Robertson-Walker metric (Eisenstaedt 1993, p. 377, note 31), published a paper entitled “Postulate versus
observation in the special theory of relativity,” in which he proposed to derive the basic kinematics of special
relativity, not from Einstein’s two postulates but from the results of these three experiments. Robertson
motivated this enterprise pointing to “a certain reluctance wholeheartedly to accept its necessity [i.e., the
necessity of the special theory of relativity], a reluctance shared at times even by scientists whose own work
paved the way to, or confirmed the predictions of, the theory” (Robertson 1949, p. 378). Robertson does not
identify such scientists, but it seems safe to conclude that his list would include Lorentz, Michelson, and Ives.
Kennedy and Thorndike are on Robertson’s side as is clear from the inflated title of the paper in which they
report the null result of their experiment: “Experimental establishment of the relativity of time” (Kennedy and
Thorndike 1932). In his conclusion, Robertson writes: “The three second-order optical experiments of Michelson
and Morley, of Kennedy and Thorndike, and of Ives and Stillwell, furnished empirical evidence which, within the
limits of the inductive method, enabled us to conclude that [...] the kinematics im kleinen [remember that
Robertson worked in relativistic cosmology] of physical space-time is [...] governed by the Minkowski metric
[...] the background upon which the special theory of relativity and its later extension to the general theory are
based” (Robertson 1949, p. 382). Even granting Robertson this conclusion, one wonders whether Robertson
realized in 1949 that despite all this one can still retain the ether and Newtonian space-time, as is clear from the
fact that with the 1899 version of Lorentz’s theory we have no difficulty whatsoever dealing with all three
experiments that form the input of Robertson’s argument. (For more on Robertson, see Urani and Gale 1993.)
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F0 = m0 a0. (3.85)

In the corresponding state of the light source at rest in the Galilean frame S, moving through the

ether at a velocity v, the oscillation will satisfy the same equation in terms of the auxiliary

quantities, i.e.,

F′ = m0 a′, (3.86)

where F′ is the same function of (x′, t′) as F0 is of (x0, t0), and where a′ ≡ d2x′/dt′2 is the same

as a0 ≡ d2x0/dt02. Lorentz assumes that motion through the ether affects all forces on the

electron in the same way in which it affects Coulomb forces. Using the inverse of Eq. 3.63, we

can then write F′ as

F′ = diag(1/l2,  γ/l2, γ/l2) F. (3.87)

For the relation between the acceleration a′ in terms of the fictitious space and time coordinates

and the real acceleration a, Lorentz uses the relation

a′ = diag(γ3/l,  γ2/l, γ2/l) a. (3.88)

In general, this relation is far more complicated, but when the velocity of the electron oscillating

in the system at rest in the ether can be neglected (which means that dx′/dt′ can be neglected in

the system in motion), the relation actually simplifies to Eq. 3.88. A derivation of the general

relation between a′ and a was given by Planck (1906a) in the context of his derivation of the

relativistic generalization of Newton’s second law, a derivation which is, in fact, mathematically

equivalent to Lorentz’s 1899 derivation of the velocity dependence of mass required by the

generalized contraction hypothesis, except for the fact that Planck only needs to consider the

case where l = 1.81

My hunch is that Lorentz actually arrived at Eq. 3.88 through the following crude argument.

If an electron oscillates around a fixed point of S with a low velocity and a small amplitude, the

x-dependent term in the expression of local time can be ignored. In that case, we only need to

take into account that x′ differs from x by a factor diag(γl, l, l) and that t′ differs from t by a

factor l/γ. This gives a quick and dirty derivation of Eq. 3.88:   

a′ = 
d2x ′

dt′
2

 = diag(γl,  l, l) (γ/l)2 d
2x

dt2
 = diag(γ3/l,  γ2/l, γ2/l) a. (3.89)

                                                
81 For an elegant and elementary exposition of Planck’s derivation, see Zahar 1989, section 7.1, pp. 227–237.
The equations for the relation between a′ and a can be found on p. 232 (Eqs. (2)–(4)).  
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Inserting Eqs. 3.87–3.88 into Eq. 3.86, we find

diag(1/l2,  γ/l2, γ/l2) F = m0 diag(γ3/l,  γ2/l, γ2/l) a. (3.90)

This can be rewritten as

F = m0 diag(γ3l,  γl, γl) a. (3.91)

From Eq. 3.91, we conclude that the oscillation of an electron in the moving source can only

satisfy Newton’s second law if the mass m of an electron with velocity v with respect to the

ether (remember that the velocity of the oscillation itself was assumed to be negligible) differs

from the mass m0 of an electron at rest in the ether, in precisely the following way:

m = diag(γ3l,  γl, γl) m0. (3.92)

Notice that a distinction has to be made between accelerations in the direction of motion and

accelerations perpendicular to the direction of motion. At the beginning of the century when the

velocity dependence of high speed electrons in β-radiation became a lively area of experimental

and theoretical research (see section 3.4), the corresponding masses would come to be known

as the longitudinal mass (mL) and the transverse mass (mT), respectively. From Eq. 3.92, we

read off that

mL = γ3 lm0,         mT = γ lm0 (3.93)

As Planck showed in the paper mentioned above (Planck 1906a), these relations also obtain in

special relativity.82 However, Planck’s interpretation of these relations was very different from

Lorentz’s. For Planck, as for Einstein, the velocity dependence of mass was part of a new

relativistic mechanics replacing classical Newtonian mechanics. Lorentz wanted to retain

Newtonian mechanics, even after the generalized contraction hypothesis with which he wanted

to account for the negative results of ether drift experiments had forced him by 1904 to assume

that in nature there are no Galilean invariant Newtonian masses or forces. Consequently, he felt

he had to provide an explanation for the fact that the mass of an electron is not simply a

Galilean invariant Newtonian mass. For a proper understanding of Lorentz’s later attitude

toward special relativity, it is important to keep this in mind.

                                                
82 Einstein (1905a, p. 919) obtained mT = γ2 m0 instead of mT = γ m0, the result obtained by Planck and
Lorentz (Lorentz had set l equal to 1 in 1904). Using the frames S0 and S′ used above to represent two arbitrary
Lorentz frames, we can readily see where the discrepancy is coming from. Einstein used F ′ = F  instead of F ′ =
diag(1, 1/γ, 1/γ) F, the now standard transformation law for forces used by Lorentz and Planck (cf., e.g., Zahar
1989, p. 233). Einstein was well aware of the arbitrariness of his definition of force. As a matter of fact, he
already emphasized this in his first relativity paper (Einstein 1905a, p. 919).
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To conclude this section, I want to quote the passage from Lorentz’s 1899 paper in which

he derives the velocity dependence of the mass of electrons that is required by the generalized

contraction hypothesis:

We have already seen that, in the states of equilibrium [around which the oscillations of the
electron take place], the electric forces parallel to OX, OY , OZ [i.e., the axes of the Galilean
frame S], existing in S  differ from the corresponding forces in S0[83] by the factors 1/ε2,

1/kε2, and 1/kε2.[84]

From (Ve) [the equation for the Lorentz force] it appears that these same factors come into
play when we consider the part of the electric forces that is due to the vibrations. If, now, we
suppose that the molecular forces are modified in quite the same way in consequence of the
translation, we may apply the just mentioned factors to the components of the total force
acting on an ion. Then the imagined motion in S  will be a possible one, provided that these
same factors to which we have been led in examining the forces present themselves again,
when we treat of the product of the masses and the accelerations

According to our suppositions, the accelerations in the directions of OX, OY, OZ in S are
respectively 1/k3ε, 1/k2ε and 1/k2ε times what they are in S0 [cf. Eq. 3.88]. If therefore the
required agreement is to exist with regard to the vibrations parallel to OX, the ratio of the
masses of the ions in S and S0 should be k3/ε; on the contrary we find for this ratio k/ε, if
we consider in the same way the forces and the accelerations in the directions of OY and OZ.

Since k is different from unity, these values cannot both be 1; consequently, states of
motion, related to each other in the way we have indicated, will only be possible if in the
transformation of S0 into S the masses of the ions change; even this must take place in such a
way that the same ion will have different masses for vibrations parallel and perpendicular to
the velocity of translation. (Lorentz 1899b, pp. 271–272; italics in the original)

                                                
83 Lorentz’s ‘S’ and ‘S0’ are what I called the corresponding states in the frames S and S0.
84 In my notation, this would be l2, l2/γ, and l2/γ, respectively (see Eq 3.87 or Eq. 3.63).
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3.4 Lorentz’s electron model (1904)

3.4.1 The dilemma posed by the Lorentz, Abraham, and Bucherer-Langevin electron

models: the electromagnetic view of nature or the principle of relativity. The main

justification for Lorentz’s 1899 hypothesis that the electron mass has just the velocity

dependence required by what I called the generalized contraction hypothesis, was undoubtedly

that this hypothesis would help explain the null results, both actually obtained and anticipated,

of a wide variety of optical ether drift experiments. However, Lorentz was not the first to

entertain the idea that mass might depend on velocity, which offered at least some hope for

finding independent support for the hypothesis (cf. my remarks on Lorentz’s general attitude

toward the generalized contraction hypothesis in section 3.3). In the paragraph immediately

following the quotation from Lorentz 1899b that I gave at the end of section 3.3, Lorentz

expresses this hope:

Such  a hypothesis seems very startling at first sight. Nevertheless we need not wholly reject
it. Indeed, as is well-known, the effective mass of an ion depends on what goes on in the
aether; it may therefore very well be altered by a translation and even to different degrees for
vibrations of different directions. (Lorentz 1899b, p. 272; italics in original)

Lorentz’s “as is well-known” probably refers to work by Thomson in 1881 and 1889,

Heaviside in 1889, and Searle in 1897 (Miller 1981, p. 46), who showed that the interaction of a

charged sphere with its self-field gives the sphere additional inertia over and above its

Newtonian mass.

In his proclamation of the electromagnetic world picture,85 Wien (1900) emphasized these

results. Following up on Wien’s suggestion, Abraham, who would become one of the leading

proponents of the electromagnetic view of nature, worked out an electron model in which the

total mass of the electron comes from the interaction with its self-field (Abraham 1903, 1904,

1905; see Miller 1981, pp. 55–61). In Abraham’s model, the electron is a rigid spherical charge

distribution, where by ‘rigid’ I mean that the electron retains its spherical shape when it is set in

motion with respect to the ether instead of being subject to the Lorentz-FitzGerald contraction.

The expressions Abraham found for the velocity dependence of the longitudinal and transverse

mass of the electron are similar to but not the same as the relations in Eq. 3.93 required by

Lorentz’s generalized contraction hypothesis (see, e.g., Miller 1981, p. 60, Eqs.

(1.143)–(1.144)).

Stimulated by Wien’s ideas about an electromagnetic world picture, Kaufmann, Abraham’s

experimentalist colleague in Göttingen in the years 1901–1903 (Miller 1981, p. 48, p. 66),

                                                
85 See McCormmach 1970b for an excellent discussion of the electromagnetic view of nature. For a more recent
discussion (in Dutch), see Bosman 1987.
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started experimenting with β-radiation—or ‘Becquerel rays’ as they were called at the time—to

determine the velocity dependence of the transverse mass of high speed electrons. Kaufmann

refined these experiments as he moved from Berlin to Göttingen to Bonn in the early years of

the century. As I already pointed out in the introduction, the reception of Einstein’s special

theory of relativity took place in the context of the debate over Kaufmann’s results.86

By 1905, there were three different predictions for the velocity dependence of the transverse

mass of the electron, based on three slightly different models of the electron, the Abraham

model of 1903, the Lorentz model of 1904, and the Bucherer-Langevin model of 1904–1905. In

all three models, the mass of the electron is of purely electromagnetic origin. Moreover, an

electron at rest in the ether is a spherical charge distribution in all three models. The models

differ in their predictions about the shape of an electron in motion with respect to the ether.

Unlike Abraham’s model, the Lorentz model and the Bucherer-Langevin model make the

electron subject to the Lorentz-FitzGerald contraction. In both models, a moving electron will be

contracted by a factor γl in the direction of motion and by a factor l in the directions

perpendicular to the direction of motion. The difference between the two models for such a

contractile electron, is that the factor l has the value l = 1 in the Lorentz model and the value l =

γ–1/3 in the Bucherer-Langevin model. So, the Lorentz electron only contracts in the direction of

motion, while the Bucherer-Langevin electron contracts by a factor γ2/3 in the direction of

motion and dilates by a factor γ1/3 in the directions perpendicular to the direction of motion. In

other words, the Bucherer-Langevin electron changes its shape, just as the Lorentz electron, but

not its volume.

The reason Lorentz picked l = 1 is that this is the only value for which the longitudinal and

transverse mass of a contractile electron satisfy Eq. 3.93 required by the generalized contraction

hypothesis. As was shown by Poincaré (1905, 1906; see Miller 1973, pp. 277–279), however, l

= γ–1/3, the value for l in the Bucherer-Langevin model, is the only value for which the

contractile electron is compatible with the electromagnetic view of nature. So, we have a

dilemma. There is no electron model that is both compatible with the electromagnetic view of

nature and compatible with the general experimental indication that we will never be able to

detect ether drift, and therefore with Einstein’s relativity principle. The Lorentz electron is

incompatible with the electromagnetic view of nature. The Abraham and Bucherer-Langevin

electrons are incompatible with the absence of any signs of ether drift. As I mentioned in

                                                
86 For a fascinating discussion of this debate with numerous quotations from the relevant work of the
experimentalists, theorists, and mathematicians involved (including Kaufmann, Abraham, Lorentz, Poincaré,
Einstein, Bucherer, Planck, Sommerfeld, and Minkowski), see Miller 1981, especially, pp. 47–54, 61–67,
225–235, 334–352.
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section 2.2, Lorentz had no qualms about abandoning the electromagnetic view of nature in the

face of this dilemma.87

Lorentz’s work in 1904 on a concrete model for the electron exhibiting the properties

required by the generalized contraction hypothesis is extremely important, I think, for a proper

understanding of his later attitude toward aspects of Einstein’s theory of relativity (see chapter

four). I therefore want to give a self-contained exposition of Lorentz’s model and its problems

(cf. Miller 1981, especially pp. 73–75).

3.4.2 The electromagnetic mass of spherical charge distributions subject to the

Lorentz-FitzGerald contraction. The electromagnetic mass of a charge distribution is the

inertia of that charge distribution due to the interaction with its self-field. The force an arbitrary

static charge distribution experiences from its self field when its moves through the ether at

some constant velocity v is given by

Fself = f d3x = ρ E + v  × B  d3x , (3.94)

where E and B are the fields generated by the charge distribution itself. The components of the

force density f can be written as (cf. section 1.4, Eqs. 1.44–1.54 and section 2.4, Eq. 2.117 and

Eq. 2.119)

 f i = ∂jT
ij – gi, (3.95)

where Tij is the Maxwell stress tensor and where g is the electromagnetic momentum density.

When Eq. 3.95 is inserted into Eq. 3.94, the term with ∂jT
i j vanishes on account of Gauss’s

theorem and Eq. 3.94 reduces to88

Fself = – 
∂g

∂t
 d3x = – d

dt
 g d3x = – dG

dt
. (3.96)

The total force on the electron will be the sum of the force due to the electron’s self-field and

any external forces exerted on the electron:

                                                
87 I am indebted to A. J. Kox for emphasizing (in private conversations) Lorentz’s early reservations about
program of Wien and Abraham to develop a purely electromagnetic world view. Kox’s assessment is at odds
with Miller’s. According to Miller (1973, p. 314), Lorentz only started to have doubts about the electromagnetic
world view in 1921.

88 Cf. the derivation of Tself = – v ×  G from Tself = x × f d 3x   (see section 1.4, Eq. 1.43–1.62).
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Ftot = F ext + F self = F ext – dG
dt

. (3.97)

According to Newton’s second law, the total force can be written as

Ftot = 
dp
dt

 = mNa, (3.98)

where the superscript ‘N’ on the mass m is to indicate that it is the Newtonian mass, the “true”

or “material” mass as Lorentz (1904b, p. 185) called it. This mass has to be distinguished

from the electromagnetic mass mEM, the inertia of the electron due to the interaction with its

self-field. Fself can not simply be written as mEMa. The electromagnetic inertia for accelerations

in the direction of the velocity is different from the inertia for accelerations perpendicular to the

direction of the velocity.

As we will see shortly, the electromagnetic momentum of the electron (no matter whether we

consider the model of Lorentz, Abraham, or that of Bucherer and Langevin) has the form:89

G = G(v) vv (3.99)

Differentiating this expression with respect to time, we find:

dG
dt

 = dG
dv

 dv
dt

 vv  + G d
dt

v
v  = dG

dv
 a// + Gv  a⊥. (3.100)

From this equation, we read off the following basic equations for the electron’s electromagnetic

longitudinal mass mL
EM and its electromagnetic transverse mass mT

EM, the electron’s inertia for

accelerations parallel to v and perpendicular to v, respectively:

mL
EM = dG

dv
,           mT

EM = Gv . (3.101)

With the help of Eqs. 3.98–3.101, Eq, 3.97 can be rewritten as:

Fext = mN + mL
EM  a// + mN + mT

EM  a⊥. (3.102)

There is an alternative way of deriving an expression for the electromagnetic longitudinal mass

mL
EM. If an electron travels a distance ds through the ether, the force the electron experiences

from its self-field does a certain amount of work dW, unless the electron’s motion is uniform.

Using Eq. 3.96 and Eqs. 3.100–3.101, dW can be written as

                                                
89 In general, i.e., for arbitrary charge distributions, the electromagnetic momentum (in what is, in effect, what
I called the Laue definition in chapter two) will not have this simple form. The charge distribution on the
condenser in the Trouton-Noble experiment provides a case in point (cf. section 2.3, Eq. 2.107)
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dW = F self⋅ ds = – dG
dt ⋅ ds = – mL

EM dv
dt

 ds . (3.103)

Setting ds/dt equal to v and noticing that the work dW will be minus the change in

electromagnetic energy UEM, we can write

mL
EM =  1v  dUEM

dv
. (3.104)

In order to calculate the electromagnetic mass for the models of Abraham, Lorentz, and

Bucherer-Langevin, we need to calculate the momentum and/or the energy of the

electromagnetic fields generated by the charge distributions of the electrons in these different

models. The energy and momentum of these fields are calculated in the same way as the energy

and momentum of the fields of the moving condenser in the Trouton-Noble experiment, i.e.,

with the help of Lorentz’s theorem of corresponding states (cf. section 1.4, Eqs. 1.63–1.73).

The electromagnetic momentum G is defined as (see, e.g., 1.35):

G = ε0 E × B d3x . (3.105)

Since we are dealing with a static charge distribution, the volume element can be written as (cf.

section 2.1, Eqs. 2.29–2.34 and Fig. 2.3, and Eq. 3.54)

d3x = 1
γ l3

 d3x′. (3.106)

With the help of Eq. 3.55, the fields E and B can be expressed in terms of E′ and B′:

E = diag(l2,  l2γ,  l2γ) E′ – v  × B ′ ,

B  = diag(l2,  l2γ,  l2γ) B ′ + 1
c2

 v  × E′ .
(3.107)

Since B′ = 0, and since it is always possible to choose our coordinate system such that v = (v, 0,

0), these equations reduce to

E = l2 E′x ,  γ E′y,  γ E′z ,       B  = 
l2γv

c2
 0 ,  –E′z,  E′y . (3.108)

So, for the cross product of E and B, we find:
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E × B  = 

EyBz – EzBy
 

– ExBz
 

ExBy

 = 
l4γv

c2
 

γE′y
2
 + γE′z

2

 

–E′xE′y
 

–E′xE′z

. (3.109)

The space integrals over the y- and z-components of E × B  vanish because of the symmetry of

the electron charge distributions. In all three models under consideration, the corresponding

state of an electron in uniform motion through the ether is either a sphere (Lorentz, Bucherer-

Langevin) or an ellipsoid of revolution around an axis parallel to v (Abraham). Choose a

coordinate system with its x-axis in the direction of v and its origin at the center of the electron.

The field of the electron will be invariant under reflection in the xy-, the xz-, and the yz-plane.

Focus on reflection in the yz-plane. For arbitrary values of a, the value of E′xE′y at x = a in the

integrand of the expression for Gy will be minus the value at x = –a. This means that Gy = 0. A

fully analogous argument shows that Gz = 0 as well. This proves the claim I made earlier (see

Eq. 3.99) that the electromagnetic momentum G of the electron always has the direction of the

electron’s velocity v. More specifically, G is given by

G = v  
ε0lγ

c2
 E′y

2
 + E′z

2
 d3x′. (3.110)

This equation holds for all three electron models under consideration. I will only do the actual

integration for a contractile electron, such as the Lorentz electron and the Bucherer-Langevin

electron. In a moving frame a contractile electron has the shape of an ellipsoid, but its

corresponding state at rest in the ether will always be spherical. In Abraham’s model, a moving

electron retains its spherical shape, so its corresponding state at rest in the ether has the shape of

an ellipsoid. That makes it harder to perform the integration in Eq. 3.110. For a contractile

electron, we can simply write:

 E′y
2
 + E′z

2
 d3x′ = 2

3
 E′

2
 d3x′ = 4

3ε0
 U ′EM, (3.111)

where in the last step I used the equation 1
2

ε0E′
2 for the energy density of an electric field (see,

e.g., section 2.1, Eq. 2.3), and where U ′EM is the electromagnetic energy of the electron at rest

in the ether. Inserting Eq. 3.111 into Eq. 3.110, we find that the electromagnetic momentum of a

contractile electron is given by



7 4

G = γ l m′EM v, (3.112)

where m′EM—which, as the notation suggests, will be interpreted as the electromagnetic mass of

the electron at rest in the ether—is defined as90

m′EM ≡ 4
3

 
U ′EM

c2
. (3.113)

Inserting 3.112 for G into Eq. 3.101, we can derive expressions for the longitudinal and

transversal electromagnetic mass of a contractile electron. The transverse mass mT
EM is simply

given by

mT
EM = Gv  = γ l m′EM (3.114)

The longitudinal mass mL
EM takes a little more work:

mL
EM = dG

dv
 = d

dv
 γ v  l m′EM + γ v  dl

dv
 m′EM. (3.115)

Using that d
dv

 γ v  = γ3,91 this equation can be written as

mL
EM = γ3 l m′EM + γ v  dl

dv
 m′EM. (3.116)

With the help of Eq. 3.114 and Eq. 3.116, we can write for the total longitudinal and transverse

masses of a contractile electron:

mL = mN + γ3 l m′EM + γ v  dl
dv

 m′EM,

  

mT = mN + γ l m′EM.

(3.117)

Lorentz was looking for an electron model that would satisfy the following relations required by

his generalized contraction hypothesis (cf. Eq. 3.93)

                                                
90 The reader will recognize the ‘4

3-puzzle’ discussed in section 2.2.

91 This can be seen as follows: d
dv

 γ  v  = d
dβ

 γ β  = γ + β dγ
dβ

. Using γ  = γ3 (1 – β2) in the first term and

dγ
dβ

 = βγ3  in the second, one sees that this is indeed equal to γ3 .
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mL = mN + mL
EM = γ3 l mN + m′EM ,

  

mT = mN + mT
EM = γ l mN + m′EM .

(3.118)

Eq. 3.117 will only be of the form of Eq. 3.118, if the factor l is set to unity,92 and if we assume

that the mass of the electron is purely electromagnetic and does not have a Newtonian

component (see Lorentz 1904b, section 9, pp. 184–185):

l = 1,        mN = 0. (3.119)

Eq. 3.117 then reduces to

mL = γ3m′EM,       mT = γ m′EM. (3.120)

Both assumptions in Eq. 3.119 were quite welcome. The first assumption fulfilled Lorentz’s

hope to determine the arbitrary factor l in his theorem of corresponding states (Lorentz 1899a,

p. 522; 1899b, p. 270). With hindsight, this is, of course, a rather round-about way to determine

l, but it was the only way known to Lorentz in 1904. Einstein (1905) and Poincaré (1905, 1906)

would show that the condition l = 1 is necessary if we want the transformation in Eqs.

3.55–3.54 to be reciprocal, another necessary condition the ether theory would have to satisfy if

it is to predict in all generality that we can never determine our velocity with respect to the ether.

The second assumption, i.e., that the mass of the electron is purely electromagnetic, fitted nicely

with Wien and Abraham’s electromagnetic view of nature.

3.4.3 Abraham, Poincaré, Bucherer, Langevin, and the ambiguity in the expression for

the longitudinal mass of Lorentz’s electron model. Unfortunately, Lorentz’s assumption

that l = 1 turned out to be incompatible with the electromagnetic view of nature. The origin of

the problem, as Abraham pointed out (1904, 1905; see Miller 1981, pp. 75–79), is that the

electromagnetic longitudinal mass of a contractile electron with l = 1 is different depending on

whether we calculate it from the electron’s electromagnetic momentum (using Eq. 3.101) or

from its electromagnetic energy (using Eq. 3.104).

The electromagnetic energy of the electron can be found in exactly the same way as it

electromagnetic momentum (cf. Eqs. 3.105–3.112). The energy UEM of an arbitrary

electromagnetic field is given by

                                                
92 Eq. 3.117 will only have the form of Eq. 3.118 if dl/dv = 0. Since l(v) can only deviate from 1 by something
in the order of v2/c2, this means that l = 1.
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UEM = 1
2

 ε0 E2 + 1
2

 µ0
– 1 B 2 d3x . (3.121)

Using Eqs. 3.108 to express the fields E and B in terms of E′, and Eq. 3.106 for the volume

element d3x, we can rewrite this equation as

UEM = 1
2

 ε0 l4 E′x
2
 + γ2E′y

2
 + γ2E′z

2
 + 1

2
 µ0

– 1 v
2

c4
 l4 γ2E′z

2
 + γ2E′y

2
 1
 l4 γ

 d3x′. (3.122)

With µ0
– 1/c2 = ε0 and β = v/c, Eq. 3.122 simplifies to

UEM = 1
2

 ε0 l
γ
 E′x

2
 + γ2(1 + β

2
)E′y

2
 + γ2(1 + β

2
)E′z

2
 d3x′. (3.123)

This equation holds for all three electron models under consideration. However, I will only

evaluate the integral for a contractile electron (Lorentz, Bucherer-Langevin), in which case the

corresponding state always has a spherical shape. So, for a contractile electron, we can write:

 1
2

 ε0 E′x
2
 d3x′ = 1

2
 ε0 E′y

2
 d3x′ = 1

2
 ε0 E′z

2
 d3x′ = 1

3
 U ′EM, (3.124)

where U ′EM is the electromagnetic energy of the electron at rest in the ether. Inserting Eq.

3.124 into Eq. 3.123, we find93

UEM = 1
3

 U ′EM l
γ
 1 + 2γ2(1 + β

2
) . (3.125)

It will be convenient to eliminate β2 from this equation with the help of the relation

β
2
 = (γ2 – 1)/γ2. After some rearrangement of terms, Eq. 3.125 then turns into

                                                
93 Notice that Eq. 3.125 can be rewritten as

UEM = 1
3

 U′EM l
γ

 γ2 (1 – β2) + 2γ2 (1 + β2)

= 1
3

 U′EM lγ  3 + β2)

= U ′EM lγ  1 + 1
3

 β2) .

From this equation, one immediately sees that, to first order in β, UEM = U ′EM, as in the case of the Trouton-
Noble condenser (see section 2.4, Eq. 2.132).
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UEM = 1
3

 U ′EM l
γ
 1 + 2γ2 2 – 1

γ2
 

   

= 4
3

 γ l U ′EM   – 1
3

 l
γ

 U ′EM.

(3.126)

Inserting Eq. 3.126 into Eq. 3.104, we can compute the electron’s electromagnetic longitudinal

mass mL
EM. If we do this for the Lorentz electron (i.e., if we set l = 1). it turns out that the

contribution to mL
EM coming from the first term in Eq. 3.126 already gives the full expression

for mL
EM calculated from the electron’s electromagnetic momentum. Substituting m′EM c2 for

4
3 U ′EM (Eq. 3.113) and l = 1 into the first term of Eq. 3.126, we find that

1
v  d

dv
 γ m′EM c2  = 1v  m′EM c2 

dγ
dv

 = γ3 m′EM, (3.127)

where I used that dγ/dv = (v/c2) γ3, as one easily verifies. From Eqs. 3.126–3.127, it follows

that

1
v  dUEM

dv
 ≠ γ3 m′EM. (3.128)

In other words, the longitudinal mass calculated from the electron’s electromagnetic energy is

not the same as the electromagnetic mass calculated from the electron’s electromagnetic

momentum in Lorentz’s theory (see Eq. 3.116 for l = 1). As it stands, Lorentz’s electron model

is inconsistent. In section 2.2, I already indicated how Poincaré (1905, 1906) would solve the

problem.94 Poincaré introduced the notion of ether pressure as a mechanism for stabilizing

Lorentz’s electron. I will not attempt to prove this here, but the ether pressure gives a

contribution U ′EM/3γ to the energy of Lorentz’s electron. This cancels the second term in Eq.

3.126 for UEM . As we just saw, the first term in Eq. 3.126 for UEM does give the same

longitudinal mass as the electromagnetic momentum G in Eq. 3.112 for l = 1.

Abraham objected to this solution of the problem for it was at odds with his electromagnetic

view of nature. It showed that Lorentz’s electron could not be of purely electromagnetic origin.

At first sight, it looks as if Abraham’s own theory faces the exact same problem as Lorentz’s.

No matter whether the charge distribution representing the electron is a rigid sphere, as

Abraham thought, or a sphere subject to the Lorentz-FitzGerald contraction, as Lorentz thought,

it would seem that non-electromagnetic forces are needed to prevent the charge distribution

from flying apart under the influence of their Coulomb repulsion. This impression is based on

                                                
94 Poincaré had discovered the problem and had brought it to Lorentz’s attention independently of Abraham
(Miller 1981, p. 79).
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an anachronistic view of Abraham’s theory. For him the rigid spherical electron was a primitive

notion. What ensured the electron’s stability were not forces balancing the Coulomb forces, but

‘rigid constraints’ in the sense of Hertz’s mechanics (Miller 1981, p. 56). For our purposes, we

can think of such rigid constraints as forces of infinite magnitude so that the electron can never

change its shape. This gives a perfectly consistent theory, as is illustrated by the fact that in this

theory we steer clear of the problem we just encountered in Lorentz’s theory. In Abraham’s

theory, the electromagnetic energy and the electromagnetic momentum of the electron give the

same longitudinal mass without adding any extra pieces to the theory. The crucial difference

between Hertz’s rigid constraint mechanism stabilizing Abraham’s rigid electron and

Poincaré’s ether pressure mechanism stabilizing Lorentz’s deformable electron is that the

infinite forces in the former case never do work while the finite forces in the latter case do, viz.

every time the electron changes its velocity and thereby its volume.95

That the ambiguity in the expression for the longitudinal mass of Lorentz’s electron does

indeed have its origin in the energy conversions that accompany the changes of the electron’s

volume when it is being accelerated can be seen from the fact that the Bucherer-Langevin

electron, which always retains its volume, does not suffer from this ambiguity. In the case of the

Bucherer-Langevin electron, as in the case of the Abraham electron, the electromagnetic

momentum gives the same longitudinal mass as the electromagnetic energy.

Inserting l = γ–1/3 in Eq. 3.116, we can find mL
EM for the Bucherer-Langevin electron

through its electromagnetic momentum:

mL
EM = m′EM γ8 3 + γ v 

dγ
dv

–1 3
. (3.129)

Consider the last term separately:

dγ
dv

–1 3
 = – 1

3
 γ–4 3 

dγ
dv

 = – 1
3

 v
c2

 γ5 3, (3.130)

where I used that dγ/dv = (v/c2) γ3. Inserting Eq. 3.130 into Eq. 3.129, we find

 mL
EM = m′EM γ8 3 1 – 1

3
 β

2
. (3.131)  

Inserting l = γ–1/3 and 4
3 U ′EM = m′EMc2 into Eq. 3.126 and substituting the result into Eq.

3.104, we can find mL
EM for the Bucherer-Langevin electron through its electromagnetic energy:

                                                
95 From a modern relativistic point of view, the “work” done in changing the shape of the electron is a purely
kinematical effect. It can be defined away in the same way we defined away the turning couples in the Trouton-
Noble experiment using the Rohrlich definition of four-momentum.
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mL
EM = 1

v  m′EM c2 d
dγ

 γ2 3 – 1
4

 γ–4 3  
dγ
dv

= m′EM c
2
v  2

3
 γ–1 3 + 1

3
 γ–7 3  v

c2
 γ3 (3.132)

= m′EM γ8 3 2
3

 + 1
3

 γ–2 .

Using γ–2 = 1 – β2 , we can rewrite this equation as

mL
EM = m′EM γ8 3 1 – 1

3
 β

2
. (3.133)

 Eq. 3.133 is the same as Eq. 3.131: the energy and momentum of the Bucherer-Langevin

electron give the same longitudinal mass.

3.4.4 Choosing between the electromagnetic view of nature and the principle of

relativity: Planck, Lorentz, and Sommerfeld. So, here we have the dilemma I mentioned at

the beginning of this section. The Lorentz model of the electron as amended by Poincaré has

the properties required by Lorentz’s generalized contraction hypothesis and is thus compatible

with the absence of any signs of ether drift. However, because of the Poincaré stresses needed

to ensure its stability and to remove the ambiguity in the expression for its longitudinal mass,

Lorentz’s model is not purely electromagnetic and hence incompatible with the electromagnetic

view of nature. The Abraham and Bucherer-Langevin models are consistent without the addition

of any non-electromagnetic pieces and hence compatible with the electromagnetic view of

nature. However, these models do not have the properties required by Lorentz’s generalized

contraction hypothesis and hence are incompatible with the absence of any signs of ether drift.

A clear statement of the dilemma was given by Planck in the discussion following his

lecture entitled “The Kaufmann measurements of the deflectability of β-rays and their relevance

for the dynamics of electrons,” delivered at the Versammlung Deutscher Naturforscher und

Ärzte in Stuttgart on September 19, 1906 (see Miller 1981, pp. 232–235; McCormmach 1970b,

pp. 489–490; Jungnickel and McCormmach 1986, pp. 249–250). Kaufmann, Abraham,

Bucherer,96 and Sommerfeld took part in the discussion following Planck’s lecture. At one

point, Planck remarked:

Abraham is right when he says that the essential advantage of the sphere theory [i.e.,
Abraham’s theory of the electron] would be that it be a purely electrical [sic] theory. If this
were feasible, it would be very beautiful indeed, but for the time being it is just a postulate.

                                                
96 Understandably, Bucherer took exception to the fact that Planck only discussed the electron models of Lorentz
and Abraham (Planck 1906, p. 760).
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At the basis of the Lorentz-Einstein theory [!] lies another postulate, namely that no absolute
translation can be detected. These two postulates, it seems to me, can not be combined, and
what it comes down to is which postulate one prefers. My sympathies actually lie with the
Lorentzian postulate. (Planck 1906, p. 761)

In response, Sommerfeld quipped:97

I suspect that the gentlemen under forty will prefer the electrodynamical postulate, while those
over forty will prefer the mechanical-relativistic postulate. I prefer the electrodynamical one.
(Ibid.)

The transcript in Planck 1906 of the discussion in Stuttgart also preserved the reaction of the

assembled physicists to Sommerfeld’s quick retort: “laughter” (Heiterkeit, Ibid.)

To conclude this section, I want to quote and briefly discuss a passage from Lorentz’s

lectures given in New York in March and April of 1906, a passage that clearly shows Lorentz’s

response to the dilemma outlined above:

Abraham [1904] has raised the objection that I had not shown that the electron, when deformed
to an ellipsoid by its translation, would be in stable equilibrium. This is certainly true, but I
think the hypothesis need not be discarded for this reason. The argument proves only that the
electromagnetic actions and the [Poincaré] stress of which we have spoken cannot be the only
forces which determine the configuration of the electron.[98] [...]

Notwithstanding all this, it would, in my opinion, be quite legitimate to maintain the
hypothesis of the contracting electrons, if by its means we could really make some progress in
the understanding of phenomena. In speculating on the structure of these minute particles we
must not forget that there may be many possibilities not dreamt of at present; it may very
well be that other internal forces serve to ensure the stability of the system, and perhaps, after
all, we are wholly on the wrong track when we apply to the parts of an electron our ordinary
notion of force. (Lorentz 1916, pp. 214–215; italics in the original)

This passage is from a section entitled “Optical phenomena in moving bodies,” and it is safe to

assume that the “phenomena” that Lorentz suggests “the hypothesis of the contracting

electrons” could help to explain are simply the negative results of a wide variety of optical ether

drift experiments. These comments from 1906 testify to Lorentz’s reservations with respect to

the electromagnetic view of nature, reservations that, one suspects, are related to his keen

awareness of the limitations of his theory due to quantum phenomena.

It remains for me to explain the italicized “this” in the quotation above. The emphasis has

to do with Lorentz’s acknowledgment, two pages earlier, of the fact that Kaufmann’s latest

results seem to favor Abraham’s electron model over his own:

                                                
97 See McCormmach 1970b, p. 490, for a discussion of the development of Sommerfeld’s attitudes toward the
electromagnetic view of nature and special relativity.
98 Unless I misunderstand Lorentz’s point here, this comment seems to be wrong. The Poincaré stresses do
ensure the stability of the electron (see section 2.2). Lorentz is quite right when he point out that there may be
other mechanisms serving the same purpose (see section 2.2 and Laue 1911a).
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His [i.e., Kaufmann’s] new numbers agree within the limits of experimental errors with the
formulae given by Abraham, but [...] are decidedly unfavourable to the idea of a contraction
such as I attempted to work out. (Ibid., pp. 212–213)

Shortly before his departure for New York, in a letter to Poincaré dated Leiden, March 8, 1906,

Lorentz had written: “Unfortunately my hypothesis of the flattening of electrons is in

contradiction with Kaufmann’s results, and I must abandon it. I am therefore at the end of my

rope (au bout de mon latin)” (quoted in Miller 1981, p. 334; the full letter is reproduced in

facsimile on pp. 336–337). These passages strongly suggest that Lorentz took Kaufmann’s

results much more seriously than Einstein. Miller indeed draws that conclusion. A. J. Kox has

pointed out to me that Lorentz’s reaction was probably more ambivalent. Kox alerted me to a

curious aspect of Lorentz’s exposition in his 1906 lectures. Immediately after the sentence I

just quoted, in which Lorentz acknowledges the discrepancy between his theory and

Kaufmann’s latest results, he writes:

Yet, though it seems very likely that we shall have to relinquish this idea altogether, it is, I
think, worth while looking into it somewhat more closely. (Ibid., p. 213; my italics)

Lorentz then proceeds to discuss his idea at length.

No matter how serious Lorentz’s worries about Kaufmann’s results were in 1906, by 1908

the tide had changed, and the experiments now favored Lorentz’s—and Einstein’s—prediction

for the velocity dependence of the transverse mass of the electron. In the second edition of his

New York lectures, Lorentz added the following somewhat triumphant footnote to the sentence

citing Kaufmann’s results that I quoted above:

Later experiments [Lorentz cites Bucherer 1908,[99] Guye and Lavanchy 1915, and others]
have confirmed [Eq. 3.120] for the transverse electromagnetic mass, so that, in all probability,
the only objection that could be raised against the hypothesis of the deformable electron and
the principle of relativity has now been removed. (Ibid., p. 339)

As Miller points out, the accuracy of the results of Kaufmann, Bucherer, Guye and Lavanchy,

and others measuring the transverse mass of high speed electrons in β-radiation in the first

decades of the century was grossly over-estimated at the time. Miller (1981, p. 350) cites two

later experimenters, Zahn and Spees (1938), who re-analyzed some of the data obtained in these

experiments and concluded that the experiments by Bucherer and others, despite significant

improvements in the experimental set-up over the set-up used in Kaufmann’s original

experiment “proved very little, if anything more than the Kaufmann experiments, which

indicated a large qualitative increase of mass with velocity. One might say that their experiments

                                                
99 Notice that the title of Bucherer's paper of 1908 is: “Measurements on Becquerel rays. The experimental
confirmation of the Lorentz-Einstein theory.” The title of Guye and Lavanchy’s paper of 1915 only refers to the
“Lorentz-Einstein formula for high speed cathode rays.”
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gave a slight suggestion in favor of the relativity electron [i.e., Lorentz electron], but that the

uncertainties of interpretation are so great as to give one very little feeling of certainty as regards

a 10 percent difference” (Zahn and Spees 1938, p. 519). In other words, these experiments

were totally unfit for their ostensive purpose of deciding between the various electron models

that were being considered at the time.

For the theoretical epilogue to this episode, I want to quote Pais: “Special relativity killed

the classical dream of using the energy-momentum-velocity relations of a particle as a means of

probing the dynamical origins of its mass. The relations are purely kinematical[100]” (Pais

1982, p. 159). As we saw in chapter two, this was not immediately clear in 1905. It seems to

have been clear to Einstein, but not, for instance, to Ehrenfest (see Ehrenfest 1907 and Einstein

1907a). The issue was settled only in 1911, by Laue. As we saw in chapter two, Laue (1911a, p.

153) showed that as long as the electron is a complete or closed static system, its four-

momentum will transform as the four-momentum of a relativistic point particle. It immediately

follows that the expressions for the longitudinal and transverse mass of a complete static system

are the Lorentz-Einstein expressions in Eq. 3.120. We also saw in chapter two that the

condition that the system be static can be dropped. So, these expressions would hold for the

longitudinal and transverse mass of any closed system, which is just a slightly different way of

making the point Pais made in the passage I just quoted.   

                                                
100 My impression is that Pais uses the phrase “kinematical” here as synonymous with “independent of the
details of the dynamics,” rather than in the sense I used it in chapter two, which would lead us to read this
statement of Pais as “the relations directly reflect the Minkowskian space-time structure.” The two readings are,
of course, perfectly compatible with one another. The “energy-momentum-velocity relations of a particle” are
independent of the details of the dynamics because they directly reflect the Minkowskian space-time structure.
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3.5 Lorentz’s interpretation of the Lorentz transformation formulae
after 1905: from mathematical auxiliaries to effective coordinates and
fields

3.5.1 The state of Lorentz’s theory in 1905. I want to give a brief review of the state of

Lorentz’s theory for the electrodynamics of moving bodies in 1905. As I argued in section 3.3,

this part of Lorentz’s theory has a twofold basis, a purely mathematical result and a general

physical assertion about the effect of ether drift on physical phenomena. The mathematical

result is the exact theorem of corresponding states, which is essentially the claim that the source

free Maxwell equations are Lorentz invariant. The physical assertion, which I dubbed the

generalized contraction hypothesis, is that corresponding states physically transform into one

another. With the help of these two elements, it is possible, in principle, to give a general

account of the negative result of any conceivable ether drift experiment.

As I also pointed out in section 3.3, Lorentz did not make the generalized contraction

hypothesis an axiom of his theory (in the sense that Maxwell’s equations, for instance, are).

Instead, Lorentz wanted to derive the generalized contraction hypotheses from other more

specific assumptions about the effect of ether drift on physical phenomena. Which and how

many of these specific assumptions are needed for such a derivation depends on the range of

ether drift experiments one wants to account for through the combination of the exact theorem

of corresponding states and the generalized contraction hypothesis.101 If we focus on optical

                                                
101 As Schaffner has emphasized, Lorentz’s 1904 theory does not predict in full generality that ether drift can
never be detected. Instead, Lorentz’s goal was “to show, by means of certain fundamental assumptions, and
without neglecting terms of one order of magnitude or another, that many electromagnetic actions are entirely
independent of the motion of the system” (Lorentz 1904b, p. 174; quoted in Schaffner 1974, p. 48; Schaffner’s
italics). After his exposition of the new theory, Lorentz writes: “It is easily seen that the proposed theory can
account for a large number of facts” (Lorentz 1904b, p. 189; my emphasis). These statements can be read (as
Schaffner suggests) in support of the claim that Lorentz still believed that eventually ether drift would somehow
be detected. However, these quotations from Lorentz 1904b do not rule out the possibility that Lorentz already
had the view he would ultimately adopt, viz. that no experiment would ever detect ether drift. They should then
be read as acknowledgments on Lorentz’s part that his theory does not (yet) provide a general explanation of the
anticipated negative results in any conceivable ether drift experiment. Recall that Lorentz’s general account for
the negative results of optical ether drift experiments only works for those experiments that eventually boil
down to the observation of some pattern of light and darkness. Lorentz was aware of the fact that this included
most but not all optical experiments. In his article for the Encyklopädie der Mathematischen Wissenschaften
published earlier in 1904, for instance, he devotes two subsections to experiments that do not fall into this
category, explicitly identifying them as such: “We now continue with the discussion of certain experiments that
no longer only involve the distribution of light and darkness” (Lorentz 1904a, pp. 268–269). Lorentz discusses
measurements of intensities and of radiation pressure in this context. Using the (first order) theorem of
corresponding states, he shows that motion through the ether does not affect intensities (to first order in v/c).
Hence, first order ether drift experiments involving measurements of intensities will always give negative results
(ibid., p. 269). First order ether drift experiments involving measurement of radiation pressure, however, should
in general give small positive results (ibid., pp. 270–271). Given that Lorentz’s theory did not include E = mc2

at this point, this should not come as a surprise (cf. section 2.5).
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ether drift experiments that eventually boil down to the observation of some pattern of light and

darkness, two assumptions will do.102

(1) All forces satisfy the relation F = diag(1, 1/ γ, 1/ γ) F0 (cf. Eq. 3.63 for l =

1), where F0 is a force in a system in some state at rest in the ether and F is the

corresponding force in the corresponding state of the system moving through

the ether at a velocity v.

(2) The mass of any physical object satisfies the relation m = diag(γ3,  γ, γ) m0

(see Eq. 3.92 for l = 1), where m0 is the mass of the object at rest in the ether

and m is the mass of the same object moving through the ether at a velocity v.

In support of assumption (1), Lorentz could point to the fact that the relation can actually be

derived from Maxwell’s equations in the case of Coulomb forces. Although Lorentz did not

draw attention to this, the assumption also receives support from the negative result of the

Trouton-Noble experiment which directly indicates that ether drift has the same effect on the

electromagnetic and the non-electromagnetic forces on a condenser.

Similarly, in support of assumption (2), Lorentz could point to the fact that the relation can

actually be derived from Maxwell’s equation in the case of his specific model for the electron, a

spherical charge distribution subject to the Lorentz-FitzGerald contraction.103

The support that assumption (2) derives from Lorentz’s model of the electron is clearly

weakened by the discovery of  Abraham and Poincaré that the model is inconsistent without the

addition of some extra structure of non-electromagnetic origin. It is easy to see how this

undercuts the justification of Lorentz’s assumption (2). What is needed are arguments to

establish that masses and forces satisfy the general expressions m = diag(γ3,  γ, γ) m0 and

F = diag(1, 1/ γ, 1/ γ) F0. One such argument is to show that for some special cases these

expressions can actually be derived from electrodynamics. As long as it is a live possibility that

all of physics will ultimately be reduced to electrodynamics, such derivations hold out the

promise that, in the end, they will work for all cases. However, the moment we give up the

notion of a purely electromagnetic physics (and the inconsistency discovered by Abraham and

Poincaré did not leave Lorentz much choice in the matter), these calculations in electrodynamics

will never be more than plausibility arguments for the assumption that the relevant expressions

hold in general, i.e., not only for electromagnetic but also for non-electromagnetic masses and

forces.

                                                
102 Cf. Lorentz 1904b, p. 183, p. 191; 1916, section 175, p. 205.
103 Whereas the contraction of macroscopic objects is derived from other assumptions in Lorentz’s theory, the
contraction of individual electrons is one of its primitive axioms
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To be sure, Lorentz may have looked upon these derivations as mere plausibility arguments

all along (cf. his plausibility argument for the original contraction hypothesis). For Lorentz, the

ultimate  justification for his assumptions about mass and force seems to have come from the

fact that they allow the derivation of the generalized contraction hypothesis in the relevant

context, which, in turn, is extremely well confirmed empirically through the negative results of

numerous ether drift experiments.

From assumptions (1) and (2) and the extra assumption that both the motion of oscillating

electrons generating light and the motion of atoms and molecules of solids around their

equilibrium positions are very slow compared to the velocity of light, we can derive the only two

results needed to account for the negative result of optical ether drift experiment that eventually

boil down to the observation of some pattern of light and darkness:

(a) The material components in an optical experiment are subject to the same

contraction as the patterns of light and darkness in those experiments (the latter

contraction, unlike the former, can be derived from the theorem of corresponding

states).

(b) The frequency of the light emitted by a moving source is a factor γ lower

than the frequency emitted by that same source at rest in the ether, in agreement

with the relation between the frequencies in two corresponding patterns of light

and darkness that can be derived from the theorem of corresponding states.

3.5.2 Grünbaum’s “doubly amended theory” as a model for Lorentz’s mature theory.

Notice that, as long as we are dealing with observations of patterns of light and darkness (as in

most optical ether drift experiments), we can use Grünbaum’s “doubly amended theory”

(Grünbaum 1973, p. 723) as a simplified model for Lorentz’s mature theory. Grünbaum’s two

amendments are the Lorentz-FitzGerald contraction hypothesis and the so-called clock

retardation hypothesis. These two amendments are easily seen to correspond to (a) and (b)

above. From a logical point of view, it does not make much of a difference whether we

supplement the theorem of corresponding states with assumptions (a) and (b), or with

assumptions (1) and (2), from which (a) and (b) are then derived.

Zahar based his discussion of Lorentz’s theory on Grünbaum’s simplified model. Zahar

identified the unassailable “hard core” of Lorentz’s “research programme” as consisting of

“Maxwell’s equations [...], of Newton’s laws of motion and of the Galilean transformation, to

which Lorentz added his equation [...] for the so-called Lorentz force” (Zahar 1973, p. 215). I

would like to add the basic elements of Lorentz’s ontology, the stationary ether and the
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electrons, the sole mediators between ether and ponderable matter.104 Zahar then identifies

“three consecutive theories belonging to Lorentz’s ether programme” (ibid., p. 216):

T1 consists of the hard core as defined above together with the (tacit!) assumptions (i)
that moving clocks are not retarded and (ii) that material rods are not shortened by their motion
through the ether.

T2 is obtained from T1 by substituting the LFC [Lorentz-FitzGerald contraction] for
assumption (ii). According to the LFC a body moving through the ether with velocity v  is
shortened by the factor (1 – v2/c2)1/2.

T3 is the conjunction of the hard core, of the LFC and of the assumption that, contrary to

(i), clock moving with a velocity v are retarded by the factor (1 – v2/c2)1/2. (Zahar 1973, p.
216)

One of Zahar’s main theses is that “the shift from T1 to T2 and that from T2 to T3 were non

ad hoc” (ibid.). When we bear in mind that T3 is just a toy model of the 1899–1904 version of

Lorentz’s theory that I analyzed in great detail above, it is clear that the case for T2 → T3 not

being ad hoc is much stronger than the case for T1 → T2. In fact, Miller (1974) and Schaffner

(1974) had no trouble demolishing most of the arguments Zahar offers for the latter case (see

section 3.2). Not surprisingly, Miller and Schaffner have nothing to say about the T2 → T3

case. As I showed in section 3.3, they completely misunderstand the theory modeled by T3.

Unfortunately, Zahar’s elaboration of T3 (Zahar 1973, section 1.5, pp. 231–233) is also

unsatisfactory. It would be an acceptable model of Lorentz’s theory after 1905, when Lorentz

started to give a physical meaning to the auxiliary quantities of his theorem of corresponding

states, but it does not capture the 1899–1904 version of the theory.105 Zahar, for instance, did

not identify what I called the generalized contraction hypothesis and also missed the crucial role

of the special nature of patterns of light and darkness. However, if Zahar’s elaboration of T3 is

replaced by something a little more accurate (something along the lines of my presentation in

section 3.4, for instance), it would seem to me that a very strong case can be made that the

transition T2 → T3 is not ad hoc in any of the three senses Zahar distinguishes. In fact, I

already showed that it is not ad hoc1 nor (allowing enough time) ad hoc2. The 1899–1904

version of Lorentz’s theory predicts negative results for a broad class of optical ether drift

                                                
104 This point was also made by Miller (1974, p. 32). For Zahar’s response, see Zahar 1978, p. 51.
105 As an aside, I want to point out that in Zahar’s approach, in my opinion, one should distinguish between
T3, the 1899–1904 version of Lorentz’s theory, and T4, the post–1905 version. Equating T3 and T4 is too
serious a distortion of the historical development, it seems to me, especially because it suppresses the
undeniable influence of Einstein’s research programme on the heuristics of Lorentz’s. Before 1905, Lorentz
inferred from the theorem of corresponding states to the undetectability of ether drift appealing to the special
nature of patterns of light and darkness. After 1905, he made this inference appealing to the insight he had taken
from Einstein, viz. that the auxiliary quantities occurring in the theorem of corresponding states are the
measured quantities for the moving observer. As we have seen, this new heuristic was also developed in the
context of the ether programme (by Poincaré), but the fact remains that Lorentz directly took it from Einstein.
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experiments, and given the empirical success of special relativity we can rest assured that all

these predictions would be confirmed if anybody bothered to put them to the test.

After this evaluation of the secondary literature on Lorentz’s theory, I return to the

evaluation of the theory itself.

3.5.3 The problem of non-static charge distributions. Lorentz appears to have been

satisfied deriving the generalized contraction hypothesis in the context of optical experiments

involving no more than patterns of light and darkness which by their very nature are stationary

situations. If we try to generalize the corresponding states technique to non-stationary

situations, we run into complications caused by the x-dependence of local time. Lorentz had to

learn from Einstein how to deal with these complications.

By 1904, Lorentz’s theory was nonetheless applicable, at least in principle, to the whole

field of electrodynamics, not just to optics and electrostatics. This can be seen from the fact that

in the 1904 exposition of the theorem of corresponding states, Lorentz deals with the source

terms in Maxwell’s equations in their most general form (see Lorentz 1904b, p. 176, Eqs.

(7)–(9)). In his exposition of the theorem of corresponding states in the Versuch of 1895,

Lorentz had simply set the charge and current densities to zero, working only with the source

free Maxwell equations (see section 3.1). In the 1899 paper I discussed in section 3.3, he still

only considered the charge and current densities for two special cases, electrostatic charge

distributions and charge distributions representing oscillating electrons responsible for the

emission of light (see section 3.3). In 1904, he finally allowed arbitrary charge and current

densities. Why then is it that, even in 1904, the theory’s range of application is essentially still

restricted to the static and stationary situations encountered in optics and electrostatics?

Before 1905, Lorentz and others tacitly assumed that any problem to be solved by a theory

for electrodynamics of moving bodies has the following generic form:

Given some charge distribution described by the charge and current densities (ρ,

ρu) as functions of (t, x), the Newtonian time and the coordinates of a Galilean

frame of reference S in motion through the ether, find the fields E and B

generated by that charge distribution as functions of (t, x).

Lorentz’s theorem of corresponding states provides a general method for solving such

problems. Lorentz only applied this method to static or stationary cases in optics and

electrostatics. In principle, the method works for arbitrary charge distributions, but, in practice, it

is of little help in non-stationary situations. The reason for this is that the relation between

corresponding states will be rather complicated in such cases. In order to see how this comes

about and in order to appreciate how the problem vanishes into thin air after Lorentz has taken
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to heart an important lesson from Einstein, I want to briefly examine the application of

Lorentz’s strategy for solving problems of the general form stated above.

First of all, the equations for E, B, ρ, and u as functions of (t, x) can be cast into a set of

equations very similar to Maxwell’s equation by introducing the auxiliary quantities x′, t′, E′, B′

(see Eq. 3.54–3.55 for l = 1). The auxiliary fields E′ and B′ as functions of (t′, x′) satisfy four

equations that are very similar to Maxwell’s equations (see Eq. 3.56 in section 3.3 with l = 1).

Two of these equations have exactly the form of the homogeneous Maxwell equations, the other

two strongly resemble the inhomogeneous Maxwell equations:

div ′ E′ = 
ρ

γε0
 1 – γ2 v ux

c2
,

curl′ B′ = µ0diag(γ, 1,  1)ρu + 1
c2

∂E′

∂t′
 .

(3.134)

The equations for E′ and B′ as functions of (t′, x′) are solved by considering a

corresponding charge distribution in a frame S0 at rest in the ether and solving Maxwell’s

equations for that charge distribution. Let (ρ0, ρ0u0)  describe he charge and current densities

for this corresponding charge distribution as functions of (t0, x0), the Newtonian time and the

coordinates of S0. These functions are found as follows. Take the charge and current densities

(ρ, ρu) describing the charge distribution in S as functions of (t′, x′), replace (t′, x′) by (t0, x0),

and substitute the result into the following expressions for (ρ0, ρu0):

ρ0 ≡ 
ρ
γ

 1 – γ2 v ux

c2
,     ρ0u0 ≡ diag(γ, 1,  1)ρu. (3.135)

The fields E0 and B0 generated by this charge distribution are found by solving Maxwell’s

equations for (ρ0, ρu0) in Eq. 3.135. This is the hard part of the calculation.

Of course, it took considerable ingenuity on Lorentz’s part to find convenient auxiliary

quantities E′, B′, t′, and x′, but once we have those, and the equations for E′ and B′ as functions

of (t′, x′) (see Eq. 3.6), solving Maxwell’s equations for (ρ0, ρu0) in Eq. 3.135 is the only non-

trivial step in solving any problem in the electrodynamics of moving bodies. The rest of the

calculation is completely mechanical and consists of nothing but replacing subscripts ‘0’ with

primes and vice versa, and transforming back and forth between primed and unprimed

quantities. The final two steps of the calculation illustrate this point.

Once we have E0 and B0 as a function of (t0, x0), we can write down E′ and B′ as functions

of (t′, x′) simply by replacing the subscripts ‘0’ by primes. Finally, using the inverse of the
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transformation (t, x, E, B) →  (t′, x′, E′, B′), we can write down E and B as functions of (t, x),

the functions we set out to find.

What makes it hard to solve Maxwell’s equations for the charge distribution described by

Eq. 3.135 is that the relation between (ρ0, ρ0u0) as a function of (t0, x0) and (ρ, ρu) as a

function of (t, x) will in general be rather complicated. Consider the interpretation of the

expression for ρ0 in Eq. 3.135. If we start from a static distribution in the moving frame (i.e., u

= 0), ρ0 just describes the stretched out static distribution Lorentz used in his calculations for

electrostatics in moving frames (see Lorentz 1895, p. 37 [cf. Eq. 4.1]; 1899b, p. 260 [cf. Eq.

3.60]; 1904a, pp. 173–175, pp. 256–257). However, for a non-static distribution (i.e., u ≠ 0), the

interpretation of ρ0 becomes rather obscure. Even the interpretation of the y- and z-components

of ρ0u0, which are equal to the y- and z-components of ρu (see Eq. 3.135), gets complicated for

such cases. As a direct consequence of the x-dependence of local time, the simultaneity relations

in corresponding states will be different unless those states are static or at least stationary.

Suppose two charges in some non-stationary state in the frame S reach the points P and Q  in S

at the same instance t in real Newtonian time. If P and Q have different x-coordinates, the two

charges will not reach these points at the same instance in local time. But that means that the two

charges in the corresponding state in S0 will not reach the corresponding points P0 and Q0 in S0

at the same instance t0 in real Newtonian time.

The upshot then is that the theorem of corresponding states does not provide a practical

method for solving problems involving time-dependent charge and current densities in a charge

distribution in motion through the ether. Fortunately, Einstein’s work made it clear to Lorentz

that the generic problem in the electrodynamics of moving bodies takes on a much more simple

and managaeble form than Lorentz had tacitly been assuming in the years prior to 1905.

3.5.4 Lorentz taking to heart a lesson from Einstein (after ignoring a similar lesson

from Poincaré). In the first edition of his book The theory of electrons based on lectures in

New York in 1906 and published in 1909 (see section 3.4), Lorentz, for the first time, gave a

physical interpretation to the primed quantities in the theorem of corresponding states (Lorentz

1916, sections 189–191, pp. 222–226). Giving full credit to Einstein,106 Lorentz explained that

these quantities are not just mathematical auxiliaries, convenient for carrying out calculations in

coordinate systems moving with respect to the ether, but that they actually represent the

measured—or “effective” (ibid, p. 223)—quantities for observers moving along with such

coordinate systems.

                                                
106 At this point, Lorentz cited almost all the papers of Einstein that I cited so far (Einstein 1905a, 1905b,
1906, 1907b, 1907c) and more.
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In the light of recent work by Darrigol (1994b), showing that Poincaré had been using this

physical interpretation of the quantities in Lorentz’s theorem of corresponding states at least

since 1900, it is somewhat puzzling that Lorentz only started pursuing this interpretation after

he had read Einstein’s work. At this point, I can only speculate what is was about Einstein’s

work that suddenly made Lorentz see the fruitfulness of a physical interpretation that had been

available to him for several years through the work of Poincaré. My guess is that it has to do

with the fact that Einstein made the physical interpretation of the Lorentz transformation the

basis for a remarkably clear and simple discussion of the electrodynamics of moving bodies,

whereas Poincaré’s remarks on the physical interpretation of Lorentz transformed quantities

may have struck Lorentz as inconsequential philosophical asides in expositions that otherwise

closely followed his own. I also have a sense that Lorentz found Einstein’s physically very

intuitive approach more appealing than Poincaré’s rather abstract but mathematically more

elegant approach. The basis for this suspicion is that, as we will see below, Lorentz failed to give

credit for two important results in The theory of electrons, that can be found in Poincaré 1906,

viz. the reciprocity of the Lorentz transformation (which follows immediately from the proof

that these transformations form a group) and the  transformation formulae for charge and

current density (which Lorentz only derived in the second edition of his book). I want to

emphasize that I do not claim to have a satisfactory explanation for Lorentz’s apparent neglect

of Poincaré’s work in this area. I only want to draw attention to it.107

Consider the auxiliary spatial coordinate x′ and the local time t′ (cf. Eq. 3.54 for l = 1):

x′ = γx,     t′ = t/γ – γ(v/c2)x. (3.136)

The physical interpretation of these quantities is as follows (cf. Lorentz 1916, sections 189–190,

pp. 223–226; 1922, sections 2.1–2.4, pp. 192–201). The factor γ in the expression for x′

reflects that a moving observer, using a contracted measuring rod, will overestimate lengths by a

factor of γ. Likewise, the factor 1/γ in the first term of the expression for t′ reflects the fact that a

moving observer, using clocks ticking at a slower rate than those same clocks at rest in the ether,

will underestimate time intervals by a factor of γ.

                                                
107 I am not the first to draw attention to this curious state of affairs. Valentin Bargmann brought up this point
after a talk by Arthur Miller (1980) on Lorentz and Poincaré at the symposium in Princeton on the occasion of
the centennial of Einstein’s birth. Bargmann asked: “There is one aspect [...] that I always found strange. This is
the fact that in the famous book by Lorentz on the theory of electrons [Lorentz 1916], Poincaré is hardly
mentioned. There is copious mention of Einstein’s work, but hardly any of Poincaré’s. Now I wonder whether
Dr. Miller has any comment on this?” Miller did not have an explanation to offer (and did not bother to include
his reply to Bargmann in the reprint of his paper in Miller 1986). He mentioned that Lorentz gives Poincaré
credit for the Poincaré stresses, which is true, and for “making the Lorentz transformations into a more
symmetrical form” (Woolf 1980, p. 93), which is not true. Other than that, Miller said “there was no reason to
mention Poincaré” (ibid.). I obviously share Bargmann’s puzzlement.
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These two effects had to some extent been recognized by Lorentz before 1905. In his

discussions of the Michelson-Morley effect in 1892 and 1895 he emphasized that a moving

observer can not detect the contraction effect by putting a measuring rod along the

interferometer arms (see section 3.2); and in 1899 he explicitly noticed that the frequency of the

oscillations of electrons responsible for the emission of light depends on the state of motion of

the light source with respect to the ether (see section 3.3). Only after 1905, however, did he fully

realize the pervasiveness of these phenomena and their effect on any physical system that could

be used as a measuring rod or a clock.

There is not the slightest hint in Lorentz’s work prior to 1905 as to how the second x-

dependent term in the expression for t′ might be given a physical interpretation. This term

reflects the relativity of simultaneity, or, in terms of Lorentz’s theory, it reflects that a moving

observer will use (something equivalent to) Einstein’s light signaling method to synchronize his

or her clocks. As a consequence, these clocks will keep the local rather than the real Newtonian

time, as can be shown by a simple calculation that I will go through below. Before I do that, I

want to draw attention to what is perhaps the best example of the general puzzle that I already

mentioned: why is it that Lorentz took over this idea from Einstein and ignored what was

essentially the same idea put forward several years earlier by Poincaré in the context of

Lorentz’s first order theory in the Versuch?

Poincaré had given his physical interpretation of the x-dependence of local time in, of all

places, his contribution to the Lorentz Festschrift of 1900 (Poincaré 1900b, p. 483), and again

in a lecture in St. Louis in 1904 that was published in 1905 in his book La valeur de la science

(Poincaré 1904, pp. 99–100108). Yet, Lorentz was won over for the idea only by Einstein.

Moreover, he did not even mention Poincaré in this context, whereas Lorentz is normally very

careful to give credit wherever credit is due. In the second edition of The theory of electrons of

1916, Lorentz gives credit only to Einstein in the following footnote that is otherwise

characteristic for Lorentz’s intellectual generosity:

If I had to write the last chapter now, I should certainly have given a more prominent place to
Einstein’s theory of relativity [...] by which the theory of electromagnetic phenomena in
moving systems gains a simplicity that I had not been able to obtain. The chief cause of my
failure was my clinging to the idea that the variable t only can be considered as the true time
and that my local time t′ must be regarded as no more than an auxiliary mathematical

quantity. (Lorentz 1916, p. 321, note 72*)

It is totally unclear to me why Lorentz did not mention Poincaré at this juncture.

How does the physical interpretation of local time that Lorentz took from Einstein work?

Once again, consider the Galilean frame S moving at a velocity v = (v, 0, 0) with respect to the

                                                
108 I already discussed this passage in section 3.1.
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frame S0 at rest in the ether. Suppose an observer in S has two clocks, one (A) at the origin O of

S, the other one (B) on the x-axis at a distance x′ from O (according to the moving observer’s

contracted measuring rods). At t = 0 in the real Newtonian time of S0 clock A is set to zero. At

that moment (i.e., when t = tA = 0), the moving observer sends a light signal from A to B in

order to check whether these two clocks are properly synchronized. According to the moving

observer, for whom the velocity of light to all intents and purposes is equal to the constant c,

clock B should read

tB = 
x′
c (3.137)

upon arrival of the light signal at B. In the real Newtonian time of S0, however, the signal has to

catch up with clock B rushing away at velocity v and only arrives at B at

t = 
x′/γ
c – v

, (3.138)

where the factor γ takes into account the contraction of the moving observer’s measuring rods.

Since moving clocks run slow, only 1/γ times the amount in Eq. 3.138 has gone by on clock A

between the moment the light was sent from A and the moment it was received at B. So, when

the light arrives at clock B, the clock at A reads

tA = 
x′

γ2 (c – v)
 = 

x′
c  (1 + v/c) (3.139)

Comparing Eq. 3.137 and Eq. 3.139, we see that, if the moving observer has synchronized his

clocks using (something equivalent to) Einstein’s light signaling method, an observer at rest in

the ether will conclude that clock B lags behind clock A:

tB = tA – (v/c2) x′. (3.140)

Inserting tA = t/γ and x′ = γx (see Eq. 3.136), we conclude that clocks at arbitrary points (x, 0, 0)

of S, when they are synchronized by a moving observer, indeed keep the local time

t′ = t/γ – γ(v/c2)x. (3.141)

Since observers in S and observers in S0 will agree on the synchronization of clocks in one and

the same yz-plane, this conclusion is valid for arbitrary points (x, y, z) of S.
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As Lorentz clearly realized (Lorentz 1916, p. 224), it immediately follows from the fact that

the moving observer measures the space and time variables (t′, x′) of the theorem of

corresponding states rather than (t, x), the real Newtonian time and the coordinates of the

Galilean frame S, that his measurements of the speed of light will always give the result c. The

moving observer will therefore have the illusion that he is at rest in the ether (ibid., p. 226).

Lorentz now imagines that the moving observer sets out to perform all sorts of experiments in

electrodynamics. He argues that the moving observer will not introduce the real fields E and B
in these investigations, but the fields E′ and B′ of the theorem of corresponding states. These

fields, considered as functions of the space and time coordinates (t′, x′) measured by the moving

observer, satisfy Maxwell’s equations. This will further strengthen the observer’s illusion that

he is at rest in the ether.

Summing up the discussion so far, Lorentz writes: “if both A0 [an observer at rest in the

ether] and A [an observer in uniform motion with respect to the ether] were to keep a record of

their observations and the conclusions drawn from them, these records would, on comparison,

be found to be exactly identical” (Lorentz 1916, p. 226).

3.5.5 The reciprocity of the Lorentz transformation. In The theory of electrons Lorentz, for

the first time, also emphasized the reciprocity of the transformation formulae of his theorem of

corresponding states (Lorentz 1916, sections 192–193, pp. 226–229):

Attention must now be drawn to a remarkable reciprocity that has been pointed out by
Einstein.[109] Thus far it has been the task of the observer A0 to examine the phenomena in
the stationary system, whereas A  has had to confine himself to the system S . Let us now
imagine that each observer is able to see the system to which the other belongs, and to study
the phenomena going on in it. Then, A0 will be in the position in which we have all along
imagined ourselves to be (though, strictly speaking, on account of the earth's motion, we are
in the position of A); in studying the electromagnetic field in S , he will be led to introduce
new variables [t′, x′, E′, B ′ (see Eqs. 3.54–3.55] and so he will establish the equations [for
E′ and B′ as functions of (t′, x′) (see Eq. 3.56 for ρ = u = 0)]. The reciprocity consists in this
that if the observer A describes in exactly the same manner the field in the stationary system,
he will describe it accurately. (Lorentz 1916, pp. 226–227)    

So, Lorentz imagines that an observer in the moving frame S, who is under the impression to be

at rest with respect to the ether, uses the theorem of corresponding states to describe some

situation in the frame S0, which is actually at rest with respect to the ether, but which, for the

observer in S, appears to be moving with respect to the ether at a velocity –v. Labeling the

auxiliary quantities of the theorem of corresponding states used by the observer in S with

                                                
109 Again no mention is made of Poincaré who made basically the same point, albeit perhaps in a less intuitive
way, by proving the group character of the Lorentz transformation in Poincaré 1906.
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double primes and using the analogues of Eq. 3.57 (giving t0, x0 → t′, x′) and Eq. 3.55 (giving

E, B → E′, B′) with –v instead of v, we find:110

x″ = ldiag(γ, 1, 1) ( x ′ + v t′),       t″ = lγ (t′ + (v/c2)x′), (3.142)

E″ = 1
l2

 diag(1, γ, γ) (E′ – v  × B ′),

 

B ″ = 1
l2

 diag(1, γ, γ) (B ′ + 1
c2

 v  × E′).

(3.143)

What needs to be shown is that these double primes quantities are the quantities measured by

the observer in S0. That would establish the reciprocity Lorentz mentions. After all, from the

point of view of the observer in S0 examining a situation in S, the observer in S measures the

space and time coordinates and the fields of the theorem of corresponding states. Of course, we

already know what the observer in S0 measures. As an observer who is actually at rest in the

ether, he will measure the real time t0, the real coordinates x0, and the real fields E and B. So,

what needs to be shown is that the transformation (t′, x′, E′, B′) → (t″, x″, E″, B″) in Eqs.

3.142–3.143 gives the same result as the inverse of the transformation (t0, x0, E, B) → (t′, x′, E′,

B′) in Eq. 3.57 and Eq. 3.55. Inverting these last two equations, we find

x0 = 1
l
diag(γ, 1, 1) ( x ′ + v t′),       t0 = 1

l
γ (t′ + (v/c2)x′), (3.144)

E = l2diag(1, γ, γ) (E′ – v  × B ′),
 

B  = l2diag(1, γ, γ) (B ′ + 1
c2

 v  × E′).

(3.145)

Comparing Eqs. 3.144–3.145 to Eqs. 3.142–3.143, we see that

(t″, x″, E″, B″) = (t0, x0, E, B) (3.146)

as long as we set l = 1. This shows that even if the moving observer were to perform

measurements on systems at rest in the ether, he would not be able to detect his motion with

respect to the ether.

                                                
110 Lorentz sets l = 1 at the beginning of this calculation. It will be instructive, however, to leave l
undetermined for the time being.
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Even though Lorentz does not mention this, this calculation provides a much more

fundamental argument for setting l = 1 than the convoluted argument we examined in section

3.4 which turned on the intricacies of the electromagnetic mass of Lorentz’s electron.

In this passage in The theory of electrons, Lorentz leaves the discussion of the reciprocity

between the observers at rest and in motion with respect to the ether at this rather abstract level.

He does not discuss the physical a-symmetry of the situation. Consider the measurements of

Lorentz’s two observers of the length of each other’s rods or the rate of each other’s clocks. It

follows from the general argument in Eqs. 3.142–3.146 that both observers will find that the

other observer’s rods are shorter than his own and that the other observer’s clocks run slow

compared to his own. However, these identical findings receive very different physical

interpretations in Lorentz’s theory. The observer at rest in the ether performing measurements

on the rods and clocks in motion through the ether is measuring the dynamical effect this

motion has on the length of physical systems and the rate of physical processes.111  By

contrast, the observer in motion through the ether performing measurements on the rods and

clocks at rest in the ether is basically deceived by his own instruments. Rods at rest in the ether

are actually longer than his own rods, and clocks at rest in the ether actually run fast compared

to his own clocks, but, because the moving observer has not synchronized his clocks properly

(i.e., he has synchronized them according to the local time and not according to the real

Newtonian time), he will (mistakenly) conclude from his measurements that rods at rest in the

ether are shorter than his own, and that clocks at rest in the ether run slow compared to his own.

As one may have come to expect by now, this is another point of confusion in the historical

literature (see, e.g., Schaffner 1969, p. 511; Miller 1974, pp. 42–43). Although I have not been

able to pin this down on one particular sentence, Schaffner strongly suggests that the physical

a-symmetry I drew attention to above is a fatal problem for Lorentz’s theory. Miller, in his

critique of Zahar, makes the point more bluntly. Immediately following the passage I debunked

earlier, where Miller criticizes Zahar for endorsing the view that the theories of Lorentz and

Einstein are empirically equivalent, citing the alleged problems concerning aberration and

Doppler effect in Lorentz’s theory, he writes:

Neither are the two theories observationally equivalent concerning the L. F.C. [Lorentz-
FitzGerald contraction] [...] [I]n Lorentz’s theory the class of ether-fixed reference systems is
not equivalent to the class of inertial systems, whereas in Einstein’s theory of relativity of
1905 this asymmetry does not exist. This lack of symmetry in Lorentz’s theory between
different sets of space-time coordinates results in a lack of symmetry in the observation of the
contraction. (Miller 1974, pp. 42–43)

                                                
111 Earlier in his book, Lorentz puts length contraction on a par with the expansion of an object or a gas upon
heating it: “We may, I think, even go so far as to say that that, on this assumption [i.e., the contraction
hypothesis], Michelson’s experiment proves the changes of dimension in question, and that the conclusion is no
less legitimate than the inferences concerning the dilatation by heat or the changes of the refractive index that
have been drawn in many other cases from the observed positions of interference bands” (Lorentz 1916, p. 196).
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Fortunately, there is a beautifully simple three-page paper by Dorling (1968) providing an

elementary discussion of this point. The analysis I gave above was, in fact, based on Dorling’s

paper.112 Dorling writes that a theory based on the notion of a stationary ether predicts that “the

                                                
112 Dorling’s analysis does not take care of a more subtle argument to be found in the literature challenging the
empirical equivalence of Lorentz’s theory and special relativity in their predictions for the effects of length
contraction.

The clearest statement of this more subtle argument that I have come across can be found in Feyerabend’s
critique of Zahar. In response to Zahar’s claim that by 1905 Lorentz’s theory is empirically equivalent to special
relativity, Feyerabend writes: “This is not true. Even in 1905 (or in 1906, 1907, ...) equivalence had been
established for equilibrium states only: if contractions and dilatations of length, time, changes of mass are the
results of an interaction between the aether and the molecules embedded in it, then any change of velocity
relative to the aether will lead to oscillations. Relativity, on the other hand, knows of no such oscillations. It
was only in 1936 that this consequence of L ′ [Feyerabend’s notation for the hard core of Lorentz’s research
programme as defined by Zahar: one would think he needs an actual theory here, one incorporating the
contraction hypothesis, rather than just the hard core, but that is unimportant for our purposes here] was tested,
and refuted by Wood, Tomlison, and Essen [1937]” (Feyerabend 1974, p. 28; my italics). The experiment is also
cited by Torretti (1983, p. 292, note 33) in this context. I am grateful to John Earman for drawing my attention
to this particular challenge to the empirical equivalence of special relativity and Lorentz’s theory.

Whittaker has a very different assessment of the Wood-Tomlison-Essen experiment. Describing the
experiment in a few sentences taken almost verbatim out of the conclusion of the experimenters’ paper (Wood,
Tomlison, and Essen 1937, p. 633), he writes: “a rod in longitudinal vibration was rotated in a horizontal plane,
so that its length varied periodically by reason of the FitzGerald contraction. Accurate measurements were made
of the vibration frequency, which would have varied with the length, if the length only had been affected.
According to relativity theory, however, there should be a complete compensation of the contraction in length,
by a modification of the elasticity of the rod according to its orientation with respect to the direction of its
motion, so that no change of frequency should be observed. [...] The experiment yielded a null result within
narrow limits of uncertainty of about ± 4 parts in 1011, thus fully confirming the prediction of the Poincaré-
Lorentz theory of relativity” (Whittaker 1953, II, p. 43; my emphasis).

How did the experimenters themselves understand the importance of their experiment? Did they see it the way
Whittaker saw it or the way Feyerabend saw it? Given Whittaker’s lack of appreciation of Einstein’s work in
special relativity (see the introduction to part two), one might suspect the latter. This suspicion is reinforced by
the fact that on the same page he discusses the papers of Kennedy and Thorndike (1932) and Robertson (1949)
that I discussed earlier, where the authors’ explicit motivation was to establish the superiority of special
relativity over Lorentz’s theory. It turns out, somewhat surprisingly perhaps, that Whittaker’s assessment of the
Wood-Tomlison-Essen paper is essentially correct, and that Feyerabend and Torretti are the ones who are reading
things into this paper that on closer examination simply are not there.     

The Wood-Tomlison-Essen paper consists of two parts, a three-page introduction written by Wood, giving
the motivation for the experiment, and a lengthy report of the experimental findings written by Tomlison and
Essen. For our purposes only the introduction matters. In the first paragraph, Wood mentions Lorentz’s
interpretation of the Lorentz contraction as a dynamical effect (giving Lorentz’s favorite analogy with the
expansion of a rod upon heating it). The third paragraph starts with: “If this change of length is real, as Lorentz
supposes, an interesting problem arises for a rod vibrating longitudinally” (Wood, Tomlison, and Essen 1937,
p. 606). On the basis of Feyerabend’s discussion of their experiment, one now expects Wood to commit the
common beginners’ blunder of claiming that, in special relativity, the change of length is not real. This basic
misunderstanding seems to have persisted long after Einstein and Ehrenfest unambiguously set the record
straight in 1910–1911 (see Klein 1970, pp. 152–154). Wood, however, does nothing of the sort. He goes on to
argue, as one would expect on the basis of the almost verbatim paraphrase of his two colleagues’ conclusion by
Whittaker, that the relativity principle requires a compensating effect. And, contrary to the suggestion by
Feyerabend, Wood does not make a clear distinction between the relativistic and the ether theoretic way of
looking upon these two effects. This last point is clearly illustrated, I think, in the following footnote: “The
alternative explanation, that neither length nor elasticity change, would, of course, be completely at variance
with the FitzGerald-Lorentz theory and would require a stationary ether” (Wood, Tomlison, and Essen 1937, p.
607; my emphasis). This is a complex yet very revealing statement. It shows (a) that Wood looked upon the
changes of length and elasticity required by the relativity principle as dynamical effects, just as Lorentz would
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rod at rest in the ether would appear expanded if measured with the measuring rod of the

moving system provided the clocks of the moving system are correctly synchronized according

to a Lorentzian prescription [i.e., according to the real Newtonian time]” (Dorling 1968, p. 67;

italics in the original) and that it “would appear contracted if measured with the measuring rod

of the moving system provided the clocks of the moving system are correctly synchronized

according to a Einsteinian prescription [i.e., according to the local time]” (ibid.; italics in the

original). The proof of the first claim, Dorling writes, is “genuinely trivial,” while the proof of

the second claim is “a moderately easy exercise in special relativity” (ibid., p. 68). This is no

exaggeration.

�Suppose we have a rod at rest in the ether pointing in the x-direction of the frame S0 and

having length l0 for an observer at rest in the ether. A moving observer, at rest in a frame S with

velocity v with respect to S0, who wants to measure the length l′ of this rod, will have to

determine the positions x′P and x′Q of the end points of the rod at the same instant. The Lorentz

transformation from the space-time coordinates (x0, t0) of these two events in S0 to their space-

time coordinates (x′, t′) in S gives:

l′ = x′P – x ′Q = γ x0
P – x0

Q – v t0
P – t0

Q ,

    

t′P – t′Q = γ t0
P – t0

Q – v
c2

 x0
P – x0

Q .

(3.147)

For x0
P – x0

Q we can insert l0 in these equations.

If the clocks in S are synchronized according to the real Newtonian time, we have t0
P – t0

Q =

0, and the first equation in Eq. 3.147 reduces to

l′ = γ l0, (3.148)

i.e., the rod at rest in the ether will appear expanded to the moving observer.

If the clocks in S are synchronized according to the local time, we have t′P – t′Q = 0, and the

second equation in Eq. 3.147 can be used to rewrite the first as

l′ = γ l0 – (v 2/c2) l0  = l0/γ, (3.149)

                                                                                                                                                      
have done; and (b) that he did not think of the Wood-Tomlison-Essen experiment as refuting the “FitzGerald-
Lorentz theory,” despite the fact that (c) he did not believe in the existence of an ether!

In short, Whittaker’s assessment of the Wood-Tomlison-Essen paper is pretty much correct—including the
conflation of Einstein’s and Lorentz’s theories he implicitly ascribed to the authors and that one would suspect
to be a reflection of Whittaker’s own biases only—while Feyerabend’s assessment is highly misleading at best.
Even if the Wood-Tomlison-Essen experiment does distinguish between the theories of Lorentz and Einstein
(and given the authority of Feyerabend, Torretti, and Earman, this is something that calls for further analysis, I
guess), the experimenters themselves certainly did not think so.
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i.e., the rod at rest in the ether will appear contracted to the moving observer.

Dorling leaves open the question whether Lorentz has the moving observer synchronizing

his clocks according to real or according to local time. From Lorentz’s discussion in The theory

of electrons, it is clear that Lorentz opted for the latter alternative. In the conclusion of his paper,

Dorling nonetheless writes:

I have certainly never seen a clear statement of the theory I have been here attributing to
Lorentz in his own writings. The best evidence I have come across that Lorentz did eventually
hold a theory empirically precisely equivalent to Einstein’s is contained in the following
comment of P. Ehrenfest in the course of a lecture to an audience whose most distinguished
member was Lorentz, the year after Ehrenfest had succeeded to Lorentz’s chair at Leyden on
Lorentz’s recommendation. (Dorling 1968, p. 69)

Dorling then quotes the following passage from Ehrenfest’s inaugural lecture entitled “On the

crisis of the light ether hypothesis” held in Leiden on December 4, 1912 (vividly described in

Klein 1970, pp. 1–5):

So, we see that the ether-less theory of Einstein demands exactly the same here as the ether
theory of Lorentz. It is, in fact, because of this circumstance, that according to the Einsteinian
theory an observer must observe the exact same contractions, changes of rate, etc. in
measuring rods, clocks, etc. moving with respect to him as according to the Lorentzian
theory. And let it be said here right away and in all generality. As a matter of principle, there
is no experimentum crucis between these two theories. (Ehrenfest 1913, pp. 17–18; quoted in
Dorling 1968, p. 69)

Unlike Dorling, I do not see any reason for suspecting ulterior motives behind this statement of

Ehrenfest. For one thing, this would be totally out of character for someone of Ehrenfest’s

almost painful intellectual integrity (amply documented in Klein 1970). However, if, for some

reason, one does not want to take Ehrenfest’s word for it, one can actually find a very clear

discussion of the reciprocal character of the measurement of the length of rods and the rate of

clocks in Lorentz’s own lectures on relativity in 1910–1912 (Lorentz 1922, pp. 202–203). As

we will see below, Lorentz clearly understood this discussion to be valid both in Einstein’s

theory and his own.

In the last section of The theory of electrons, Lorentz also emphasized the empirical

equivalence of his own theory and special relativity. Given the importance of this section for

appreciating Lorentz’s attitude toward special relativity, I want to quote it in its entirety.

It will be clear by what has been said that the impressions received by the two observers A0
and A would be alike in all respects. It would be impossible to decide which of them moves or
stands still with respect to the ether, and there would be no reason for preferring the times and
lengths measured by the one to those determined by the other, nor for saying that either of
them is in possession of the “true” times or the “true” lengths. This is a point which Einstein
has laid particular stress on, in a theory in which he starts from what he calls the principle of
relativity, i. e. the principle that the equations by means of which physical phenomena may
be described are not altered in form when we change the axes of coordinates for others having a
uniform motion of translation relatively to the original system.
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I cannot speak here of the many highly interesting applications which Einstein has made
of this principle. His results concerning electromagnetic and optical phenomena (leading to the
same contradiction with Kaufmann’s results that was pointed out in §179[113]) agree in the
main with those which we have obtained in the preceding pages, the chief difference being that
Einstein simply postulates what we have deduced, with some difficulty and not altogether
satisfactorily, from the fundamental equations of the electromagnetic field. By doing so, he
may certainly take credit for making us see in the negative result of experiments like those of
Michelson, Rayleigh and Brace, not a fortuitous compensation of opposing effects but the
manifestation of a general and fundamental principle.

Yet, I think, something may also be claimed in favour of the form in which I have
presented the theory. I cannot but regard the ether, which can be the seat of an electromagnetic
field with its energy and its vibrations, as endowed with a certain degree of substantiality,
however different it may be from all ordinary matter. In this line of thought it seems natural
not to assume at starting that it can never make any difference whether a body moves through
the ether or not, and to measure distances and lengths of time by means of rods and clocks
having a fixed position relatively to the ether.

It would be unjust not to add that, besides the fascinating boldness of its starting point,
Einstein’s theory has another marked advantage over mine. Whereas I have not been able to
obtain for the equations referred to moving axes exactly the same form as for those which
apply to a stationary system, Einstein has accomplished this by means of a system of new
variables slightly different from those which I have introduced. I have not availed myself of
his substitutions, only because the formulae are rather complicated and look somewhat
artificial, unless one deduces them from the principle of relativity itself.[114] (Lorentz 1916,
pp. 229–230).

3.5.6 The transformation of charge and current density and the solution of the

problem of non-static charge distributions. The last sentence of the long quotation I just

gave refers to Einstein’s derivation of the transformation equations for charge and current

density in his first relativity paper (Einstein 1905a, section 9, pp. 916–917). We need to take a

close look at these transformation equations to fully appreciate Lorentz’s point here. In doing

so, we will also see how Lorentz eventually solved what I called the problem of non-static

charge distributions in the footnote he appended to this passage in the second edition of The

theory of electrons of 1916.

Consider a charge distribution at rest with respect to a Galilean frame S with velocity v with

respect the frame S0 at rest in the ether. Before 1905, Lorentz tacitly assumed that an observer in

S and an observer in S0 would agree on the quantity ρ representing the charge density of this

charge distribution, even though the observer in S would write ρ as a function of (t, x) whereas

the observer in S0 would write ρ as a function of (t0, x0). Similarly, he tacitly assumed that the

velocity fields these two observer would use in the expression for the current density of the

moving charge distribution would differ only by a term v. For the observer in S, the current

                                                
113 It is at this point in the second edition of the book, that Lorentz added the footnote referring to the
experiments of Bucherer, Guye and Lavanchy, and others that I mentioned in section 3.4.
114 In the second edition, Lorentz added the footnote I quoted above starting with: “If I had to write the last
chapter now, I should certainly have given a more prominent place to Einstein’s theory of relativity” (Lorentz

1916, p. 321, note 72*).
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density would be given by ρu as a function of (t, x), where u is a velocity with respect to S; for

the observer in S0, it would be given by ρ(u + v) as a function of (t0, x0).

Once we have come to realize, as Lorentz did after 1905, that an observer in S actually

measures (t′, x′) rather than (t, x), we have to be more careful. Consider the velocity field in the

current density first. Let u′ denote velocities measured by an observer in S, using measuring

rods that are contracted and clocks that run slow and are not properly synchronized. The

relation between such velocities u′ with respect to S according to an observer in S to the

corresponding velocities u with respect to S according to an observer in S0 can be found with

the help of the transformation equations for (t, x) → (t′, x′) in Eq. 3.54 (for l = 1) or Eq. 3.136

and its inverse.

First, I will express u′ in terms of u. For the x-component of u′ we can write

u′x  =  
dx ′

dt′
  =  

γdx

dt/γ – γ(v/c2)dx
  =  

γ2ux

1  –  γ2uxv

c2

. . (3.150)

For the y- and z-components, we likewise find

u′y  =  
γuy

1  –  γ2uxv

c2

 ,      u′z  =  
γuz

1  –  γ2uxv

c2

 . (3.151)

Eqs. 3.150–3.151 can be more compactly written as

u′ =  
γ

(1 – γ2uxv/c2)
 diag(γ, 1, 1) u. (3.152)

It will be convenient to write down the relations expressing u in terms of u′ as well. Using the

inverse of the transformation (t, x) → (t′, x′), i.e.,

x = x ′/γ,    y = y ′,    z = z′,    t = γ (t′ + (v/c2)x′), (3.153)

we can write

ux  =  dx
dt

  =  
dx ′/γ

γ dt′ + (v /c2)dx ′
  =  

u′x

γ2 1 + u′xv/c2
,

uy  =  
u′y

γ 1 + u′xv/c2
 ,      uz  =  

u′z

γ 1 + u′xv/c2
, (3.154)
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or, in more compact notation,115

u =  1
γ (1 + u′xv/c2)

 diag(1/γ, 1, 1) u′. (3.155)

If Maxwell’s equations are to hold for the observer in S, we should have

div ′E′ = ρ′/ε0,     curl ′B ′ = µ0ρ′u′ + 1
c2

∂E′

∂t′
, (3.156)

where E′, B′, ρ′, and u′ are all functions of (t′, x′). Compare this to the equations for div ′ E′ and

curl′ B′ Lorentz derived (see Eq. 3.56 (for l = 1) and Eq. 3.134):

div ′ E′ = 
ρ

γε0
 1 – γ2 v ux

c2
,

curl′ B′ = µ0diag(γ, 1,  1)ρu + 1
c2

∂E′

∂t′
 .

(3.157)

Comparing the equations for div ′ E′ in Eqs. 3.156–3.157, we see that if Maxwell’s equations

are to hold for the observer in S, we should have

ρ′ = 
ρ
γ

 1 – γ2 v ux

c2
. (3.158)

It is easily seen that with Eq. 3.158 for ρ′ and Eq. 3.152 for u′, the equations for curl′B ′ in Eqs.

3.156–3.157 also become equivalent:

                                                
115 Since u is a velocity with respect to S  according to the observer in S0, and since S  has velocity v  with
respect to S0, the velocity with respect to S0 according to the observer in S0 will simply be u + v . Inserting
Eqs. 3.154–3.155 for u into the expression u + v , we find the familiar relativistic addition theorem of
velocities. Consider, for instance, the x-component:

ux + v = v  +  u′x
γ2  1 + u′x v/c2

 =
v γ2 1 + u′x v/c2  + γ2 (1 – v 2/c2)u′x

γ2  1 + u′x v/c2

 = v +u′x
1 + u′x v/c2

 .

This clearly shows that the peculiar form of the addition theorem simply comes from the fact that we are adding
velocities measured by different observers.
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ρ′u′ = 
ρ
γ

 (1 – γ2uxv/c2) 
γ diag(γ, 1, 1) u

(1 – γ2uxv/c2)
 = diag(γ, 1, 1) ρu. (3.159)

The transformation equations for (ρ, ρu) → (ρ′, ρ′u′) that one can read off from Eqs.

3.156–3.157, i.e.,

ρ′ = 
ρ
γ

 1 – γ2 v ux

c2
,      ρ′u′ = diag(γ, 1,  1)ρu, (3.160)

are in accordance with the fact that (ρ′c, ρ′u′) are the components of a four-vector (cf. Eq.

3.58).

This determination of the relation between the charge density ρ′ measured by an observer in

S and the charge density ρ measured by an observer in S0 by comparing the equations for

div ′ E′ in Eqs. 3.156–3.157 is satisfactory only if we already know that Maxwell’s equations

are Lorentz invariant. Since Einstein in 1905 wanted to prove the Lorentz invariance of

Maxwell’s equations, he should have given an independent argument for the relation between

ρ′ and ρ. Instead, Einstein derived this relation, as Lorentz correctly points out in the passage I

quoted above, “from the principle of relativity itself,” i.e., he used that Maxwell’s equations are

compatible with the two basic postulates of his theory, rendering his proof of the Lorentz

invariance of Maxwell’s equations circular. The problem is easily fixed. In his paper “On the

dynamics of the electron,” Poincaré, working independently of Einstein, gave an impeccable

derivation of the relativistic transformation law for charge density (Poincaré 1906, pp. 151–152;

quoted and discussed in Miller 1973, pp. 251–252). Lorentz does not refer to this important

contribution of Poincaré in this passage in The theory of electrons. In the footnote he appended

to this passage in the second edition of 1916, Lorentz gives a derivation of the relation between

ρ′ and ρ which is mathematically equivalent to Poincaré’s 1906 derivation, again without citing

Poincaré.

Before I go through Lorentz’s derivation, I need to address another notorious muddle in the

literature on Lorentz’s theorem of corresponding states, a muddle for which, once again,

Poincaré seems largely responsible. Notice that Lorentz refers to Einstein’s “new variables

slightly different from those which I have introduced” (Lorentz 1916, p. 230). Both in his

famous 1904 paper (Lorentz 1904b, p. 176, Eqs. (7)–(8)) and in The theory of electrons

(Lorentz 1916, p. 197, Eqs. (289)–(290)), Lorentz had introduced the auxiliary variables

ρ′ ≡ ρ/γl3,       u′ ≡ diag(γ2, γ, γ) u. (3.161)

The quantity ρ′ comes into play in Lorentz’s treatment of electrostatics (see Eq. 3.47 (with l =

1) and Eq. 3.60). The rationale for the definition of u′ is that it gives
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ρ′u′ = diag(γ/l3, 1/ l3, 1/ l3) ρu, (3.162)

so that the equation for curl′B ′ gets the same form as the corresponding Maxwell equation (cf.

Eq. 3.56). After deriving transformation equations equivalent to the ones in Eq. 3.160, Poincaré

writes: “Here I must for the first time indicate a disagreement with Lorentz’s analysis”

(Poincaré 1906, p. 152). Poincaré proceeds to show that with the definitions of ρ′ and u′ in Eq.

3.161, the continuity equation ∂ρ′/∂t′ + div ′ρ′u′ = 0 is not satisfied. If we want to interpret

ρ′ and ρ′u′ as the charge and current density measured by the moving observer, as Poincaré did

and as Lorentz would do after 1905, this obviously shows that Lorentz’s Eq. 3.161 is wrong

and that the correct equation is Poincaré’s Eq. 3.160. But, in 1904, Lorentz attached as little

physical meaning to ρ′ and u′ as he did to t′, x′, E′, and B′. In the words of Robert Rynasiewicz:

“The claim that Lorentz had [...] the wrong formula for the transformation of charge density

and that Poincaré corrected it, rests on a misunderstanding of the strategy involved [i.e.,

Lorentz’s strategy of corresponding states in its pre-1905 version]. One is free to stipulate

definitions as one pleases” (Rynasiewicz 1988, p. 73).

Rynasiewicz does not give any references to authors making this claim, but the confusion is

wide spread. Miller (1973, p. 252), in discussing Poincaré 1906, for instance, accepts

Poincaré’s misguided criticism of Lorentz at face value. Zahar (1973, p. 233) talks about

“Lorentz’s mistake in the transformation equation of ρ” (Zahar’s italics).116 Holton has

described Lorentz’s definitions of ρ′ and u′ in Eq. 3.161 more accurately as a “striking flaw”

(Holton 1969, p. 321). In support of this assessment, Holton quotes a footnote Lorentz added

to the German translation that was made of Lorentz 1904b for inclusion in Blumenthal 1913.117

Lorentz wrote:

One will notice that in this work [i.e., Lorentz 1904b] the transformation equations of
Einstein’s Relativity Theory have not quite been attained. Neither equation (7) [i.e, the
equation for ρ′ in Eq. 3.161] nor formula (8) [i.e, the equation for u ′ in Eq. 3.161] has the
form given by Einstein, and as a result I was unable to make the term –wu′x/c 2 [i.e., in my
notation, –γ2vux/c 2] in equation (9) [i.e., Eq. 3.56] disappear and to put equation (9) exactly
in the form which holds for a system at rest [i.e., Maxwell’s equations]. On this circumstance
depends the clumsiness of many of the further considerations in this work. It is owing to

                                                
116 Zahar does make an interesting point in this context. He emphasizes the physical interpretation of the
difference between Lorentz’s Eq. 3.161 for ρ′ and ρ′u′ and Poincaré’s Eq. 3.160, when both equations are
understood as purporting to represent the charge and current density measured by the moving observer. When
evaluated from this point of view, Lorentz only takes into account length contraction and time dilation and fails
to take into account the relativity of simultaneity, whereas Poincaré deals with all three effects. The effect of the
relativity of simultaneity is, of course, precisely what is responsible for Lorentz’s impression that these
equations (which Lorentz took from Einstein 1905a rather than from Poincaré 1906) “are rather complicated and
look somewhat artificial, unless one deduces them from the principle of relativity itself” (Lorentz 1915, p. 230).
117 For the English translation of this volume (Lorentz et al. 1952), the English version in the Proceedings of
the Amsterdam Academy was used and this very important footnote was overlooked.
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Einstein that the relativity principle was first announced as a general strictly and exactly valid
law. (quoted (in translation) in Holton 1969, p. 321)

I will now go through a somewhat more intuitive version of the derivation of Eq. 3.158 for

ρ′ that Lorentz included in the second edition of The theory of electrons (Lorentz 1916, note

72*, pp. 324–325).

Consider Fig. 3.9. An observer in S, moving through the ether at a velocity v = (v, 0, 0),

wants to determine the charge density ρ′ at the origin O of S at (local) time t′ = 0. To this end,

he considers a small box with sides of length ∆x′, ∆y′, and ∆z′ around O, and he determines the

total amount of charge ∆q enclosed by that box at time t′ = 0. Assuming that ρ′ and u′ are

continuous functions of (t′, x′), we can take ρ′ and u′ to be constant inside the box, provided

∆x′, ∆y′, and ∆z′ are chosen small enough. The charge density ρ′ at O at time t′ = 0 for the

observer in S is given by:

ρ′(x ′=0, t′=0) = 
∆q

∆x′∆y′∆z′
(3.163)

An observer in S0 will not agree with the observer in S that this is the charge density at this

particular point in space and time. The observer in S0 will complain that the observer in S uses

measuring rods that are contracted and clocks that run slow and that are not properly

synchronized in his determination of the volume of the box occupied by the charge distribution

with total charge ∆q under consideration at the moment the moving clock at O reads t′ = 0. For

the observer in S0, the charge distribution occupies a box of a somewhat different shape than the

box the observer in S claims it occupies, and the volume of that slightly different box should be

determined with uncontracted measuring rods.

x′

R
u′

v

t′ = 0

∆q

y′

F

z′

Figure 3.9: The transformation of charge density.
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Fig. 3.9 shows the front and rear ends of the charge distribution (indicated by the shading in the

figure) at t′ = 0. So, in real time the front end is shown at

tF = γ t′F + (v/c2)x′F = γ(v/c2)
∆x′
2

, (3.164)

where I used Eq. 3.153 for the transformation (t′, x′) → (t, x); the rear end is shown at

tR = γ t′R + (v/c2)x′R = –γ(v/c2)
∆x′
2

. (3.165)

So, Fig. 3.9 shows the front end at t > 0 and the rear end at t < 0. At t = 0, the front end would

have been to the left of the point labeled F in the figure, and the rear end would be to the right of

R. It is easy to calculate by how much. Recall that we are assuming that u′ and therefore u (see

Eq. 3.155) are constant inside the box. So, between t = 0 and t = γ(v/c2)∆x′/2, the front end of

the charge distribution moves a distance

γ 
v ux∆x′

2c2
, (3.166)

and the rear end moves that same distance between t = –γ(v/c2)∆x′/2 and t = 0. So, for the

observer in S0, the length ∆x of the box enclosing the charges considered by the observer in S is

∆x  =  
∆x′

γ
  –  γv ux

c2
∆x′  =  

∆x′
γ

 1 – γ2 v ux

c2
 . (3.167)

Eq. 3.167 can be rewritten as

∆x′  =  
γ∆x

1 – γ2 v ux

c2

 . (3.168)

Inserting Eq. 3.168 into Eq. 3.163 for ρ′, along with ∆y′ = ∆y and ∆z′ = ∆z, we find

ρ′(x ′=0, t′=0) = 
∆q

∆x ∆y ∆z
 1
γ

 1 – γ2 v ux

c2
 . (3.169)

For the observer in S0, the charge density at this particular point in space and time is:

ρ(x= x ′=0, t= t′= 0) = 
∆q

∆x ∆y∆z
. (3.170)
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Inserting Eq. 3.170 into Eq. 3.169 and suppressing the dependence on the space-time

coordinates, we find

ρ′ = 
ρ
γ

 1 – γ2 v ux

c2
. (3.171)

This is just Eq. 3.158, which Einstein inferred directly from the Lorentz invariance of

Maxwell’s equations.

With this result, Lorentz’s theory for the electrodynamics of moving bodies has at last

reached its final form. The technique of corresponding states now works to solve any problem

of the following form:

Given ρ′ and ρ′u′ (the charge and current densities measured by an observer in

S, a frame moving through the ether at some constant velocity v) as functions of

x′ and t′ (the space and time coordinates measured by the observer in S) find E′

and B′ (the electric and magnetic fields measured by the observer in S) as

functions of x′ and t′.

Since the primed quantities satisfy Maxwell’s equations, this problem is fully equivalent to

solving the identical problem in a frame at rest in the ether. In principle, one can use the

definitions of the primed quantities to compute the corresponding real quantities. However,

since the observer in S has no way of ascertaining his velocity v with respect to the ether and

might as well pretend to be at rest in the ether, these real quantities are no longer of any real

interest.

3.5.7 Lorentz’s arguments for preferring his own theory over Einstein’s. As we already

saw, the final section of The theory of electrons contains one short paragraph where Lorentz

states his reasons for preferring his own ether theory over Einstein’s ether-less theory.118 In his

                                                
118 Despite unequivocal textual evidence that Lorentz continued to believe in absolute simultaneity and a
classical ether to the end of his life, there is no unanimous consensus in the secondary literature that he did.
Zahar, for instance, has claimed that around 1914, Lorentz accepted special relativity. The following passage
shows some of the (for the most part actually quite subtle) historical misunderstandings that add up to this
conclusion: “... why was [Lorentz] not quickly converted to Relativity (he was of course finally converted
around 1914)? In my opinion, it is because he had good empirical reasons for not accepting Maxwell’s equations
as fully covariant. In [the first edition of The theory of electrons (Lorentz 1916)] he mentioned Kaufmann’s
results as constituting serious evidence against the Relativity Principle. In the same book he reproduced his
1904 results [the transformation equations for charge and current density, I take it] without taking account of the
corrections which Poincaré published in his [Poincaré 1905]. These corrections would have made Lorentz’s
electrodynamics Lorentz-covariant and hence indistinguishable from Einstein’s. As soon as Lorentz found good
reasons—such as the result of Bucherer’s experiment [Bucherer 1908]—for accepting the covariance of
Maxwell’s equations, he realized that the ether had lost all heuristic value and consequently joined the relativistic
camp. This conversion is clearly expressed in [Lorentz 1914] and in the footnotes to the 1915 edition of the
Theory of Electrons” (Zahar 1978, pp. 50–51). This passage clearly illustrates, I think, how hard it is to
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lectures on special relativity in Leiden in 1910–1912, published in 1922 under the title “The

principle of relativity for uniform translations” (edited by Lorentz’s former student Adriaan D.

Fokker), Lorentz gave a more elaborate version of the arguments in this paragraph.

After showing, in somewhat more intuitive terms than in The theory of electrons, that two

observers A and B at rest with respect to different inertial frames will find identical results in all

experiments they perform, Lorentz explains that one can have two attitudes to the dispute

between these observers as to whom is really at rest in the ether:

With regard to such a dispute between A  and B, tending to decide whose space-and-time
determination deserves to be considered as based upon the absolute aether, two different
attitudes are possible.

There is a plurality of co-ordinate systems x, y, z, t; x ′, y ′, z′, t′, etc., such that a
phenomenon can be described in terms of each of them by the same equations. All these
systems can be derived from each other by certain transformations. All these transformations
form what is called a group.

Now, one possible point of view is to say that among all these systems there is one
which in some respects is above all the others. Although it may be impossible to make out
which it is, yet it is theoretically conceivable that a privileged co-ordinate-and-time system can
be assigned.

According to the other point of view all these systems are perfectly equivalent, and it is
meaningless to say that there is one among them which in certain respects differs from the
others.

The dilemma is closely connected with what one thinks of the aether. (Lorentz 1922, p.
208)

In the next two subsections of Lorentz’s 1910–1912 lectures, numbered 2.81 and 2.82, Lorentz

pursues two rather different lines of thought that lead him to the “privileged co-ordinate-and-

time system” mentioned in the passage quoted above, a frame of reference which is at rest in

the ether and which can be used to decide on the true simultaneity of events. From a modern

point of view, neither of these two arguments are cogent, of course. However, the first is much

better than the second. I will examine both arguments.

The first argument starts immediately after the passage just quoted. Lorentz elaborates on

what he thinks about the ether:

The aether has been introduced in order that it may serve as a substratum, originally, for
light, and later also for the electromagnetic phenomena. The need was felt for something
substantial as the bearer of electromagnetic energy [...]

[...] The aether was gradually deprived of various attributes of matter and, finally, during
the last ten years the prevailing opinion was that the less we assume about it the better. The
aether has to serve only as the bearer of electromagnetic phenomena [...] (Lorentz 1922, pp.
208–209)

                                                                                                                                                      
straighten out complicated historical misunderstandings. Comparing Zahar’s remarks to my discussion of (a)
Lorentz’s attitude toward Kaufmann’s experiment, (b) the problem concerning the transformation of charge
density, and (c) the importance of distinguishing between the Lorentz invariance of Maxwell’s equations (with
and without sources) and the Lorentz invariance of the laws governing non-electromagnetic systems, the reader
will see that none of Zahar’s remarks are really accurate, although some of them do not miss by much. To
borrow an analogy from John Norton: if you use stones that are all slightly askew, you end up with a house
that is badly askew.
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This is a very strong and time-honored argument. As we will see below, even Einstein would

eventually come to accept it. A particularly clear version of the argument, albeit it in the context

of optics rather than in the context of electrodynamics in general, is given by Maxwell in his

article “Ether” for the ninth edition of the Encyclopaedia Britannica of 1875:119

Function of the æther in the propagation of radiation.—The evidence for the undulatory
theory of light will be given in full, under the Article on LIGHT, but we may here give a brief
summary of it so far as it bears on the existence of the æther.

That light is not itself a substance may be proved from the phenomenon of interference.
A beam of light from a single source is divided by certain optical methods into two parts, and
these, after travelling by different paths, are made to reunite and fall upon a screen. If either
half of the beam is stopped, the other falls on the screen and illuminates it, but if both are
allowed to pass, the screen in certain places becomes dark, and thus sh[o]ws that the two
portions of light have destroyed each other.

Now, we cannot suppose that two bodies when put together can annihilate each other;
therefore light cannot be a substance. What we have proved is that one portion of light can be
the exact opposite of another portion, just as +a is the exact opposite of –a, whatever a may
be. Among physical quantities we find some which are capable of having their signs reversed,
and others which are not. Thus a displacement in one direction is the exact opposite of an
equal displacement in the opposite direction. Such quantities are the measures, not of
substances, but always of processes taking place in a substance. We therefore conclude that
light is not a substance but a process going on in a substance, the process going on in the
first portion of light being always the exact opposite of the process going on in the other at
the same instant, so that when the two portions are combined no process goes on at all.
(Niven 1952, pp. 764–765)

Variants of Lorentz’s and Maxwell’s argument are routinely rehearsed by modern philosophers

of space and time. It is perhaps the single most important argument in favor of manifold

substantivalism in the context of field theories. John Earman, for instance, writes, rephrasing a

point made by Hartry Field:

When relativity theory banished the ether, the space-time manifold M  began to function as a
kind of dematerialized ether needed to support the fields. In the nineteenth century the
electromagnetic field was construed as the state of a material medium, the luminiferous ether;
in postrelativity theory it seems that the electromagnetic field, and indeed all physical fields,
must be construed as states of M. In a modern, pure field-theoretic physics, M functions as the
basic substance, that is, the basic object of predication. (Earman 1989, p. 155)

However, the next step in Lorentz’s argument is easily seen to be fallacious from a modern

point of view. Lorentz tacitly assumes that the space-time structure that has to be given some

substantiality in order to serve as a substratum for the electromagnetic field has to be the

Newtonian space-time structure. This is obviously false. What has to be given some

substantiality, in modern terms, are points of the bare manifold. Lorentz’s argument for

substantivalism tells us nothing about the geometric object fields defined on the manifold and

encoding the space-time structure. In other words, even if we insist on having some substratum

                                                
119 I am grateful to John Norton for drawing my attention to this passage.
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for the electromagnetic field (which is perfectly reasonable), a Minkowski space-time would

serve the purpose just as well as a Newtonian space-time. Not surprisingly, given that he did not

think of space-time in terms of differentiable manifolds dressed up with metric fields and affine

connections, Lorentz felt that his substantivalist argument could be used to make it respectable

to cling on to the Newtonian space-time structure. In the paragraph immediately following the

passage I quoted above, he writes:

How much substantiality should we, then, attribute to the aether? Let us leave it so much
substantiality as to be able to say with some significance that things can move or be at rest
with respect to it. It will then be possible to lay in the aether a co-ordinate system which will
differ from all others just by being fixed in the aether, and the time corresponding to this
privileged system could be called the absolute time or, simply, the time. But then it would no
longer be a priori certain that all other co-ordinate systems are as good, and that there are
corresponding phenomena which can always be described in any of these systems by means of
the same equations. In fine [sic], the validity of the principle of relativity would then assume a
special character and could not be predicted a priori or expected.

But if one insists that it is meaningless to speak of something being fixed in or moving
through the aether, in fine [sic], if one abolishes the aether to the extent that not even a co-
ordinate system can be laid down in it, then there is no possibility left to assign a system
which would in some respect differ from the other systems. Then indeed all systems x, y, z, t
and x ′, y ′, z′, t′, etc., become equivalent. Conversely, if this equivalence is assumed at the
outset, the aether must be entirely abandoned. (Lorentz 1922, p. 209; italics in original)

Einstein, of course, did assume the equivalence Lorentz is talking about from the outset. Hence,

what Lorentz claims here is that, on Einstein’s view, we cannot have a substratum for the field.

Again, from a modern point of view, it is easily seen that this conclusion does not follow at all.

However, it is my impression that, in the period under consideration (from, say, 1909 till 1912),

it was widely accepted that it does. The disagreement only appears to have been about whether

the alleged incompatibility of special relativity and what, in modern philosophy of space and

time, would be called manifold substantivalism constituted a serious problem for special

relativity or not. For Lorentz, it obviously did; for Einstein it did not. Lorentz was not alone in

his assessment that this is a problem for special relativity. In his inaugural lecture in Leiden,

from which I already quoted above, Ehrenfest, one of Einstein’s early allies in special relativity,

indicates that he finds this aspect of the theory hard to swallow. Ehrenfest contrasts Lorentz’s

ether theory with the emission theory of the late Walther Ritz, a friend of Ehrenfest from his

days in Göttingen (Klein 1970, p. 5, p. 41). Ehrenfest emphasizes that in Ritz’s theory, one has

no trouble imagining light propagating through empty space without an ether. He then says

But please notice that something entirely different is asked of us when we are admonished
to deny the ether in the Einsteinian sense. In that case, we are asked to subscribe to the
following three articles:

1. Light sources throw light signals at us as independent structures in empty space.
2. For light rays from a source which is approaching us and another which is at rest with

respect to us we would find, upon actual measurement, the same velocity.
3. We declare that the combination of these two assertions satisfies us. (Ehrenfest 1913.

p. 19; discussed and partly quoted and translated in Klein 1970, p. 5)
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As Martin Klein points out in his discussion of Ehrenfest’s lecture: “Ehrenfest did not discuss

the basic revision of the concepts of space and time that lay at the heart of Einstein’s theory; he

limited himself to pointing out that the results of the relativity theory were indistinguishable

from those obtained by Lorentz, despite the fundamentally different logical structures of the two

theories” (Klein 1970, p. 5).

This underscores that we have to be careful using our modern understanding of Minkowski

space-time in assessing the understanding of special relativistic space-time in the period

1909–1912 under consideration. We have to keep in mind that the transition from Newtonian

space-time to relativistic space-time which Einstein proposed in his 1905 paper was not

conceptualized in terms of a transition from one metric on the manifold to another, not even by

Minkowski himself.

As a mathematician, Minkowski worked in the tradition of the so-called Erlangen program

of his Göttingen colleague Felix Klein (see, e.g., Norton 1993b, p. 797, pp. 832–833). This

means that he did not think in terms of a metric tensor field giving an amorphous bare manifold

its spatio-temporal properties but in terms of symmetries and invariants of a fully dressed up

space-time. As a mathematical physicist, Minkowski worked in the tradition of the

electromagnetic view of nature of Wien and Abraham (Galison 1979). Recall that in his famous

lecture “Space and time,”120 he described his “world postulate”—which says that “only the

four-dimensional world in space and time is given by the phenomena” (Minkowski 1909, p.

83)—as “the true nucleus of an electromagnetic image of the world, which, discovered by

Lorentz, and further revealed by Einstein,[121] now lies open in the full light of day” (ibid., p.

91). As Jon Dorling has pointed out to me (private communication), Minkowski clearly thought

that the Lorentz invariance of Maxwell’s equations explains why the structure of space-time is

Minkowskian rather than the other way around as in the modern understanding of special

relativity.

On this modern reading, Minkowski’s work can be used—and is, in fact, routinely used

nowadays—to visualize the new space-time structure revealed by the rod and clock

measurements discussed in Einstein’s 1905 paper. Yet, Einstein himself had great difficulties

recognizing the relevance of Minkowski’s work for the conceptual clarification of the

foundations of special relativity. As he later told his collaborator Valentin Bargmann, who, in

turn, related it to Pais, Einstein initially considered Minkowski’s work as “superfluous

                                                
120 This lecture was delivered before the Versammlung Deutscher Naturforscher und Ärzte in Cologne on
September 21, 1908, two days before Planck’s lecture on the principle of action and reaction from which I
quoted extensively in chapters one and two.
121 Never mind that most physicists associated Einstein and Lorentz with the opposition to the electromagnetic
view of nature (see section 3.4).
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learnedness” (überflüssige Gelehrsamkeit, Pais 1982, p. 152). After Einstein discovered the

importance of the metric tensor for a theory of gravitation, he would come to appreciate the

importance of Minkowski’s conceptual contribution, but this was not until 1912. Around 1910,

he had only come to appreciate the formal advantages of Minkowski’s four-dimensional

formalism, a formalism he had carefully avoided earlier in his work with Laub.122

By the time Einstein had finished general relativity, he was in a much better position to tell

the good from the bad in Lorentz’s arguments concerning the ether. He now accepted Lorentz’s

substantivalist argument, but argued that this does not entail a return to a pre-relativistic ether.

Probably at Lorentz’s suggestion, he made the issue the topic of his inaugural lecture on

October 27, 1920 in Leiden, where Lorentz had arranged a visiting professorship for him.

Einstein concluded his lecture, entitled “Ether and the theory of relativity,” by saying:

Recapitulating, we may say that according to the general theory of relativity, space is endowed
with physical qualities; in this sense, therefore, there exists an ether. According to the general
theory of relativity, space without ether is unthinkable; for in such space, not only would
there be no propagation of light, but also no possibility of existence for standards of space and
time (measuring rods and clocks), nor therefore any space-time intervals in the physical sense.
But, this ether may not be thought of as endowed with the quality characteristic of ponderable
media, as consisting of parts that may be tracked through time. The idea of motion may not
be applied to it. (Einstein 1920, pp. 23–24; quoted and discussed in Kostro 1992, p. 269)

                                                
122 This can be inferred from a letter from Einstein to Sommerfeld of July 1910 (Klein et al. 1994, Doc. 211,
pp. 244–247). Einstein praises Sommerfeld 1910a (Klein et al. 1994, note 9), an important contribution to the
development of the four-dimensional formalism in special relativity. Apparently, Sommerfeld had expressed
some concern that Einstein would not care much for this work. Einstein writes: “How can you think I would
not appreciate the beauty of such an investigation? The study of the formal relations in four dimensions seems
to me to be an advance, like, for instance, the introductions of complex functions in hydrostatics and
electrostatics in two dimensions. I probably expressed myself incorrectly when I talked to you about this in
Salzburg” (ibid., p. 246; my emphasis). The conversation Einstein is referring to took place at the
Versammlung Deutscher Naturforscher und Ärzte in Salzburg in September 1909 (ibid., note 11).

Another interesting document in this context is a letter from Laub to Einstein of May 18, 1908 (Klein et. al,
Doc. 101, pp. 119–121). Although this is not mentioned in the annotation in Klein et al. 1994, the portion of
the letter about Minkowski is quoted, partly translated, and discussed in Pyenson 1976, p. 99–100. Laub writes:
“It is quite curious what pleases Cantor [Matthias Cantor, theoretical physicist at the University of Würzburg
(Klein et. al 1994, p. 120, note 10)] about the Minkowski paper [Minkowski 1908 (Klein et. al 1994, p. 120,
note 7)]. He only values the treatment of the time and the coordinates as quantities of the same nature (x1, x2,
x3, x4) [and] that one can treat it as rotation. He values this for epistemological reasons. To my question what
it actually means, physically, to treat time as a fourth spatial coordinate (or it), he still owes me an answer. I
believe he has let himself be impressed by non-Euclidean geometry [...] I am now even more skeptical about the
Minkowski paper; were not your work available, we would at best have reached the same position with the
Minkowski transformation equation for time (as far as the physical interpretation is concerned) as with the
Lorentzian “local time.”” (Klein et al. 1994, pp. 119–120; translation taken in part from Pyenson 1976, p. 99).
Unfortunately, we do not know Einstein’s reaction to these comments. Given the letter to Sommerfeld I quoted
above; given that Einstein and Laub had just collaborated on a paper in the same field as Minkowski 1908,
altogether avoiding his mathematics, which, they write, “poses great demands” on the reader (Klein et al. 1994,
p. 121, note 12); and given Laub’s reference to his earlier, albeit somewhat milder, skepticism, we can safely
assume that Einstein shared Laub’s assessment of Minkowski’s work at this point. Let me emphasize, however,
that the letter was written several months before Minkowski’s famous “Space and time” address.
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This is the clearest statement I could find on a quick scan of Einstein’s pronouncements on the

topic of ether and relativity. It is fair to say, I think, that what I take to be Einstein’s point can be

expressed much more forcefully simply by pointing out that the manifold does not have to be

endowed with any particular metric field to serve as a substratum for the field.

Let me summarize my assessment of Lorentz’s first argument for the existence of a

privileged frame of reference among all the empirically equivalent ones. It is quite reasonable to

insist on the existence of a substratum for the field. Einstein would come to accept this himself,

and so do manifold substantivalists in modern philosophy of space and time. However, it does

not follow from this substantivalist claim that there has to be a preferred frame of reference that

could be used as the standard for absolute simultaneity.

I now turn to Lorentz’s second line of reasoning leading to a privileged frame of reference.

Lorentz writes:

There is yet another way of picking out a particular system. This is associated with our
notion of time.

According to the old-fashioned view, to which we have all adhered some time, there is a
“true” time, viz. an ever-increasing variable. Associated with this is the belief in a clear,
unambiguous meaning of the concept of simultaneity. Time and space being separated from
each other, simultaneity has an unambiguous meaning, independent of the place. [...] [W]e
could pick out from a number of different space-time systems that in which truly
simultaneous events are also called simultaneous. In this system, then, we would work with
the true time and the true simultaneity, while in the other systems we would have to do with
auxiliary mathematical magnitudes, with relative or “local” times. Notwithstanding this, two
different observers could observe exactly the same phenomena, neither of them, nor a third
one, being able to find out who is in possession of the unique true time. (Lorentz 1922, p.
209–210)

This is a rather feeble argument, as Lorentz himself seems to realize. After all, he introduces it

without trying to hide that it is based only on the traditional notions of time and simultaneity

that we happen to be accustomed to. The contrast with the first argument becomes especially

strong if we look back at Lorentz’s 1906 New York lectures of The theory of electrons. There

Lorentz only alludes to the first argument. He writes:

I cannot but regard the ether, which can be the seat of an electromagnetic field with its energy
and its vibrations, as endowed with a certain degree of substantiality, however different it may
be from all ordinary matter. In this line of thought it seems natural not to assume at starting
that it can never make any difference whether a body moves through the ether or not, and to
measure distances and lengths of time by means of rods and clocks having a fixed position
relatively to the ether. (Lorentz 1916, p. 230; my italics)

As we will see below, Lorentz presents this argument in equally strong terms (“One cannot

deny ...”) in the concluding paragraph of chapter two of his 1910–1912 Leiden lectures.

However, it would be a mistake to think that Lorentz did not take the second argument (starting
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from absolute simultaneity rather than from the substantiality of the ether) seriously.123 The

argument returns in the draft of a letter to Einstein in 1915 from which I quoted in section 3.2

and in the closing section of his lectures at Caltech in 1922 (cf. Nersessian 1984, pp. 116–119;

1986, p. 232). As has been emphasized by A.J. Kox (private communication), the most telling

passage occurs in the letter to Einstein (cf. Kox 1988, p. 210, note 33). At the end of the letter,

after the remarks on simultaneity quoted by Nersessian, Lorentz adds the following remarks,

explaining in a footnote that he will “enclose the following in parentheses, for with it I cross the

boundaries of physics:”124

A “world spirit,” who would permeate the whole system under consideration without being
tied to a particular place or “in whom” the system would consist, and for whom it would be
possible to “feel” all events directly, would obviously immediately single out one of the
systems [read: Lorentz frames] U, U′, etc. over all others. Although we are not such world
spirits, yet we may not, if we adhere to the usual view of “mind” and “body,” be so
tremendously different from one. According to this view, namely, we must feel material
processes taking place in the brain, and since one can hardly say that the mind has its seat at a
specific point of the brain, it looks as if the mind could actually experience what goes on at
different places in the brain and (given sufficient power of differentiation) could test this
directly for “simultaneity.” (Draft of a letter from Lorentz to Einstein, January 1915)

These remarks about a “world spirit,” highly uncharacteristic for Lorentz, remind one of

Newton’s “Sensorium of God.” The remarks show, I think, how deeply rooted Lorentz’s

sense of absolute simultaneity was.

To close this chapter, I want to quote the final subsection (numbered 2.9 and immediately

following the subsections 2.81–2.82 examined above) of chapter two of Lorentz’s lectures in

Leiden in 1910–1912, a time when it still seemed plausible that Lorentz’s substantivalist

argument supported the pre-relativistic notions of space and time:

We thus have the choice between two different plans: we can adhere to the concept of an

aether or else we can assume a true simultaneity.[125] If one keeps strictly to the relativistic
view that all systems are equivalent, one must give up the substantiality of the aether as well
as the concept of a true time. The choice of the standpoint depends thus on very fundamental
considerations, especially about the time.

                                                
123 I am indebted to A.J. Kox for preventing this unwarranted application of the “charity principle” on my part.
124 The original German reads: “(Ein “Weltgeist”, der ohne an einem bestimmten Ort gebunden zu sein, das
ganze betrachtete System durchdränge, oder “in dem” dieses System bestände, und der unmittelbar alle Ereignisse
“fühlen” könnte, würde natürlich sofort eins der Systeme U, U′, u.s.w. vor den anderen auszeichnen. Obgleich
wir nun solche Weltgeister nicht sind, so dürfen wir uns doch, wenn wir uns an der üblichen Auffassung von
“Geist” und “Körper” halten, doch nicht so himmelsweit davon verschieden. Wir müssen nämlich nach dieser
Auffassung materielle in dem Gehirn stattfindende Vorgänge fühlen, und da man schwerlich sagen kann, der
Geist habe in einem bestimmten Punkte des Gehirns seinen Sitz, so sieht es aus, alsob er wirklich was an
verschiedenen Stellen des Gehirns vor sich geht, empfinden und (bei genügendem Unterscheidungsvermögen)
direkt auf die “Gleichzeitigkeit” prüfen könnte.)” Notice that the second sentence is ungrammatical. Lorentz
apparently switched mid-sentence from the construction “so dürfen wir uns davon nicht himmelsweit
unterscheiden” to the construction “so sind wir davon nicht himmelsweit verschieden.”
125 The choice Lorentz presents here refers back to the two ways he has outlined in the preceding subsections for
picking a preferred frame of reference, starting from the substantiality of the ether (2.81) or from absolute
simultaneity (2.82), respectively.
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Of course, the description of natural phenomena and the testing of what the theory of
relativity has to say about them can be carried out independently of what one thinks of the
aether and the time. From a physical point of view these questions can be left on one side, and
especially the question of the true time can be handed over to the theory of knowledge.

The modern physicists, as Einstein and Minkowski, speak no longer about the aether at

all.[126] This, however, is a question of taste and of words. For, whether there is an aether or
not, electromagnetic fields certainly exist, and so also does the energy of the electrical
oscillations. If we do not like the name of “aether,” we must use another word as a peg to
hang all these things upon. It is not certain whether “space” can be so extended as to take care
not only of the geometrical properties but also of the electric ones.

One cannot deny to the bearer of these properties a certain substantiality, and if so, then
one may, in all modesty, call true time the time measured by clocks which are fixed in this
medium, and consider simultaneity as a primary concept. (Lorentz 1922, pp. 210–211)

                                                
126 At this point, Fokker added a footnote saying “see, however, Einstein’s address [Einstein 1920].”


