One Hundred Years of Gravitational Waves

black_hole_merger.jpg

Black Hole Merger

Black Hole Merger; http://chandra.harvard.edu/photo/2002/0192/bh_merger_still3.jpg, NASA.

One Hundred Years of Gravitational Waves

The search for gravitational waves has entered a new era. The MPIWG, CalTech and the Hebrew University have studied the long way from Einstein’s prediction to observation.

The first publication on gravitational waves within the general theory of relativity, entitled “Approximative Integration of the Field Equations of Gravitation,” was written by Albert Einstein and submitted on 22 June 1916 to the Prussian Academy of Sciences in Berlin. Yet for many decades afterwards, Einstein himself, and many others, remained uncertain about the actual, physical existence of these waves.

Collaborative work on the historiography 20th century physics by the Einstein Papers Project at Caltech, the Hebrew University of Jerusalem, and the Max Planck Institute for the History of Science carried out over many years has recently shown that the prediction of gravitational waves emerged as early as February 1916 from an exchange of letters between Albert Einstein and the astronomer Karl Schwarzschild . In these letters Einstein expressed skepticism about their existence. It is remarkable that their significant physical and mathematical work was carried out in the midst of a devastating war, while Schwarzschild served on the Eastern Front.

After Schwarzschild’s death at age 42 in May 1916, most likely as a consequence of a severe auto-immune disease, Einstein returned to the subject of gravitational waves after having received a letter from the astronomer Willem de Sitter. From it Einstein learned that a mathematical obstacle which had prevented him from pursuing Schwarzschild’s line of investigation could be overcome. In June 1916 he published a follow-up paper to his recently formulated theory of the gravitational field in which he predicted the existence of gravitational waves traveling at the speed of light, in analogy with electromagnetic radiation (i.e. light, radio waves, etc.). In it he derived a formula for the emission of gravitational waves. This paper contained a significant error, which Einstein himself corrected in 1918, when he derived a formula for the emission of gravitational waves that, apart from a factor of 2, is still considered to be the correct one. His calculations showed, however, that these waves were too weak to be observed with the technology then available.

Einstein’s calculation involved an approximation that made general relativity look like the well-known theory of the electromagnetic field. This approximation, and the results Einstein derived from it, were criticized by many, most notably by the English astronomer and astrophysicist Arthur Eddington, who otherwise was one of the main proponents of general relativity. Indeed, in 1919 Eddington had spectacularly confirmed another prediction of the theory–the bending of light in the gravitational field of the Sun–making Einstein an international celebrity. Over time, and despite his own calculations, Einstein himself came to doubt the existence of gravitational waves to such an extent that, in 1936, he and his collaborator Nathan Rosen wrote a paper purporting to demonstrate the point. After a referee spotted a mistake in their argument, the paper was finally published in a different journal with a completely different conclusion, leaving open the original question. This fascinating episode is described in great detail in Daniel Kennefick’s book Traveling at the Speed of Thought, which gives an excellent overview of the history of gravitational waves.

gravitationswellen.jpg

Gravitationswellen

©Laurent Taudin

Gravitational waves were hardly a hot topic at the time. Indeed, the period from the 1920s until the 1950s has been called the “low water mark of general relativity.” As has been made clear by recent historical investigations jointly undertaken by the Max Planck Institute for the History of Science, the Hebrew University, and the Collected Papers of Albert Einstein, those few physicists working on the subject at the time were more interested in finding a new theory to replace general relativity that might encompass or even explain the new, exciting developments in quantum theory; or in discussing more general issues related to cosmology, such as the evolution of the universe as a whole. And even these few physicists were scattered throughout the world and only rarely exchanged results or ideas. There was, in other words, no recognized field of research called “general relativity (and gravitation)” as there is today, with entire scientific institutions (such as the Max Planck Institute for Gravitational Physics) devoted to it.

This began to change only in the mid-1950s. The “renaissance of general relativity” was made possible by the considerable funding made available to theoretical physics after World War II, as well as by the ability of scientists to cross international boundaries. But the main driving force was the physicists themselves, who recognized the potential for establishing a vibrant community interested in the many aspects of Einstein’s theory. Conferences, journals, and an international society dedicated specifically to general relativity were the result. Among the most pressing of the questions that could now be pursued were the existence and properties of gravitational waves.

Heated discussions about gravitational waves took place at the first international conference entirely dedicated to general relativity in Bern in 1955. Two years later a follow-up conference was held in Chapel Hill, North Carolina. (The report of the conference was first published in 2011 in the Edition Open Sources Series of the Max Planck Institute for the History of Science and the University of Oklahoma). Based on work by the Anglo-Austrian physicist Hermann Bondi and the American Richard Feynman, a broad consensus formed that gravitational waves were real and that they carry energy.

The first attempts to observe the tiny effects produced by such waves were made by Joseph Weber of the University of Maryland. With a few assistants and students, Weber began his experimenting around 1960; after nearly a decade he announced that he had collected convincing evidence. Weber’s work had a significant impact on the scientific community, sparking a series of experiments designed to test his results. None of these confirmed Weber’s findings, leading to a long and heated controversy that has been analyzed by Harry Collins, who stressed the relevance of social factors on the manner in which scientific controversies over experimental results unfold and end. Although a consensus eventually emerged that no gravitational waves had been observed in Weber’s experiments, new techniques and methodologies were developed that later constituted the basis of larger machines, including LIGO.

In addition to advances in technology, a second prerequisite for the direct detection of gravitational waves in 2016 was a better understanding of their astronomical sources. Indeed, an “indirect” detection of gravitational waves had already been performed by closely observing a binary system of two massive stars circling each other which slowly lost energy by emitting gravitational waves, with the result that the stars move faster and ever closer to each other. This observation was made possible by the discovery of the first binary pulsar in 1974 by Joseph Taylor and Russell Hulse. The energy loss of this system, measured by Taylor, Joel Weisberg and their collaborators in a long series of observations, precisely matched theoretical calculations, which significantly contributed to the 1993 Nobel Prize awarded to Taylor and Hulse “for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation.”

The source of the gravitational waves now detected by LIGO is novel, for it involves the collision of two black holes. The very concept of such a thing as a black hole resulted from a new understanding of Einstein’s equations. Still, the actual existence of black holes only began to be taken seriously after the 1960s, when observations made in the newly established field of radio astronomy (a result of the radio technology developed in the course of radar research in World War II) indicated that such extreme objects really existed in distant galaxies.

Being able to qualitatively explain the properties of such distant, yet incredibly luminous radio sources (quasars) was one of the great successes of general relativity in those years, solidifying its newly-won status as an exciting field of research. Numerical simulations for the behavior of black holes had to be made in order to reach actual predictions. Simulations of this sort required advancing in computing technology as well as theoretical developments in order to follow the evolution of a system over time, as was done most notably by the physicists Richard Arnowitt, Stanley Deser, and Charles Misner. The result was the birth of an entirely new field of research: numerical relativity.

albert_einstein_1947.jpg

Albert Einstein 1947

Albert Einstein 1947; Wikimedia Commons.

While the discovery of gravitational waves is now rightly heralded as the confirmation of a prediction Einstein made 100 years ago, the likelihood of their existence really only started to gain traction in the 1950s and 1960s, when the great technological, conceptual, and organizational advances of the renaissance of general relativity laid the groundwork for this year’s discovery, and initiated a boom that has lasted to this day and has made possible large-scale, international projects such as LIGO. The groundwork for the establishment of LIGO was prepared close to forty years ago by Rainer Weiss, Ronald Drever, and Kip Thorne. It took more than two decades after the project’s start to obtain significant signals that confirmed ripples in the spacetime structure of the universe and the existence of black holes first speculated on a century ago.

In 2015, the Max Planck Institute of the History of Science initiated a collaborative research project with the Collected Papers of Albert Einstein at Caltech and the Hebrew University in Jerusalem on the multifaceted renaissance period of general relativity and the important role of gravitational waves. So, while gravitational waves, after having been discovered, also promise to provide a new tool with which to observe the universe, the history of this long-controversial subject will be further illuminated as well.

Links

Gutfreund, Hanoch, and Jürgen Renn: The Formative Years of Relativity: The History and Meaning of Einstein's Princeton Lectures. 2017. Go to Book Summary

Lalli, Roberto: Building the General Relativity & Gravitation Community During the Cold War. 2017. Go to Book Summary

Watch the talks given at the conference “A Century of General Relativity.” Watch

One Hundred Years of Gravitational Waves: the long road from prediction to observation. Go to Press Release

Roberto Lalli interviewed for National Institute of Astrophysics on the EPJH special issue “The Renaissance of Einstein's Theory of Gravitation.” Go to Interview

Rickles, D.: The Chapel Hill Conference in Context. – In: The Role of Gravitation in Physics. – 2011. Read Online

Blum, Lalli, Renn: The Reinvention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of Curved Space-time – In: Isis. – 106(3), 2015, p. 598–620. Go to Article

Jürgen Renn co-authored with Diana K. Buchwald and Hanoch Gutfreund in the Frankfurter Allgemeine Zeitung (Feb 17, 2016) on the context of Einstein’s gravitational wave research. Go to Article

Blog article by Hanoch Gutfreund, co-authored with Diana K. Buchwald and Jürgen Renn in the Huffington Post (Feb 12, 2016). Go to Article

Research Topic 41: “The Renewal of Einstein's Theory of Relativity in the Post-War Era.” Go to Website

Department I: “Structural Changes in Systems of Knowledge.” Go to Website

Download print version of this research topic.

Research Topics Archive

Bear hunting throughout Europe led to the species’ eradication in many areas. Wikimedia.
52: How to Live with Bears
51: The Wonders of Bodily Waste
Bathymetry model of the Strait of Gibraltar ca. 1932, Instituto Español de Oceanografía.
50: The Strait in the Cold War—Deep Science and Global Geopolitics in the Mediterranean
Andreas Ryff, Münz- und Mineralienbuch, 1594. Autograph in possession of the Basel University Library (A lambda II 46a).
49: Mountain Clamor! Resource Flows and Metal Culture in Early Modern Mining
Parades of Miners, Craftsmen, and Officials Marking the Marriage of Friedrich August II, Elector of Saxony, and Maria Josepha, Archduchess of Austria in 1719. Bergakademie Freiberg.
48: Data and Decisions in Early Modern Mines
Transcript of a Bobolink song by Ferdinand S. Mathews (1904), Field Book of Wild Birds and Their Music: A Description of the Character and Music of Birds.
47: Scientific Scores and Musical Ears: Sound Diagrams in Field Recording
School of Athens
46: Early Modern Adaptation of the Aristotelian Mechanics
better shelter
45: Refugee Housing
44: Mapping Climatology
Black Hole Merger
43: One Hundred Years of Gravitational Waves
42: How High Is the Sea?
41: The Renewal of Einstein's Theory of Relativity in the Post-War Era
40: Do Data Have Politics?
39: From Sound to Knowledge
38: Colours and Their Context
37: Is Bigger Better
36: Rooting Language Family Trees
35: Making Genetics Human
34: Galileo's Laboratory of Ideas
33: Historicizing Big Data
32: Ancient Balances at the Nexus of Innovation and Knowledge
31: Looking at Diversity
30: How Recipes Created Knowledge in Early Modern Households
29: Metallurgy, Ballistics and Epistemic Instruments
28: Science under Scrutiny
27: The Globalization of Knowledge and its Consequences
26: Parts Unknown: Making the Familiar Strange
25: Apprehending Human Difference and Population Size
24: Endangerment and Its Consequences
23: The Equilibrium Controversy
22: Art and Knowledge in Pre-Modern Europe
21: Knowledgescapes
20: Baby Science in fin-de-siècle America
19: Let him reconquer language
18: Histories of Scientific Observation
17: On Historicizing Epistemology : an essay
16: Johann Lambert's Conversion to a Geometry of Space
15: The Uncertain Boundaries between Light and Matter
14: Every move will be recorded
13: Courting the Crafts in Qing China
12: The Concepts of Immanuel Kant's Natural Philosophy
11: Jean Piaget and the Child's Spontaneous Geometry
10: Galileo and the Others
9: Historicizing Knowledge about Human Biodiversity
8: Dreaming in and of Neurophilosophy
7: Who Were Einstein's Opponents?
6: Physiology of the piano
5: Numbering Bees
4: New Ways of Using Digital Images
3: Telling Instruments
2: Microscope Slides: An Object of the History of Science?
1: What (Good) is Historical Epistemology?