Jean Piaget und die spontane Geometrie des Kindes

Jean Piaget und die spontane Geometrie des Kindes

Eine Studie zur Kinderzeichnung als psychologisches Instrument

Von Barbara Wittmann

Die Untersuchungen des Genfer Psychologen und Epistemologen Jean Piaget (1896-1980) zum räumlichen Denken des Kindes leisteten nicht nur einen wichtigen Beitrag zur Entwicklungspsychologie, sie können auch als ehrgeiziger Versuch einer Neubegründung der geometrischen Anschauung verstanden werden. Nachdem die euklidische Geometrie als verbindliche Beschreibung des physikalischen Raums seit dem späten 19. Jahrhundert grundlegend relativiert worden war und die geometrische Argumentation in der Mathematik ihren Status als Königsweg verloren hatte, sich also in praktischer wie epistemologischer Begründungsnot befand, arbeitete Piaget an einer psychologischen Fundierung der Geometrie. Seine einflussreichen Monographien zur Entwicklung des räumlichen Denkens und der natürlichen Geometrie des Kindes, die er gemeinsam mit Bärbel Inhelder und Alina Szeminska 1948 publizierte, waren Teil des groß angelegten Projekts einer genetischen Epistemologie. Im Rahmen dieses Projekts beschäftigten sich die Psychologen mit all jenen perzeptiven und kognitiven Funktionen, die es ermöglichen, dass aus Kindern einmal differentiell wahrnehmende und analysierende Erwachsene, insbesondere aber Ingenieure, Geometer oder Wissenschaftler, werden können. Welche Herangehensweise oder welcher experimentelle Zugriff ermöglichte dieses Projekt? Unter welchen theoretischen und instrumentellen Bedingungen konnten primordiale Elemente des räumlichen Denkens Sichtbarkeit gewinnen, obwohl sie sich per definitionem der Erfahrung der Erwachsenen entzogen?

Im Zuge der physischen und kognitiven Entwicklung des Kindes adaptieren die Sinnesorgane eine geometrische Anschauung, die den Umgang mit euklidischen Begriffen wie Entfernung, Geradlinigkeit oder Parallelität ermöglichen wird. Um die Adaptionen sichtbar zu machen, die das Kind leisten muss, um irgendwann mehr oder weniger euklidisch wahrzunehmen, entwickelt Piaget verschiedenste Versuchsanordnungen, die das Kind mit einfachen Aufgaben der angewandten Geometrie konfrontieren: Die jungen Versuchspersonen sollen beispielsweise geometrische Figuren erkennen und durch Benennung identifizieren; sie sollen einfache Knoten binden oder (wenn sie älter geworden sind) Perspektiven nachbauen, die eine Puppe von ihrem jeweiligen Standort aus sehen würde. Ein Großteil der Experimente aber basiert auf einem papertool, das die Experimentalpsychologie bereits seit 1900 erprobt hatte, um die kindliche Raumvorstellung zu untersuchen: der Kinderzeichnung.

In einem dieser Versuche legten Piagets Mitarbeiter den kleinen Versuchspersonen einfache Formen, darunter typisch euklidische Figuren, zum Nachzeichnen vor (Abb. 2a). Schon ungefähr dreijährige Kinder bringen laut Piaget Kritzeleien hervor, die sich nach offenen und geschlossenen Formen unterscheiden lassen, kontrollierte und intentionale Versuche im Abzeichnen treten aber erst im Alter zwischen dreieinhalb und vier Jahren auf. In vielen Zeichnungen dieses Stadiums wird der Kreis zwar schon als geschlossene Kurve dargestellt, aber die Quadrate und Dreiecke gleichen ebenfalls geschlossenen Kurven und werden lediglich zuweilen durch Andeutungen wie kurze Striche, die möglicherweise auf die Winkel hinweisen sollen (Fig. 4, 5 und 6, Abb. 2b), unterschieden. Obwohl die Kinder noch nicht zwischen gebogenen und geradlinigen Figuren unterschieden, konnten sie die topologischen Relationen der Figuren 1-3 (siehe Abb. 2a und b), also die geschlossenen Kurven mit dem kleinen Kreis außerhalb, innerhalb oder auf der Linie, bereits genau nachahmen. Auf dieser Entwicklungsstufe bilde sich eine Raumvorstellung heraus, die die projektiven und euklidischen Relationen (Proportionen, Entfernungen, Perspektiven) völlig vernachlässige; das Kind ordne den Raum nach den elementaren Relationen von „Benachbartsein“, „Getrenntsein“, „Reihenfolge“, „Umgeben- und Umschlossensein“, von „Stetigkeit“ und „Unstetigkeit“. Nach Piaget gleichen diese elementaren Relationen „jene[m] Teil der Geometrie [...], der ‚Topologie‘ genannt wird und dem die Begriffe starre Formen, Entfernungen, Geraden, Winkeln usw. ebenso wie projektive Relationen und jegliches Maß fremd sind“ (Jean Piaget & Bärbel Inhelder: Die Entwicklung des räumlichen Denkens beim Kinde, Stuttgart: Klett, 1975, S. 28).


Die Topologie ist eine Disziplin der Mathematik, die sich ähnlich der Wahrscheinlichkeitslehre ohne antike Wurzeln erst im Laufe des 18. und 19. Jahrhunderts als Analysis Situs oder Geometria Situs um bestimmte Probleme der Raumlage herum formiert hat. Seit der 2. Hälfte des 19. Jahrhunderts, und insbesondere seit Bernhard Riemanns und Henri Poincarés Beiträgen zur Analysis Situs, hat dieses Forschungsfeld die Bedeutung eines Grundlagenfachs der modernen Mathematik erlangt und beschäftigt sich seither mit all jenen Eigenschaften, die sich als unveränderlich erweisen, wenn man Räume und Figuren einer kontinuierlichen Verformung aussetzt. Objekte oder Figuren können topologisch äquivalent (homöomorph) sein, obwohl sie sich in grundlegenden geometrischen Eigenschaften wie Krümmung, Winkelmaß und Länge unterscheiden. Indem die Topologie sich für die intrinsische Äquivalenz von solchen homöomorphen Formen (wie beispielsweise Kreis und Quadrat) interessiert, die sichtbar wird, wenn man klassische geometrische Unterschiede außer acht lässt, formalisiert sie den Begriff der Orientierung selbst (und konstruiert dabei auch Objekte wie Knoten, inkongruente Gegenstücke und genuin topologische Erfindungen wie das Möbiusband, also Objekte, die nicht orientierbar sind, weil die Unterscheidung von links und rechts auf sie nicht anwendbar ist).

Piaget entdeckte also hoch abstrakte mathematische Strukturen im Raumdenken der Kinder, wobei er sich der Differenz zwischen exakter Operation und intuitiver räumlicher Anschauung durchaus bewusst blieb. Der Psychologe geht davon aus, dass die Entwicklung dieses geometrischen Raums nicht als bloßer Vollzug der physiologischen Ausstattung des Individuums verstanden werden könne; das Kind bilde sich vielmehr in tätiger Auseinandersetzung mit seiner Umwelt bestimmte Raumvorstellungen, die das Wahrgenommene immer wieder neu ordnen und so auf die Wahrnehmung zurückwirken. Die alten Vorstellungen werden dabei revidiert und neu gedeutet, das heißt, sie werden nicht einfach verworfen, sondern bleiben in überformter Weise weiterhin wirksam. Nach Piaget sind auch die topologischen Zeichnungen seiner kleinen Versuchspersonen als Spuren oder Reste älterer Vorstellungen zu verstehen, die auf die sensomotorischen Erfahrungen des Kleinkindes zurückweisen und auch noch dann weiterwirken, wenn das Kind bereits mit der Konstruktion des euklidischen Raums begonnen hat. Daher versteht der genetische Epistemologe die Raumdarstellung in der Kinderzeichnung keineswegs als unmittelbare Aufzeichnung der räumlichen Wahrnehmung; sie gilt ihm vielmehr als Agent einer Rekonstruktion von bereits in der sensomotorischen Phase (von der Geburt bis ins Alter von anderthalb oder zwei Jahren) ausgebildeten Strukturen der Raumwahrnehmung, wobei diese nachträgliche intellektuelle Durchdringung ab initio der Chronologie der gemachten Erfahrungen folgt und dabei die Konstruktion von Raumvorstellungen aus den elementaren Sinnesempfindungen vornimmt.

Der Beginn der räumlichen Vorstellung falle mit den Anfängen des Bildes, der Sprache und des anschaulichen Denkens überhaupt zusammen. Trotz ihrer gemeinsamen Entwicklung gerate die Kinderzeichnung besonders im Falle der Visualisierung komplexer oder dreidimensionaler Vorstellungsinhalte gegenüber dem räumlichen Denken bald ins Hintertreffen. In ihren einfachen Figuren könne die Zeichnung dennoch als eine Repräsentation, ja sogar als Motor der Raumvorstellung, verstanden werden, denn – so zitiert Piaget seinen Lehrer, den Mathematikphilosophen Léon Brunschvicg – nicht die Geometrie sei der Zeichnung vorgängig, sondern umgekehrt die Zeichnung der Geometrie. Wenn man die Entstehung der Geometrie aus der Zeichenpraxis erklärt, lässt sich die Kinderzeichnung tatsächlich als Aufzeichnungsapparat der Psychogenese des Raums operationalisieren. Sie zeichnet dann nicht einen unabhängig von ihr stattfindenden Entwicklungsprozess auf, sondern dokumentiert das, was sie selbst vorantreibt. Oder einfacher formuliert: sie kann die Adaption von geometrischen Vorstellungen sichtbar machen, weil sie an deren Ausbildung wesentlich mitgewirkt hat. Das zeichnende Kind wäre demnach eine Maschine zur Erzeugung einer immer schon euklidischen Zukunft, eine Maschine, die das ältere topologische Wissen um die taktilen und visuellen Ähnlichkeiten und Nachbarschaften der Objekte ergänzt, aber zum Teil auch verbirgt, um die Welt (geo)metrisch zu ordnen.

Sowohl die topologischen Relationen also auch Euklids Elemente haben laut Piaget ihren Ursprung weniger in der Welt im allgemeinen und der Geschichte der Wissenschaften im besonderen, sondern in kognitiven Schemata, die sich der Mensch im reflexiven Handhaben der Dinge zurechtlegt. Genau genommen richtet sich die Wahrnehmung des Kindes also gar nicht an den mathematischen Strukturen aus, im Gegenteil: jedes Kind bringt diese Strukturen aufs immer Neue hervor. Durch ihre Verortung in der sensomotorischen und kognitiven Ausstattung des Körpers gewinnt die Geometrie eine Zeitlosigkeit und Idealität zurück, die sie in der modernen Mathematik und Physik zuvor verloren hatte. Und es ist genau diese Neubegründung der geometrischen Anschauung, die ein nicht zu übersehendes historisches und logisches Problem aufwirft: Piaget setzt logisch-mathematische Strukturen, die wissenschaftshistorisch betrachtet 2000 Jahre nach Euklid entstanden sind, an den ontogenetischen Ursprung des Raumdenkens. Seine Theorie formuliert eine eigentümlich invertierte Neufassung von Ernst Haeckels Biogenetischem Grundgesetz, die Phylo- und Ontogenese in einer rekursiven, möbiusbandartigen Figur verbindet. Vor und nach Piaget zeichnen sich Kinder einer euklidischen Zukunft entgegen – mit dem entscheidenden Unterschied, dass sie nach Piaget immer schon die logischen Grundlagen geschaffen haben werden, auf denen Euklids Axiome beruhen.


Diese Studie zu Piagets entwicklungspsychologischen Experimenten ist Teil eines Buchprojekts zur Geschichte der Kinderzeichnung als Objekt und Instrument in den Human- und Geisteswissenschaften zwischen 1880 und 1950 (Arbeitstitel: Bedeutungsvolle Kritzeleien. Eine Wissensgeschichte der Kinderzeichnung, 1880-1950). Die Publikation untersucht die ‚Entdeckung‘ der Kinderzeichnung als diagnostisches, therapeutisches und experimentelles Instrument und nimmt dabei insbesondere die verschiedenen Methoden, Lektüre- und Testverfahren in den Blick, die entwickelt wurden, um die vor der Mitte des 19. Jahrhunderts noch völlig bedeutungslosen Kritzeleien der Kinder zu ‚lesen‘. Dieses Projekt wurde im Rahmen der institutsübergreifenden Forschungsinitiative Wissen im Entwurf. Zeichnen und Schreiben als Verfahren der Forschung verwirklicht – eine am Max-Planck-Institut für Wissenschaftsgeschichte in Berlin und am Kunsthistorischen Institut in Florenz (Max-Planck-Institut) angesiedelte Forschergruppe, die die Rolle der graphischen Inskription bei der Herstellung von Wissen untersuchte.

Top