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Summary

The relationship between the determination of the circumference of the Earth and the geograph-

ical mapping performed by Ptolemy in his Geography is discussed. A simple transformation of the

Ptolemaic coordinates to the circumference of the Earth measured by Eratosthenes, based on the

assumption that the metrical values of the stadion used by both Ptolemy and Eratosthenes are

equivalent, drastically improves the positions of the locations given in Ptolemy’s catalogue at least

for a great part of the oikoumenē. Comparing the recalculated positions of the identified localities

with their actual positions, it turns out that the distances extracted by Ptolemy from ancient sources

are remarkably precise. This in turn confirms the high precision of Eratosthenes’s result for the cir-

cumference of the Earth. It is shown that many distortions of Ptolemy’s world map can be explained

as pure mathematical consequences of a mapping onto the surface of a sphere of wrong size.
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1 Introduction

The ingenious idea to solve the problem of the measuring of the Earth by using astronomical observations
of celestial objects at the places lying along the same meridian can, in all likelihood, be attributed
to ancient Greek science. The first well documented name connected with this idea is that one of
Eratosthenes (276–194 BC);1 the description of his method is handed down to us by the astronomer
Cleomedes.2 According to him, at summer solstice the Sun stands in zenith over Syene and the shadow
of a gnomon measures 1/50 of the full circle in a σκάϕη placed in Alexandria. The distance between the
two cities being known to be 5,000 stadia, this leads to the famous result of 250,000 stadia for Earth’s
circumference.3 Other authors inform us that Eratosthenes’ measurement was 252,000 stadia,4 a slightly
different figure, which may have been used to round the length of 1◦ measured along a great circle at
the Earth’s surface to 700 stadia. According to Strabo,5 Hipparchus (c. 200 – c. 120 BC) mentioned
Eratosthenes’ measurement and accepted his result.6 The next method for the measurement of the Earth
to be found in ancient sources is that of Posidonius (c. 135 – c. 50 BC) who worked mainly on Rhodes;
in a famous passage of Cleomedes7 we are told that on the basis of the observation that the star Canopus

1The possible earlier realization of this idea may conjecturally be attributed to Dicaearchus or Aristarchus. See, e.g.
Heidel W. A., The Frame of the Ancient Greek Maps, New York: American Geographical Society (Research Series, No.
20), 1937, 113–121.

2Cleomedes 1.10.
3This result is mentioned also by Philoponos (Meteor. 1.3, p. 15 HAYDUCK [taken from Arrianus]) and Nikephoros

Blemmydes (epit. phys. 339 [PG 142, 1277]).
4Vitr. 1.6.9; Strab. 2.5.7, 2.5.34 ; Plin. nat. 2.247–8; Theo Smyrn. p. 124.10–12; 127.19 HILLER; Gal. inst. log. 12.2;

Cens. 13.2; Mart. Cap. 6.596 (cf. 609).
5Geogr. 1.4.1, 2.5.34.
6For problems related to Eratosthenes’ observations see e.g. Rawlins, D., “Eratosthenes’ geodesy unravelled: was there a

high-accuracy hellenistic astronomy?” (ISIS, 1982, 73, 259–265) and “The Eratosthenes-Strabo Nile Map. Is it the earliest
surveying instance of spherical cartography? Did it supply the 5000 stades arc for Eratosthenes’ experiment?” (Archive for

History of Exact Sciences, 24. IX. 1982, V. 26, 3, pp 211–219.)
7Cleomedes 1.10.
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can be seen just above the horizon at Rhodes and at an angle equal to 1/48 of the whole circle above the
horizon at Alexandria, Posidonius concluded that the “circumference of the Earth is 240,000 stadia, if the
distance from Rhodes and Alexandria is 5000 stadia; but if this distance is different, the circumference
will be also proportionally different”.8 Strabo in his Geography also attached Posidonius’ name to the
new figure of 180,000 stadia, speaking about “recent measurements of the Earth”, which “make the Earth
smallest in circumference”.9 Strabo’s remark is in stark contrast to the idea of some later historians who
claim that both values for the circumference of the Earth, Posidonius’ of 180,000 and Eratosthenes’ of
250,000, are one and the same, expressed only in different (local) variants of the unit stadion.10

According to Ptolemy, another method used to calculate the circumference of the Earth was that of
the observation of zenith points at two locations.11 Chapter 3 of Book 1 of Ptolemy’s Geography begins
with the description of this method used by his predecessors for measuring the Earth:

Using shadow-casting instruments, they observed the zenith points at the two ends of the
interval, and obtained directly the arc of the meridian cut off by [the zenith points], which
was [geometrically] similar to [the arc] of the journey [between the two locations]. This is
because these things were set up (as we said) in a single plane (since the lines produced
through the [two] ends [of the journey] to the zenith points intersect), and because the point
of intersection is the common center of the circles. Hence they assumed that the fraction that
the arc between the zenith points was seen to be of the circle through the [celestial] poles
[i.e., the common meridian of the two locations] was the same fraction that the interval on
the Earth was of the whole [Earth’s] circumference.12

Actually, the shadow-casting instruments (Ptolemy speaks of skiothera) was not a convenient tool to
observe the “zenith points” at a given locality. The more important problem was, however, to identify
the position of the zenith over the other locality in order to measure the arc between both of them. The
only possibility was to “mark” the position of the other zenith with a star. According to Simplicius,13

the “ancients” observed two stars at one degree apart by the “dioptra”, located the places at which these
stars were in the zeniths, and measured the distance between them by hodometer. With this distance
found as 500 stadia, they calculated the circumference of the Earth as 360 * 500 = 180,000 stadia. From
the astronomical point of view, the restriction to exactly one degree of separation between the stars in
zeniths is a serious handicap: a star culminating in the zenith at a place with latitude ϕ should have a
declination δ equal to ϕ. Therefore, only pairs of stars with equatorial coordinates (ϕ, α) and (ϕ+1◦, α)
can be used in such a procedure (the same value of right ascension α guarantees that the stars culminate
simultaneously). Assuming that such measuring had happened before Ptolemy’s time, one can suggest
with all probability that Ptolemy should have been aware of the existence of the such pairs of stars, that
such special pairs must be visible with naked eyes and that they should be included in his catalogue.
As we have already shown elsewhere,14 only four star pairs roughly fulfilling this condition could be
observable in the Mediterranean world in antiquity.15 The best candidate seems to be a pair with the
magnitude 3 (ν and χ UMa) with one component culminating in the zenith of Lysimachia in Ptolemaic
time (but not in the time of Hipparchus). Since Ptolemy speaks, in fact, of “zenith points”, one can
suggest that only one star was involved in this measurement procedure - in this case, the star Pollux
would be a most prominent candidate: it culminated at Ptolemy’s time almost exactly at the distance of
1◦ from the zenith of Alexandria.

8See, e.g., Edelstein, L. / Kidd, I. G., Posidonius II. The Commentary, Cambridge, 1988, fragments 150–293.
9Geogr. 2.2.2.

10See e. g. Diller, A., “The Ancient Measurements of the Earth”, Isis, 40, 1, No 119, 1949, 7–9.
11Geogr. 1.3.1
12English translation will follow Beggren, J. L., Jones, A., Ptolemy’s “Geography”. An Annotated Translation of the

Theoretical Chapters, Princeton Univ. Press, 2000.
13Commentary on Aristotle’s De Caelo, 548.27–549.10.
14Geus, K., Tupikova, I. , “Historische und astronomische Überlegungen zur Erdmessung des Ptolemaios”, in: Geus, K.,

Rathmann, M. (eds), Vermessung der Oikumene, Berlin, Boston, 2013, 171–184.
15Two of these pairs culminated in zeniths over the Peloponnesus (but not in zeniths of places famed for astronomical

observations), one pair (ν and τ And) had a component culminating in the zenith of Alexandria - but all these stars are
faint objects with an apparent magnitude of c. 4.
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Subscribing to the results of these arcane astronomical observations, Ptolemy adopted the figure of
500 stadia for one degree of a great circle, i.e. 180,000 stadia for the circumference of the Earth,16

claiming that this is “in accordance with the surface measurements that are generally agreed upon”.17

Why is the size of the Earth so important in geographical mapping performed by Ptolemy? In fact,
it is due to novelty of his treatise where the equatorial coordinate system was probably for the first time
consequently introduced in the map-making. For a local map made in Cartesian coordinate system, with
axes labeled in metrical measure, the information about the size of the Earth is not inevitable. In the
equatorial coordinate system, to the contrary, one needs the pairs of central angles (or, which is equivalent,
the pairs of arcs of the great circles on the surface of a sphere) to describe the position of an object. If the
information which Ptolemy used in his mapping procedure were gained from astronomical observations
only, that is, from measured angles,18 his coordinates would have the same value on the “small” Earth
(with the circumference of 180,000 stadia) as well as on the “big” Earth (with the circumference of
252,000 stadia). In this sense one should also understand the quotation from Hipparchus “for it will
not make much difference with respect to the celestial phenomena, whether the measurement followed
is that of Eratosthenes or that given by later geographers” as quoted by Strabo in Geogr. II, 5.7. The
problem leading to different kind of distortions arises in recalculating the distances measured on the
surface of the real Earth in metrical values (stadia) into the angular values (degrees) used in geographical
mapping of the Earth of some estimated size. For example, let us consider two locations with a mutual
distance of 35, 000 stadia lying at equator. Provided that both Eratosthenes and Ptolemy used the same
stadion, the longitudinal distance between both locations would be equivalent to 35, 000 : 700 = 50◦ at
the “Eratosthenian” map and to 35, 000 : 500 = 70◦ at the Ptolemaic map. In general, every angular
distance S measured along the arc of great circle on the “big” Earth will in this case correspond to the
angular distance

s = S ∗ 252, 000/180, 000 = s ∗ 700/500 = 1.4S

on the surface of the “small” Earth.
It is clear, that the most part of the source data which Ptolemy had at his disposal for global mapping

of the known oikoumenē was not a table of spherical coordinates, latitudes and longitudes, but measured
or inferred distances expressed in stadia, schoinoi, parasanges, dayruns and other customary units which
he had to convert into arc measures. In such recalculations, the adopted size of the Earth and the question
whether Ptolemy used the same definition of stadion as Eratosthenes (and therefore the different value for
the circumference of the Earth) become of primary importance. Without standardization of the metrical
units in antiquity, no reliable answer can be found and the confusing data produced very different (and
far from agreed upon) results.

F. Hultsch in his magisterial “Griechische und römische Metrologie”19 has already underlined that

wir im allgemein darauf verzichten müssen, aus den Stadienangaben der griechischen Schrift-
steller genaue Entfernungen zu berechnen. Das στάδιoν kann uns nur gelten als der kon-
ventionelle Ausdruck für 240 Schritt, und entsprechend der παράσαγγης für 7200 Schritt.
Nach diesem unsichern Maßstabe wurden teils die Wegstrecken unmittelbar bestimmt, teils
Parasangen und später ägyptische Schoinen und römische Meilen reduciert, teils endlich Ent-
fernungen auß ungefähr mit dem Auge oder nach der Zeit abgeschätzt In dieses Gewirre
brachte zuerst Eratosthenes einige Ordnung, indem er die mannigfachen ihm vorliegenden
Angaben griechischer Schriftsteller derartig auf festes Maß reducierte, daß er das Stadion gle-
ich 300 königlichen Ellen, mithin gleich dem vierzigsten Teile des Schoinos setzte. Allein diese

16Geogr. 1.11.2.
17Nevertheless, some indications point to the fact that Ptolemy initially used in his Almagest the Eratosthenian estimation

of the circumference of the Earth. See especially Schnabel, P., “Die Entstehungsgeschichte des kartographischen Weltbildes
des Klaudios Ptolemaios”, in Sitzungsberichte der Preussischen Akademie der Wissenschaft, Verlag der Akademie der
Wissenschaften, Berlin, 1930, pp. 214–250.

18Longitudes can be considered measured both in angles and in time units due to equivalency 24h = 360◦ originated from
the rotation of the Earth.

19Hultsch F., Griechische und römische Metrologie, Akademische Druck- u. Verlagsanstalt, Graz, Austria, 1971 (reprint
of 1882), pp. 5–56.
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Fixierung ist schwerlich zu allgemeiner Gültigkeit gelangt, und als später die geographische
Forschung der Griechen mit dem römischen Wegmaß in nähere Berührung kam, da mochte
wohl ein exakter Forscher wie Polibius, dessen geographische Untersuchungen uns leider nicht
erhalten sind, mit umsichtiger Kritik die verschiedenen Stadienangaben vom neuen prüfen
und sie mit dem römischen Wegmessungen in Einklang setzen, aber andere, die ihm folgten,
warfen wieder alles durcheinander. So hat Strabo als Normalmaß das Achtelmeilenstadion,
aber daneben giebt er, wie Ideler Abhandl. 1827 S.127 nachweist, manche Ortbestimmungen
nach Eratosthenes und anderen älteren Geographen, welche ein kürzeres Stadion im Sinne
hatten.

Im allgemeinen also glaubten die Griechen wirklich nur ein Stadion als Längenmaß zu haben;
es war ihnen schlechthin die Länge von 240 Schritt; allein mit welchem Grade von Genauigkeit
und unter welchen Voraussetzungen dieses Maß in jedem einzelnen Falle bestimmt war, ließen
sie unbeachtet.

As an example for this confusion Hultsch also cites Herodotos who equalled a schoinos to 60 stadia, an
error which may be ascribed to the primarily usage of the notation “schoinoi” for stations for ship towing
along the Nile which were of different lengths, i.e. 30, 40, 60 and even 120 stadia.

Modern scholars of ancient geography are also warned against attributing to a stadion a firm modern
metrical value by A. Diller who stressed that20

the Greek stade was variable and in particular instances almost always an uncertain quantity.
The most problematic aspect of the ancient measurements of the Earth is the length of the
respective stades. Some light can be thrown on it, but the matter requires circumspection,
and whose who blithely convert in casual parentheses or footnotes are usually unaware of the
difficulties and mistakes in their statements.

What makes the situation even more complicated, is that, according to another scholar,21

... there is no reason to believe that Eratosthenes always used the same length of stadion. In
fact, he could not. Most of his data was based on overland or overseas distances obtained from
travellers or sailors reports, not astronomy. Moreover, Eratosthenes used several additional
forms of measurement: the schoinos, the sailing day, and the caravan day. And to complicate
matters further, many of his distances survive only in Roman miles, which he never used ...
A metrological table of late antiquity, attributed to Julian of Ascalon, calculates the Roman
mile as 8 1

4 of the stadia Eratosthenes and Strabo used, adding that the equivalent of “today”
is 7 1

2 stadia.22 Yet Strabo himself wrote that “most” calculate eight stadia to the mile, but
Polybios used a stadion that equalled 8 1

3 to the mile.23 Pliny used a conversion of eight
stadia.

As Roller concludes,

the important point is that, given these variables, and doubtless others that are unknown, it
strains credulity to believe that one can determine the actual length of each and every of the
many stadion distances recorded by Eratosthenes. It would have been impossible for him to
have used stadia of the same length throughout. His distances were acquired from a variety of
sources over a century, from Pytheas and the Alexander companions (if not earlier) to his own
time. More importantly, they covered a wide geographical range: from eastern India to East
Africa to Central Asia and northwest Europe. There is no way of determining the degree of
accuracy of Eratosthenes informants, or whether stadion distances published by these sources

20Diller, A., “The Ancient Measurements of the Earth”, Isis, 40, 1, No 119, 1949, 7–8.
21Roller, Duane W.: Eratosthenes “Geography”. Fragments collected and translated with commentary and additional

material. Princeton; Oxford: Princeton University Press, 2010, 271ff.
22See Poseidonius, F 203 Kidd.
23Strab. 7.7.4, C 322.
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had already been converted from other measurements, and how accurately. One suspects
that many of Eratosthenes sources provided data in schoinoi and that he converted these,
obviously at 40 stadia to a schoinos: but there is no guarantee that the original schoinoi were
all of the same length. It is unlikely that Eratosthenes sources gave equivalents or defined
their measurements.

Nevertheless, thanks to Eratosthenes attempt to metricise the length of a stadion, one can try to
interpret its length in the context of the modern metrical system. First of all, the distances in itineraria

were measured initially, in all likelihood, not in stadia but in steps. Hultsch equals a step used by
Eratosthenes to 2.5 feet and estimates it as 0.656m; the length of the Eratosthenian stadion results
then as 157.5m. With this estimation, the circumference of the Earth would be equal to 39,690 km
and the metrical value of 1◦ along a great circle (e.g. equator or meridian) 700 stadia = 110.25 km.
Hipparchus also calculated 700 stadia per 1◦ and accepted 252,000 stadia for the circumference of the
Earth24 expressed in Eratosthenian stadia.

The metrical value of the stadion ascribed to Ptolemy is much more debatable. Often, his stadion

is estimated as 185m, that is, its length is recalculated from the relation 1 Roman mile = 8 stadia as
mentioned by Strabo.25 Nevertheless, Strabo’s relation could also be a simple recalculation law used in
common practice. As Ideler has shown,26 Strabo used throughout his texts also a value close to the value
of the Eratosthenian stadion as well as some even smaller values. The latest studies aimed to compare
statistically the longitudes reported in Ptolemy’s Geography provide an estimation for the length of a
stadium used in Ptolemaic cartographical procedure as 155.6m – the result which is very close to the
estimation of the Eratosthenian stadium.27

Let us give an example for the inconsistency of modern interpretations of ancient metrical units. It
is a well-known fact that Ptolemy, as he himself stated, adopted for his recalculations 1 schoinos as
being equivalent to 30 stadia. The relation 1 schoinos = 40 stadia is commonly ascribed to Eratosthenes
due to its quotation by Pliny.28 With the lengths of a stadion prescribed to Ptolemy and Eratosthenes,
the length of schoinos used by both scholars would not be the same. This can be easily checked: the
value of Ptolemy’s schoinos would attain only 30*185 = 5550 m in comparison with the length of the
Eratosthenian schoinos which can be calculated as 40*157.5 = 6300 m.

The problem can be also tackled in a different way. Instead of speculating about the modern metrical
value of a stadion used by ancient scholars, one can just recalculate the geographical positions given by
Ptolemy in his Geography assuming that his definition of stadion coincides with the definition of stadion
used by Eratosthenes in his estimation of the circumference of the Earth. This seems a safe guess as
both geographers worked in Alexandria and drew on the same core of ancient geographical sources. In
our opinion, it was also reasonable to suggest that Ptolemy, who had at hand the works of Hipparchus
and had often used and cited his results, would certainly have mentioned (if it were the case) that his
adopted value for the circumference of the Earth is the same as that one adopted by Hipparchus through
Eratosthenes’ measurement but expressed in the other stadia.

Mathematically, the problem reduces to a transformation of a given set of spherical coordinates

24Strab. 2.5.7, C 114; 2.5.34, C 132.
25According to the latest German edition of Geography, the Eratosthenes’ stadium measures 157.5 m and the stadium of

Ptolemy 185 m which makes the relation between the lengths of one degree on the Earth’s surface used by both scholars
to (700 ∗ 157.5) : (500 ∗ 185) = 1.19 instead of 700 : 500 = 1.4 which would be the case for the equal lengths of stadium
(A. Stückelberger, “Masse und Messungen”, in Klaudios Ptolemaios. Handbuch der Geographie, Schwabe Verlag, Basel,
2009,p. 222–224). The same value of 185 m is also ascribed to Ptolemy’s stadion in the annotated translation of Geography

by Berggren & Jones, p. 20.
26‘Ideler, C. L., ‘Über die Längen- und Flächenmasse der Alten”, Abhandlungen der Königlichen Akademie der Wis-

senschaften zu Berlin. Hist. - Phil. Abh., 1827, 111–128.
27See Russo L., “Ptolemy’s longitudes and Eratosthenes measurement of the Earths circumference”, Mathematics and

Mechanics of Complex Systems, 2012, 1, 1, pp. 67–79; a more refined statistical analysis with all identified Ptolemaic
coordinates performed by K. Guckelsberger (private communication) confirms the result.

28Plinius laments in his Natural History (6.124) that the schoinoi and parasangs were very differently used by the previous
authors and even the Persians were not consistent with them. In 11.53 Plinius attributes to Eratosthenes the ratio 1 : 40
(parasangs : stadia) but his curious wording (patet Eratosthenis ratione) makes it clear that it derives from his own
calculation.
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defined on the sphere with the circumference of 180,000 units to the set of coordinates on the sphere
with the circumference of 252,000 units.29 The comparison of the recalculated Ptolemaic coordinates
for the “bigger” Earth with the modern coordinates of identified localities can confirm the assumption
about the equality of Ptolemy’s and Eratosthenes’ stadion or provide instead an information about the
relation of stadia used by both scholars. This approach was first proposed and realized in Tupikova &
Geus (2013).30 Our results for Mediterranean, Italy and Greece points towards the equality of stadia
used by both scholars in these regions. As a result, many topological features of Ptolemy’s world map
- the extension along the east-west direction,31 distortion in north-south direction as well as the mutual
rotation of some local maps - can be explained as a simple mathematical consequence of the erroneously
adopted size of the Earth in combination with usage of reliable astronomical data for a part of latitudes.
These latitudinal values built up the fixed points on Ptolemy’s map serving as staging points of the
whole construction (themelioi); Chapter 4 of Book 1 in Geography is devoted to the necessity to give
the priority to the astronomical observations over the travel records. Paradoxically enough, it were these
reliable astronomical data which produces the irregular distortion of Ptolemy’s world map. To understand
in which the way it had happened, one should consider first some underlying mathematics.

2 Mathematical approach

2.1 Basic formulae

First of all, let us take note of the trivial fact that because both latitude and longitude are defined as
central angles, a simple “blowing up” of the sphere does not change the spherical, and hence also the
geographical, coordinates.

Let us assume that the distances available to Ptolemy were given in the same stadia that were used
in the estimate of the Earth’s circumference as 252,000 stadia. If the “Ptolemaic” stadion was equivalent
to the Eratosthenian stadion, the coordinates given in Ptolemy’s Geography should be transformed from
a sphere with a circumference of 180,000 units to a sphere with a circumference of 252,000 units. If
the relation of the lengths of the stadia used by Ptolemy and by Eratosthenes is assumed to be some
numerical factor x, e.g., x = 185/157.5, the transformation should be performed from the coordinates
given on a sphere with a circumference of 180, 000 · x units to a sphere with a circumference of 252,000
units.32

The first step of a recalculation of the original positions should be a restoration of Ptolemy’s raw
data, that is, the distances between different localities which he had at his disposal and – in some cases
– the directions of the routes connecting these localities. Let us emphasize that without any information
about the Earth’s size, the exact geographical localization can not be unambiguously determined from
the respective latitudes and the distance between two points alone. It can be shown that, depending
on the Earth’s size, different localities with different longitudes can be arrived at by routes of the same
length.

To transform the spherical coordinates of localities from a sphere with a radius r to a sphere with a
radius R (which will be called, for the sake of simplicity, the “small” and the “big” Earth, respectively)
one can use formulae of spherical trigonometry. Although in all available textbooks on the subject the
formulae are given for a sphere with a standard radius of 1 only, the generalization for the case of a sphere
with a non-unity radius and the transformation between spheres of different radii is easy to perform.33

29The spherical coordinates should be transformed and not just multiplied with an empirically gained factor 0.78 for
a local region as, e. g., in Rinner, E. Zur Genese der Orstkoordinaten Kleinasiens in der “Geographie” des Klaudios

Ptolemaios, Bern Studies in the History and Philosophy of Science, 2013, p. 207ff.
30Tupikova I., Geus, K. , The Circumference of the Earth and Ptolemy’s World Map, Preprint MPIWG N 422, Berlin,

2013.
31The reason for the extension has already been formulated by the historian of ancient geography Henry F. Tozer in his

A History of Ancient Geography, Cambridge Univ. Press, 1897, pp. 341–342.
32If we knew the modern metrical value of the Ptolemaic stadion, his coordinates could be immediately transformed into

modern coordinates.
33As is usual in spherical trigonometry, the possibility of ambiguity or non-existence of every solution, as can be determined
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One could argue that neither Ptolemy nor Eratosthenes knew or used such formulae; it is even known
that for the local mapping Ptolemy used simple plane triangles. However, the aim of this study is
not to improve the calculation technique used by Ptolemy in his mapping procedure; rather, the aim
is to demonstrate how a set of coordinates given on a sphere of one size can be correctly transformed
to coordinates on a sphere of another size and what Ptolemaic coordinates would look like if he had
adopted as a scaling factor for his initial data in stadia not of 500 but rather of 700 stadia per 1◦.
Spherical trigonometry, in this case, provides an appropriate modern and easy to use formal mechanism
to recalculate positions given in a spherical (geographical) coordinate system.

To treat the problem with the methods of spherical trigonometry, one needs first to construct a
spherical triangle. If the solution is to improve on the coordinates of one location relative to another, the
vertices of such a triangle can be set to be the localities themselves and the North (or South) Pole on
Earth’s surface, and the sides of this triangle are the arcs of the meridians going through both locations
and the arc of a great circle connecting them. The great circles describe geodetics on the sphere, which
means that the arc of a great circle between two points is the shortest surface-path between them – a fact
probably not mathematically proven but known to Ptolemy. The geodetic lines are analogous to “straight
lines” in plane geometry and Ptolemy consistently refers to great circles as “rectilinear intervals” on the
Earth’s surface (Geogr., 1, 2–3).

In fact, one can hope that deviations from the energetically preferable geodetic routes due to topo-
graphical features or orientation problems statistically balance each other out over big distances. Only in
rare cases one can get the impression of the way which Ptolemy used to recalculate the available distances
between the localities into the arcs of the great circles.34 It is clear that the precision of the final results
of mapping is influenced not only by the inaccuracy of the geographical and astronomical data possessed
by Ptolemy, but also by his way of processing this information.

As Ptolemy stated,35

... we think it is necessary to state clearly that the first step in the proceeding of this kind
is systematic research, assembling the maximum of knowledge from the reports of people
with scientific training who have toured the individual countries; and that the requiring and
reporting is partly the matter of surveying, and partly a matter of astronomical observations.
The surveying component is that which indicates the relative positions of localities solely
through measurements of distances; the astronomical component is [that which does the
same] by means of the phenomena [obtained] from astronomical sighting and shadow-casting
instruments. Astronomical observation is a self-sufficient thing and less subject to error,while
surveying is cruder and incomplete [without astronomical observations]. For, in the first place,
in either procedure one has to assume as known the absolute direction of the interval between
the two localities in question, since it is necessarily to know not merely how far this [place]
is from that, but also in which direction, that is, to the north, say, or to the east or more
refined direction than these. But one cannot find this out accurately without observations
by means of foresaid instruments, from which the direction of the meridian line [with respect
to one’s horizon], and thereby the [absolute directions] of the traversed intervals, are easily
demonstrated at any place and time.

To recalculate the geographical positions given by Ptolemy to a sphere of another size, one needs to
consider different cases, depending on the information respectively available to Ptolemy.

Case 1

The first procedure can be applied to places with known (e.g. through astronomical observations or
through relative position to a known locality) geographical latitudes. These localities were placed by

according to standard rules, should be taken into account.
34An overview is given Berggren & Jones, Ptolemy’s Geography. An annotated translation of the theoretical chapters,

Princeton, Oxford, 2000, Introduction.
35Geography 1, 2.1–2.2
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Ptolemy on his map at the proper latitudinal circles but at erroneous mutual longitudinal distances. In
this case, only this mutual longitudinal distance needs to be corrected.

Let us consider two localities, a lying at latitude ϕa and b lying at latitude ϕb, with longitudinal
difference ∆λab as given by Ptolemy for a “small” Earth (see Fig. 1, right). We will look for a trans-
formation to the positions A and B on a “big” Earth (Fig. 1, left) which doesn’t change the latitudes
of the localities, so that ϕa = ϕA and ϕb = ϕB. To recalculate the longitudinal difference, we first need
to find the angular distance s measured along the great circle connecting points a and b on the “small”
Earth using the spherical law of cosines:

cos s = cos(π/2− ϕa) cos(π/2− ϕb) + sin(π/2− ϕa) sin(π/2− ϕb) cos∆λab. (1)

The radian measure of this distance for the “big” Earth can be determined as

S = s ∗ r/R. (2)

Now, the “true” longitudinal difference ∆λAB, that is, the value which Ptolemy would have found out if
he had used Eratosthenes’ estimation of the size of the Earth, can be calculated in radian measure e. g.
as follows:

cos∆λAB =
cosS − cos(π/2− ϕA) cos(π/2− ϕB)

sin(π/2− ϕA) sin(π/2− ϕB)

where ϕa = ϕA and ϕb = ϕB . The value of the longitudinal difference in degrees is then given by

∆λ◦

AB = ∆λAB ∗ 180◦/π.

The formulae for this first case provide an explanation for the excessive distortion of Ptolemy’s world
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Figure 1: Recalculation of the position of a point b lying at a known latitude ϕb and at a known distance
s to a starting point of mapping a with the latitude ϕa. Points A and B on the “big” Earth lie on the
same latitudes as the points a and b on the “small” Earth, respectively. With the same known distance
between two points, the recalculated angular value of S is smaller than s and the longitudinal distance
∆λAB is smaller than the longitudinal distance ∆λab.

map in the east-west direction (see Fig. 1).36 The whole oikoumenē from the Insulae Fortunatae in the

36Throughout the diagrams, the known elements are marked with red colour.
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West to the Sēra Metropolis in the Far East is equivalent to 180 degrees, too large by more than a third.
Among the few reliable data which were available to Ptolemy at his time, the rare latitudinal values of
some prominent locations laid the groundwork for Ptolemy’s mapping. The terrestrial distances between
these localities, transmitted for the most part by merchants or soldiers, were used first for determination
of the longitudinal coordinates of these places. The framework obtained in this way could then be used
for further local mapping. Due to the erroneously adopted size of the Earth, Ptolemy should consequently
have obtained a bigger longitudinal difference for each pair of locations with known latitudes and known
distance between them. Fig. 5 (points B and b, respectively) shows schematically how a map will be
distorted in this case.

Case 2

The second procedure can be applied to recalculate the coordinates of a place c lying at a latitude
(ϕc) which was unknown to Ptolemy (such localities obviously exhibit a significant latitudinal error).
The geographical position of such a locality must have been calculated by Ptolemy only on the basis of
the length of the route and the estimated direction of the route (course angle) connecting this locality
with some starting point a at a known latitude ϕa. In this case, the geographical latitude of c as well as
the difference in longitudes ∆λac between two localities should be corrected (see Fig. 2).

To recalculate the coordinates on the “big” Earth’s surface, one can proceed in the following way.
First, one must restore the length of the distance and the course angle assumed by Ptolemy. The arc of
the route s in radian measure can be found exactly as in the first case using Formula 1. The course angle
α can be found using help of the spherical law of sines from

sinα =
sin∆λac sin(π/2− ϕc)

sin s
.

Because this value of α was, in fact, measured on the real Earth’s surface, we should keep it for further
calculations. With these restored data, s (expressed in stadia) and α, Ptolemy would have obtained his
erroneous values for the latitude of the second locality ϕc and the longitudinal difference ∆λac. The value
of the distance S in radian measure on the “big” Earth is given, once again, by Formula 2. Now, we can
find the “true” latitude of the locality C using the law of cosines:

cos(π/2− ϕC) = cos(π/2− ϕa) cosS + sin(π/2− ϕa) sinS cosα.

Here ϕa = ϕA.
The longitudinal difference ∆λAC can be calculated, e.g., with the help of the law of sines, in radian

measure as

sin∆λAC =
sinα sinS

sin(π/2− ϕC)

and expressed in degrees as

∆λ◦

AC = ∆λAC ∗ 180◦/π.

The distortion of the map for this case is shown schematically in Fig. 5 (points C and c, respectively).

The geographical coordinates on the “small” Earth show the over-expansion along the east-west as well
as along the north-south direction.

Case 3

A special case is that of localities lying on the same meridian (or very close to it). Lists of such cities,
called antikeimenoi poleis,37 circulated in antiquity since the time of the pre-geographical mapping as a
means of a rough orientation between major cardinal points like important cities, ports and landmarks.

37Ptolemy Geogr. 1,4.2, 1,15.1.
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Figure 2: Recalculation of the position of a point c lying at a known distance s and in a known direction
α relative to the meridian of a starting point of mapping a with latitude ϕa. Points a and A lie at the
same known latitude. The recalculated position of the point C on the “big” Earth has a latitudinal value
that is different from that of the point c, and lies at another latitudinal distance from the point A on the
“big” Earth than the point c does relative to a on the “small” Earth.

Let point A be a reference point lying at some known latitude ϕA on the “big” Earth and point D lie
at an unknown latitude at some distance S from A on the same meridian. If the distance S is expressed
in stadia and we assume the length of a degree on the Earth surface to be 700 stadia, the point D will
lie S/700 degrees to the south of A (Fig. 5, left). On the “small” Earth, where 1◦ = 500 stadia, the
appropriate point d will lie S/500 degrees to the south of A (Fig. 5, right). Accordingly, the latitudinal
difference between a and d will attain 7/5 = 1.4 of the latitudinal difference between A and D - that is,
the point d will be placed further to the south in relation to its actual position. Hence, a point lying at
a known distance to the north of A will be shifted north on the “small” Earth relative to its position on
the “big” Earth. If a locality lies not exactly on the meridian of A but close to it, its position on the
“small” Earth will move further to the south (or further to the north) relatively to its actual position and
will also exhibit a small latitudinal displacement. This case can be treated with the formulae of Case 2.

Quite often, similar instances of unexpected latitudinal displacement can be observed on Ptolemy’s
world map. One such example is the notorious displacement of Carthage, ca. 4 degrees off in latitude.38

The other example is the latitude of Kattigara, depicted by Ptolemy as lying south of the equator.39

Both cases can easily be explained within our mathematical scheme (to be published).
It is now easy to show that this simple combination of different types of information available to

Ptolemy, together with the erroneously adopted size of the Earth, automatically displaces local maps
which were adjusted to a reference point of mapping in different ways relatively to each other (see Fig.
3). Instances of this kind of displacement are often observed on Ptolemy’s map and they are usually
considered to be a consequence of incorrect linking of the local maps. Although this was certainly partly
the case, for some other maps it was just a mathematical consequence of the erroneously estimated size
of the Earth.

38Geogr. 4,3.34.
39Geogr. 7,3.3.
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Figure 3: Relative displacement of local maps as a consequence of the erroneously adopted size of the
Earth. Left: “ big” Earth, right: “ small” Earth. Points B and C are the reference points of the local
maps (schematically represented by equal squares), lying on the same latitudinal circle. Both points
and hence both dependent submaps are placed on the global map relative to a reference point A lying
at distance S. The latitude of C is known a priori and the location is placed on the “small” Earth
at point c at a known latitude, at the expense of accepting a greater longitudinal difference (Case 1).
The latitude of the locality B is unknown and the location is placed on the “small” Earth at point b
using information about the course angle α and the distance s to A (Case 2). The result is an apparent
wholesale displacement of the local maps.

Case 4

An important one-of-a-kind case that needs to be treated separately is the position of the Insulae

Fortunatae marking Ptolemy’s zero meridian (Geogr. 1,11.1). In this case, one can assume that the
longitude of the islands was supposed to be known and taken to be of supreme significance to Ptolemy;
therefore, one should perform recalculation in such a way that the longitudinal distance to a reference
point (e.g. Alexandria or Marseille) was kept unchanged (see Fig. 4). Because the angular distance on
the “big” Earth will be shorter, the position of Insulae Fortunatae will lie north of the Ptolemaic position
(points F and f in Fig.5). This simple idea can explain the mysterious far too southern Ptolemaic latitude
of the Insulae Fortunatae. The solution can be calculated from the following sequence of formulae: first,
the length of the distance s between the stating point a and the point lying at Ptolemy’s Prime Meridian
should be found exactly as in the first for the “small” Earth with Formula 1, then the route can be
recalculated in angular measure (S) for the “big” Earth with Formula 2. An additional angle, let us call
it β, can be found using the law of sines

sinβ =
sin∆λaf sin(π/2− ϕA)

sinS

and then the latitude of the point F on the “ big” Earth, lying on the same longitudinal circle as as the
point f on the “small” Earth, can be found e.g. using the relation

tan
(π/2− ϕF )

2
=

sin
(∆λaf+β)

2

sin
(∆λaf−β)

2

tan
(S − π/2 + ϕa)

2
.

Here ϕa = ϕA. A schematical illustration of this case is also given in the overview of the possible cases
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Figure 4: Recalculation of the position of Ptolemy’s Prime Meridian. Points a and A are the reference
points of the mapping, known a priori to lie at the same latitude. The Insulae Fortunatae (labelled f
and F , respectively) are supposed to be lying at a fixed longitudinal distance ∆λaf to the reference point
of mapping. Aligning the other endpoint of the line segment of known length connecting the reference
point to the islands to the Prime Meridian forces the position of the island group to slide south.

of distortion (Fig. 5).

Case 5

The case of a locality lying on the meridian of a reference point with known latitude and at a known
distance to it was much more challenging for Ptolemy. Converting this distance into angular measure,
he would not have been able to come to a conclusion consistent with the known latitude of such a
locality. In this case, as a trained astronomer who would put more trust in astronomical observations
than in theoretical calculations, he might have preferred to retain the known latitude of a locality on
his map (Fig. 5, points E and e, respectively) and dismiss the less reliable distance measure. Such
cases with “retained” latitudes can be easily spotted on Ptolemy’s map; although the positioning of such
localities matches their actual position very well, they are strictly speaking “not of this map” and the
coordinates of the nearby localities which were not adjusted in a local map to such “alien” locations show
a remarkable distorted muster. A striking example is the alignment of Syene (and therefore, Meroe) to
the meridian of Alexandria. With the relative location of both cities and the latitude of Syene being
very well known, Ptolemy was forced to place Syene at the proper latitudinal circle. As a result, the
angular distance between Alexandria and Syene measures ca. 7.29◦ along the great arc connecting them
and with a distance between them of 5000 stadia, one might get the impression that the length of a
degree on the Ptolemaic map is as large as 5000 : 7.29 = 685.87 stadia, very close to Eratosthenes’ result.
As a consequence, the following alignment of some positions along the Arabian Golf to Syene partially
resembles a modern map. Nevertheless, some distances in this region (even such important ones as the
distance between Adulis and Aromata) are expressed in angular measure according to the Ptolemaic low
of 1◦ = 500 stadia. Another characteristic example is the shape of Sicily, which is distorted due to his
keeping of the latitude of Syracuse followed by gradual adjustment of the points on the eastern coastline
at the distances recalculated by Ptolemy in angular measure according to his erroneous size of the Earth
(Tupikova/Geus, to be published).

Of course, Ptolemy would have faced an insurmountable mathematical problem when adjusting ge-
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Figure 5: Schematical illustration of the possible cases of distortion in Ptolemy’s world map. Left: “big”
Earth. Right: “small” Earth. The point a = A is the starting point of the mapping.

ographical coordinates for the case of three localities with known latitudes and known route lengths
between them. In some cases, the routes would not always fit together because of the adopted erroneous
value for the circumference of the Earth.

2.2 The problem of the Prime Meridian

Having adjusted Ptolemaic positions to “Eratosthenian” size of the Earth, one faces the problem of
comparing the recalculated positions of the localities to their actual geographical location. Whereas
Ptolemaic latitudes can be considered as being equivalent to the modern values, his longitudinal values
should be corrected for the position of his Prime Meridian in relation to the Greenwich meridian. It is
very important to understand that the position of the Greenwich Meridian cannot be uniquely defined
in the context of Ptolemaic mapping.

Let us consider, for simplicity’s sake, two known (identified) locations A and B lying at the same
latitude on the “big” Earth (Fig. 6, left). The position of the Insulae Fortunatae is labelled with F .
The longitudes of the localities A, B and F relative to the Greenwich Meridian are labelled λA, λB and
λF , respectively. Let us assume that the localities A and B are placed by Ptolemy on the surface of
the “small” Earth at points a and b1 (Fig. 6, right) at the same (correct) longitudinal distances to the
Greenwich Meridian, that is, at

λa = λA, λb1 = λB

and have in his catalogue the longitudes λP
a , λ

P
b1
. Then the longitude of the Insulae Fortunatae relative

the Greenwich Meridian which can be determined from the Ptolemaic coordinates for both localities will
assume the same value:

λF = λf = λP
a − λa = λP

b1
− λb1 .

On the other hand, if the position of the other locality was aligned by Ptolemy to the position of a on the
basis of available information, even if this information (the length of the connecting route, the direction
of travel, latitude of the location, etc.) were known precisely, the mapping onto a sphere of the wrong
size would place this location at a different longitudinal distance to a, say b. As a result, the longitude
of of the Insulae Fortunatae relative the Greenwich Meridian determined from Ptolemaic coordinates for
the point a and for the point b will be different:

λF = λP
a − λa 6= λP

b − λb.
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In fact, the position of Alexandria relative to the Insulae Fortunatae is given as 60◦30′ (Geogr. 4,
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Figure 6: The problem of Ptolemy’s Prime Meridian. The Greenwich Meridian is drawn in red; the
positions of the Insulae Fortunatae/Canary Islands is labelled with F and f , respectively. The point
a = A is the starting point of the mapping. The position of the Greenwich Meridian relative to the
Insulae Fortunatae is different relative to the different points after mapping on the “small” Earth’s
surface.

5.9); the modern longitude of Alexandria is known to be about 29◦ N 55′ E. Subtracting this value
from Alexandria’s longitude as given by Ptolemy, one can obtain the longitude of Greenwich Meridian
relative to Ptolemy’ Prime Meridian as 30◦35′. If one attempts in the same way to recalculate the
position of Greenwich Meridian with respect to the coordinates of Rome (Ptolemaic position 36◦40′,
modern position 12◦29′), one obtains 24◦11′.40 Whichever identified location is chosen, the position of
the Greenwich meridian relative to the Insulae Fortunatae will always come out different. The problem
is not due to the poor determination of the positions in Ptolemy’s time: it is due to Ptolemy’s attempt to
map the available distances onto a sphere of wrong size. As a result, Ptolemy’s maps are locally distorted
relative to every starting point of mapping in his source data. The maps are stretched along the east-west
direction for the localities with known latitudes and along all the other possible directions in other cases.
This is why the identification of the position of the Greenwich Meridian through the modern coordinates
of identified localities is always complicated - it slides along the modern coordinate system and cannot
be related to the Ptolemaic coordinate system globally. From our point of view, it makes no sense to
speak of the position of the Greenwich Meridian relative to Ptolemy’s zero meridian without mentioning
the chosen reference point.

As a consequence, Ptolemaic maps can be recalculated and improved only locally.

2.3 Some refinements

The formulae of the previous chapter describe an ideal solution for transformation of a system of spherical
coordinates given on a sphere of some size to spherical coordinates on a sphere of another size. The

40As we have already shown elsewhere (Tupikova/Geus, The Circumference of the Earth and Ptolemy’s World Map,
Preprint MPIWG N 422, Berlin, 2013.), due to the inconsistency of the longitude of Rome relative to Alexandria, coordinates
recalculated relative to both localities can not be placed on the same restored map.
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coordinates presented by Ptolemy in his Geography are far from being ideal. Not only were the distances
and the relative orientation of the routes known at low precision or just estimated, even astronomical
observations aimed to determine geographical latitudes were rarely performed by professional surveyors.
Under such conditions a simple idea can be of great help.

Let us consider a locality which is supposed to be chosen by Ptolemy as a starting point of mapping
in some local map, for instance the route to the not yet reliably identified Stone Tower going through
Baktra. The known latitude of Baktra (Balch), 36.72305, deviates considerably from the value of 41.0◦

given by Ptolemy (Geogr. 6, 11.9). Nevertheless, the distance and the direction to the Stone Tower were
in fact known and measured from the real position of Baktra. It seems therefore reasonable to translate
the direction and the distance between both localities to the exact latitude of Balch on the Ptolemaic
map, to construct a spherical triangle with this “improved” position as a vertex and then proceed to
recalculate the coordinates for the “big” Earth for the purpose of identifying the site in question. This
approach is illustrated in the left half of Fig. 7. The same simple idea can be applied to estimate the
precision of Ptolemy’s mapping even in the case of relatively well-defined latitudes which we have so
far treated with the simple formulae of Case 1 (see Fig. 7, right). All the established positions in the
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Figure 7: Translation of the Ptolemaic coordinates to the exact position of the reference point. The
starting point of mapping a has a significant error in latitude; its actual position is labelled a1. The
direction to the point b and the length s of the route between a and b as perceived by Ptolemy can be
translated to this real position before recalculation. Left: Case 2; right: Case 1.

following part of the text were recalculated in this way. The program we have written41 proceeds in the
following way: first, to improve the position of some locality, a suitable reference point is chosen (this
choice should be justified by historical reasons). Second, a spherical triangle with vertices at the North
Pole, the reference point and the locality is constructed from the spherical coordinates given by Ptolemy
for both localities. Third, the distance between the localities and the direction of the route connecting
them relative to the meridian of the reference point are calculated. Fourth, the distance and direction
thus calculated are translated to the true position of the reference point (if available) and a new spherical
triangle on the “small” Earth is constructed. Corrections appearing due to usage of these “improved”
Ptolemaic positions in some regions (e.g., in the Mediterranean) are very small; they can be, of course,
significant if the reference point has a big latitudinal error.

Lastly, recalculation to the “big” Earth’s size is performed twice, using the formulae of Case 1 and
Case 2 respectively, and both solutions are kept for further interpretation. If the actual position of the
locality whose position should be recalculated is known, the better of the two solutions is retained.

3 Recalculation of Ptolemaic coordinates

The principal mathematical result of the previous chapter is the impossibility to align the position
of Ptolemy’s Prime Meridian, Insulae Fortunatae, to the position of the Greenwich Meridian globally.
The Greenwich longitude of the Ptolemaic Prime Meridian can be established only locally, through the

41The complex of programs was written in the MAPLE computer algebra system.
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identification of the coordinates of an identified locality at the Ptolemaic and at the modern map. The
coordinates of the other localities can be recalculated relative to this identified reference point; the
recalculated positions are in this way automatically referred to the Greenwich Meridian. Let us stress
that the Ptolemaic localities will be placed on the modern map at the different positions depending on
the reference point used in adjusting of the Greenwich Meridian.

The formulae of the spherical trigonometry are very sensitive relative to variation of the coordinates
and an erroneously chosen reference point of mapping can produce a huge declination of recalculated
positions from their proper places. Therefore, a historical background, which can provide an information
about the ancient distances data, becomes a necessary part of a mathematical problem. From the other
side, this sensitivity of the algorithm is of great use: it helps to sort out the positions which were in fact
linked by Ptolemy on his map.

Due to amount of information in Geography, only a part of the results can be presented here.
First, as we have already discussed, the position of the Insulae Fortunatae (Ptolemy places six of

them along the same meridian) slides at the Ptolemaic map towards south as a pure mathematical
consequence of Ptolemy’s attempt to adjust the known distances to the islands’ group to the compulsory
given meridian. At the “big” Earth surface, these distances (expressed in the angular measure) are shorter
and the same meridian can be reached at a latitude lying northern from the Ptolemaic position. As a
conceivable choice for the starting point of the route, the location of Massilia was chosen (corrected for
the actual position of Marseille).42 The results of recalculation performed with the formulae of Case 5 are
given in Fig. 8. After recalculation, the position of the Insulae Fortunatae corresponds approximately to
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Figure 8: Recalculation of the position of the Insulae Fortunatae relative to Massilia/Marseille from the
circumference of the Earth of 180, 000 units to the circumference equal to 252, 000 units.

the proper latitude of the Canary Islands instead of the Ptolemaic latitude which matches in fact better
the position of the Cape Verde Islands.

42The coordinates of the Ptolemaic localities were taken from the new edition by Stückelberger & Graßhoff (2006).
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Let us consider now Ptolemy’s coordinates for the eastern part of Mediterranean. It is to be expected
that, at this scale, the error in the determination of the Earth’s size does manifest itself to a significant
degree (although not as drastically as at the outer fringes of the oikoumenē); it is furthermore of great
help that the positions of the historical locations are mostly reliably known and hence allow for easy
verification of the results. According to the database of ancient distances compiled by K. Geus,43 the
most cited reference points are the following, in descending order: Rome, Carthage, Alexandria, Pillars
of Heracles and Babylon. Because of that, we have chosen Rome (strictly speaking, the coordinates
of the famous Milliarium Aureum at the Forum Romanum) as our reference point to recalculate the
Ptolemaic positions for Spain and Gaul. Thus, the position of the Greenwich Meridian was determined
through identification of the position of Rome with its modern position. Because, for the most part,
the Ptolemaic latitudes in this region coincide very well with their modern counterparts, the formulae
of Case 1 were used for recalculation. In order to visualise the results more clearly, only the locations
of some key cities on the recalculated map are displayed in Fig. 9. A striking improvement of the
coordinates in Gaul after recalculation is evident. The recalculated locations of Burdigala/Bordeaux
and Tolosa/Toulouse are of a remarkable precision - it seems obvious that their positions were indeed
linked to the position of Rome on the Ptolemaic map. The positions of Lugdunum Metropolis/Lyon,
Durocortorum/Rheims and Massilia/Marseille hint at the possibility of other reference points having
been used. Some of these possible reference points are easy to detect. For example, the position of
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2   Pillars of Heracles / Gibraltar       8   Lugdunum Metropolis / Lyon        

3   Cordula / Corduba                       9   Massilia / Marseille       

4   Malaca / Malaga                        10   Tolosa/Toulouse

5   Hispalis / Seville                         11   Durocortorum / Reims         

6   Valentia / Valencia      

              

Figure 9: Recalculation of some localities in Spain in Gaul for an Earth circumference of 252, 000 units.
The position of the Greenwich Meridian is defined relative to Rome as a reference point.

LugdunumMetropolis, which shows a slight longitudinal displacement, coincides perfectly with its modern

43This database of ancient measurements is a project carried out in the excellence cluster TOPOI (Berlin).
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position after recalculating relative to the position of Augusta Vindelicorum/Augsburg (see Fig. 10). This
recalculation was performed with the formulae of Case 1, i.e. under the assumption that the latitude
of Lugdunum Metropolis as well as its distance to Augusta Vindelicorum were known. The position
of Durocortorum/Rheims shows a latitudinal as well as the longitudinal displacement and should be
recalculated with the formulae of Case 2. From historical reasoning, the position of Durocortorum can
be linked to the position of Colonia Agrippinensis44/ Cologne and in fact, recalculation with Cologne
as reference point improves the position of Durocortorum dramatically. In both cases, the restored
Ptolemaic distances were translated before recalculation to the actual positions of the reference points.
A schematical illustration of the recalculation is given in Fig. 10. The coordinates in Spain are also
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5   Hispalis /Seville                        13  Augusta Vindelicorum /Augsburg              

6   Valentia / Valencia

              

Figure 10: Recalculation of some localities in Spain and Gaul for an Earth circumference of 252, 000
units. The position of the Greenwich Meridian is defined relative to the respective reference points of
recalculation. The positions in Spain are recalculated relative to Massilia/Marseille using the formulae of
Case 1. The position of Lugdunum Metropolis is recalculated relative to Augsburg, also using the formulae
of the Case 1; the position of Durocortorum is recalculated relative to Cologne using the formulae of Case
2.

drastically improved but show another displacement pattern: all the recalculated coordinates lie to the
west of the respective actual positions. Because a small displacement in the same direction is also seen in
the coordinates of Marseille, one may hypothesise that its location served as a starting point for Ptolemy’s
mapping of Spain. The results of the recalculation for the same localities relative to the actual position
of modern-day Marseille are given in Fig. 10. Apart from Barcino/Barcelona, which seems to be linked

44Full name Colonia Claudia ara Agrippinensium.
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to another reference point, the coordinates now match the corresponding actual positions very well.45

A further impression of the results of the recalculation can be gained by considering the whole set of
the Ptolemaic positions of identified localities in Spain. Fig. 11 (top) shows these positions adjusted to
the Greenwich Meridian with respect to Massilia identified with the modern position of Marseille. The
same positions recalculated using the circumference of the Earth given by Eratosthenes are displayed
in Fig. 11, middle. One can see a significant improvement in longitudes but the well-known Ptolemaic
distortion of Spain along the north-south axis is still present. It disappears, however, if one adopts the
Pillars of Heracles/Gibraltar as the reference point of recalculation (Fig. 11, bottom).46 In our opinion,
this suggests that Ptolemy used at least two different reference points for the west part of Europe: the
great part of localities were linked to Marseille, but some of the distances were known and used in the
mapping procedure with respect to the Pillars of Heracles.

A thorough investigation of some local Ptolemaic maps has recently been applied to identify the
locations given in Geography by statistical analysis based on the Gauss-Markov model.47 The main
idea was to choose, for every local map, a set of localities to be identified with the modern positions
(ϕi

modern, λ
i
modern) and to compare these positions with the Ptolemaic positions (ϕi

P tolemy , λ
i
P tolemy). A

system of linear equations connecting these coordinates was written as

λi
P tolemy + viλ = mλλ

i
modern + λ0,

ϕi
P tolemy + viϕ = mϕϕ

i
modern + ϕ0.

In this way, the systematic differences between the modern and Ptolemaic coordinates were modelled
with the scale parameters mλ and mϕ as well as with the linear terms λ0 and ϕ0. The quantities viλ
and viϕ were considered as residual terms. After that, the subsets of locations which exhibited consistent
statistical behavior without noticeable systematics in residuals were chosen. Such subsets were considered
to belong to the same transformation module. With the scale parameters and the linear terms being found
for every module, the modern coordinates of non-identified localities could be determined through the
Ptolemaic coordinates as

λi
modern =

1

mλ

λi
P tolemy −

1

mλ

λ0,

ϕi
modern =

1

mϕ

ϕi
P tolemy −

1

mϕ

ϕ0.

Whereas the linear terms ϕ0 (the authors called them “translations”) of every set can be caused by an
error in determination of the latitude of a reference point used by Ptolemy to map a local area, the
“translation” in longitude λ0 (which was found to be different for different subsets) is, in our opinion, to
a great extent due to the problem of localization of the position of the Greenwich meridian for a selected
region (see chapter 2.2). It would be mathematically reasonable to correct the Ptolemaic coordinates first
for the erroneously chosen circumference of the Earth and then to proceed with statistical algorithms
minimizing the residuals of the errors in the local positions. At the outermost fringes of the oikoumenē,
where identification of the localities always involved a fair amount of guesswork, there is no sufficient
input data to obtain useful results using statistical methods.

Unfortunately, the authors have taken the elongation of Ptolemy’ world map as a priori and also seem
to have attributed this main error to the use of different values for the stadion in ancient sources.48

Let us underline that the possible erroneous recalculation of local distances given in unfamiliar units
into stadia would produce the same effect as mapping the distances onto a sphere of the wrong size, and

45Note that the original Ptolemaic coordinates represent different positions on the map depending on the longitude of
the Ptolemy’s Prime Meridian relative to the Greenwich Meridian.

46The results were first presented in Tupikova, I. , “Ptolemy’s circumference of the Earth”, in: From Pole to Pole, Proc.
of the 26th International Cartographic Conference, ed. Buchroithner M. F., Dresden, Germany, 25 – 30 August 2013.

47Kleineberg et al., Germania und die Insel Thule. Die Entschlüsselung von Ptolemaios’ “Atlas der Oikumene”, Darm-
stadt, 2010; Kleineberg et al., Europa in der Geographie des Ptolemaios. Die Entschlüsselung des “Atlas der Oikumene”.

Zwischen Orkney, Gibraltar und den Dinariden, Darmstadt, 2012.
48Kleineberg et al. Europa in der Geographie des Ptolemaios. Die Entschlüsselung des “Atlas der Oikumene”. Zwischen

Orkney, Gibraltar und den Dinariden, Darmstadt, 2012, p. 13.
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the positions in such regions should be recalculated locally for a correct relation between these units in
the way described in the previous chapter.

The approach discussed in this paper not only provides an epistemological explanation for the distor-
tion observed on Ptolemy’s map – in some cases, it also provides more accurate candidate positions for
yet-unidentified localities. The main reason is that a choice of a single reference point (justified by histor-
ical reasons) for recalculation to the actual size of the Earth allows to avoid an averaged error introduced
in the process of statistical analysis. It also makes it possible to reconstruct the internals of the Ptolemaic
mapping process and to infer which pairs of mutual distances of localities were available for. An example
is given in Fig. 12, where the mouths of some rivers in Germania Magna are shown after recalculation
with the formulae of Case 2 relative to Cologne. The basis of the Ptolemaic distortion of the coastline
marked with the mouths of rivers now becomes clear: the distances and the directions towards these
mouths were most likely known relative to Colonia Agrippinensis/Cologne and the attempt to reconcile
these distances with the erroneously assumed size of the Earth produced the observable result. Our recal-
culation using a few simple formulae places the identified rivers’ mouths at their proper places (especially
impressive is the precision of the positioning of the mouth of Vistula/Weichsel which marked the border of
Germania Magna in antiquity), and helps to identify the rivers in question. The possible solution would
be Stolpe or Wipper for Viadua, Warnow or Recknitz for Chalusus, Vecht for Vidrus and Swine/Oder for
Suebus ; it coincides with earlier proposals obtained as results of the cumbersome statistical and historical
analysis. Farther to the east, in Sarmatia, the course of the ”Sarmatian ocean”/Baltic sea is marked by
the mouths of the not yet reliably identified rivers Chronos, Rubon, Turuntos and Chesinos.49 As we
have shown elsewhere,50 the positions of these rivers were linked by Ptolemy with the position of the
mouths of Rhine, one of which has served as a starting point for the sea expedition of Tiberius in 5 A.D.;
this expedition is mentioned in the res gestae of Augustus and in the Natural History of Plinius.51 The
information about directions and distances towards the mouths of these rivers was estimated so well that
it matches after recalculation to the Eratosthenian size of the Earth with a very impressive precision the
positions of the mouths of Pregolja, Neman, Daugava rivers and, possibly, Salaca or Pärno rivers , the
first two being common historical identifications for Chronos and Rubon, respectively. For comparison,
the statistical method (Kleineberg et all, 2012, p. 50) delivered the following identifications for the rivers
in Sarmatia: Chronos = Neman, Rubon = Daugava, Turuntos = Narva River and Chesinos = Neva.
The reason for this strange result lies in attempt to apply the correction coefficients gained in Germania

Magna to another region.
At the other end of the oikoumenē, just before the point at which the inexplicably inaccurate coor-

dinates observed in the periphery of the Tarim basin begin, the precision of the Ptolemaic coordinates
is still very high. The distances in Sogdiana and Bactria relative to Rome seem to be estimated very
well and correctly transformed into lengths of spherical arcs. The results of the recalculation to the
“Eratosthenian” circumference of the Earth for some locations are given in Fig. 13. Recalculation was
performed with the formulae of Case 1, that is, the Ptolemaic latitudes were kept intact and only lon-
gitudinal errors produced by the erroneously assumed size of the Earth were corrected. Of remarkable
precision are the positions of Kabul, Samarkand and the Caspian Gates. Whereas in the last case, this
could be conjectured to be the result of an educated guess, for the first two cities one is tempted to
explain the high-precision latitudinal values as the result of astronomical observations. The precision of
Marakandas coordinates is not obvious in the original Ptolemaic coordinates; its erroneous placing in
Baktria even forced J. Markwart52 to conclude that its precise latitudinal position is a pure coincidence.
Detailed numerical experiments show that the position of Marakanda was, with a great probability, linked
by Ptolemy not with the position of Rome but rather with the important position on the way towards
Sogdiana and Baktria - crossing of Euphrates by Hierapolis/Membidj (Geogr. 5,15.13). Recalculation

49Geogr. 3,5.2.
50Geus, K., Tupikova, I., “Von der Rheinmündung in den Finnischen Golf . Neue Ergebnisse zur Weltkarte des Ptolemaios,

zur Kenntnis der Ostsee im Altertum und zur Flottenexpedition des Tiberius im Jahre 5. n. Chr.”, Geographia Antiqua,
2014, pp. 125–143.

51Plinius nat. 2, 167.
52Markwart, J., Die Sogdiana des Ptolemaios, ed. Messina, G. Rom, 1938, pp. 140–141.

20



of the Ptolemaic coordinates to the Eratosthenian size of the Earth with the reference point chosen at
Membidj transforms the geographical coordinates of Marakanda to the value of 39◦28′ N; 66◦56′E; to
compare, the actual coordinates of Samarkand are 39◦39′ N, 66◦58′ E. This impressive coincidence point
towards an actual astronomical observation of a latitude in combination with the highly precise terres-
trials measurements by the βηµατισταί of Alexander the Great and, of course, towards a successful
cartographical recalculation of the length of the route between the crossing of Euphrates and Marakanda

into an arc of the great circle.
For two locations - Antiocheia Margiane/Merv and Baktra/Balkh - the main error for the overexten-

sion of the Ptolemaic map is eliminated but the significant latitudinal error is still extant. This profound
characteristic error in latitudes was inherited by Ptolemy via Marinos from, possibly, Eratosthenes: Bak-
tra and Antiocheia Margiane were supposed to lie at the latitude of Hellespontes.

The mouth of the Oxos/Amu Darya, which was supposed to drain into the Caspian Sea, moves
towards the old riverbed of Amu (Uzboi) after the recalculation. The complicated hydrological history
of the Caspian basin53 provides reliable evidence towards this scenario in historic times. Erstwhile one
of the four largest lakes in the world, the Aral Sea, was steadily shrinking and growing depending on
whether the main stream of Amu Darya drained into the Caspian or towards the Aral Sea. This fact
is confirmed by the discovery of archeological artefacts and ruins dated back to XIV century AD in the
dried out seabed in 2001.54 Accordingly, the level of the Caspian Sea was changing with an amplitude of
about 15 meters over the course of the last three thousand years.55 After recalculation, the position of
the “center” of the Oxeiane (as given by Ptolemy) moves towards the eastern boundaries of the Aral sea
before the beginning of the last shrinking period; it is not clear, however, how one could define a position
of the “center” in a marshy depression of Syr at a time when its tributaries had not yet disappeared into
the sands.

At the northern coastline of the Caspian Sea, apart from the Rha/Volga, only the Daix/Ural River
seems to be reliably identified. After our recalculation, the longitudinal error is reduced but the mouths
of all the rivers still show the famous significant latitudinal error. The information about these rivers was
very likely gained either from older iterinaria56 or from the results of the scientific expedition dispatched
by Alexander the Great from the newly established Alexandreia Eschate; the results of recalculation
relative to Alexandreia Eschate/Kujand are given in Fig. 14. Because of uncertainties of positions in
this regions, the solutions obtained with formulae of the both basic cases are displayed at the map.
Remarkably, the mouth of the Oxos lies now approximately at the site of the Garabogazköl lagoon and
the northern coastline of the Caspian Sea looks much more realistic.

Let us recall that the Oxeiane is mentioned to be “built up” by one of the rivers (in fact, it was mostly
Syr Darya that fed it); it might be the case that one of the northern affluents of the Caspian Sea was
erroneously assumed to be a continuation of Syr Darya in this direction and appeared at the Ptolemaic
map as a doublet gained from the travel reports from both western and eastern directions, once as Iastus
and once as a misalignment of the Iaxartus.57

The whole longitudinal dimension of the Ptolemaic oikoumenē attains 180◦ demonstrating the well-
known overextension of his maps. Commonly, modern scholars have explained this value assuming that
Ptolemy was primarily interested in attuning the longitudinal extension of his world map to this a priori
value for the sake of symmetry or for better application of his cartographic projections. To show that it
was not the case, let us consider the famous position of the Sēra Metropolis lying according to Ptolemy at
38◦35′ N and at 177◦15′ east relative to his Prime Meridian (Geogr. 6,16.8). The route towards Scythia
on this side of the Imaon is described by Ptolemy in the chapters entitled “On the computations that

53A short overview is given in Klaudios Ptolemaios Handbuch der Geographie. Ergänzungsband., 2009, pp. 312–318.
54In the context of the INTAS program of the Instutute of History and Ethnology in Kasachstan.
55Aklichev, M. M. Latentnye fenomeny kaspiyskoy depressii. Opyt analiza prirodnykh anomaliy i problem ekologicheskoy

bezopasnosti, Machachkala, Dagestan Veralg, 2000.
56Rapin C., “L’Incompréhensible Asie centrale de la carte de Ptolémeé: Propositions pour un décodage” , in: Bopear-

achchi, O.;, Bromberg, C.; Grenet, F. (eds): Alexander’ Legacy in the East: Studies in Honor of Paul Bernard = Bulletin

of the Asia Institute 12, 1998/2001, pp. 201–205.
57That could also explain the overestimated extension of the northern coastline of the Caspian Sea as a result of linking

of the different iterinaria.
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Marinos improperly made or the longitudinal dimension of the oikoumenē” and “The revision of the
longitudinal dimension of the known world on the basis of journeys by land” (Geogr. 1,11–12). That
is, here the primary interest of Ptolemy concerns finding out the angular distance to the most remote
part of the known world. A first choice for a reference point used by Ptolemy for determination of the
geographical position of the Sēra Metropolis seems to be the Stone Tower often identified with the Daroot-
Korgon. After recalculation, the coordinates of the Sēra Metropolis attain the value of 38◦26′N, 101◦40′

E58 thus placing this city between Ganzhou/Zhangye (38◦56′ N, 100◦27′ E) and Liangzhou (37◦52′ N,
102◦43′ E), both well-known proposals for its identification. This simple recalculations show that the
Ptolemaic longitudinal length of the oikoumenē was not an ill-founded decision but a result of a diligent
cartographical work based on the comparison and linking different distance data.59

4 Conclusion

In regard to the size of the Earth used by Eratosthenes and Ptolemy, three scenarios are basically possible:
1. Eratosthenes and Ptolemy used the same length of a stadion and therefore measured differently

the circumference of the Earth. It attained 252,000 stadia (700 stadia per degree) for Eratosthenes and
180,000 stadia (500 stadia per degree) for Ptolemy.

2. Ptolemy used a different length for a stadion than Eratosthenes but employed (unknowingly or
without paying attention to the problem) in his mapping procedure distances measured in Eratosthenian
stades.

3. Ptolemy used a different length for a stadion than Eratosthenes and expressed the circumference
of the Earth in these (unknown to us) units as 180,000 “Ptolemaic” stadia.

The first scenario means, first of all, that the Ptolemaic Earth is too small in comparison with the
Eratosthenian Earth (i.e. 28,305 km vs. 39,690 km, if one estimates the Eratosthenian stadion as 157.5
m). The recalculation of spherical coordinates given on a sphere of one size to a sphere of another size is
simple from the mathematical point of view, but requires some experience in the subject. Surprisingly,
it has never, to my knowledge, been applied to recalculate the geographical positions given by Ptolemy
in his Geography for Eratosthenes’s circumference of the Earth.

The results of such a recalculation show that if Ptolemy had adopted Eratosthenes’s figure, the
majority of his positions would have had coordinates which match their modern counterparts remarkably
well. As a consequence, one can confirm first the very high precision of Eratosthenes’s result for the
circumference of the Earth (here, the errors of his method seem to balance each other) and second, the
near equivalence of the length of stadion used by both scholars – at least, in data sets which have been
considered so far. It may not be obvious at first sight, but the recalculation of the positions given by
Ptolemy in his Geography for the Eratosthenian size of the Earth does not involve the use of any metrical
value of stadion. Geographical coordinates are per se dimensionless, and mathematically the procedure
can be reduced to the recalculation of spherical coordinates given on a sphere with the circumference of
180,000 units to a sphere with the circumference of 252,000 units.

The simple mathematical analysis performed in this paper allows to explain many topological features
of Ptolemy’s world map. For example, the excessive distortion of his map is a natural consequence of the
erroneously adopted size of the Earth in combination with Ptolemy’s attempt to preserve the latitudes of
some locations gained through astronomical observations. The other consequences are the impossibility
to determine the position of Ptolemy’s Prime Meridian in the geographical coordinate system globally,
mutual displacement of the local “maps” and e.g. far too northern (or far too southern) positioning of the
localitions lying approximately on the same meridian as the reference point of mapping. The erroneous

58The position of the Greenwich Meridian was defined through identification of the longitude of the Stone Tower with
the longitude of the Daroot-Korgon. The coordinates were obtained with the formulae of the Case 2, that is, the direction
and the distance towards Sēra was transmitted towards the position of the Daroot-Korgon before recalculation to a sphere
with the circumference of 252,000 units.

59See Tupikova, I., Schemmel, M., Geus, K., “Travelling Along the Silk Road: A New Interpretation of Ptolemy’s
Coordinates”, in print.

22



position of the Insulae Fortunatae can also easily be explained in the context of this mathematical
approach.

It also can be shown, from a mathematical perspective, that the second scenario is fully equivalent to
the first scenario Let us assume that Ptolemy was unaware of the metrical value of the stadion used by
Eratosthenes and considered it as being equal to his contemporary unit (i.e., to 1/8 Roman mile). Then,
a distance, e.g., 700 “Eratosthenian” stadia which Eratosthenes would have recalculated into degrees as
1◦, will attain on the Ptolemaic map a value of 700 : 500 = 1.4◦. In the same way, every distance dE
expressed in “Eratosthenian” stadia would be recalculated by Ptolemy in angular measure as dP = dE
* 700/500 = 1.4 dE. This is the same situation as in the first scenario: the Ptolemaic map will expand
in every direction with the same multiplication factor. This case can even be reformulated in terms of
an erroneously adopted size of the Earth in the following way. Assuming that the distance dE = 700
stadia was measured in “his” units, Ptolemy would compute “his” 1◦ as 700 : 1.4, that is, equivalent to
500 (real) “Eratosthenian” stadia. With these 500 “Eratosthenian” stadia per degree, his circumference
of the Earth would be 360 * 500 = 180,000 “Eratosthenian” stadia. Thus, both cases are, from a purely
mathematical standpoint, equivalent and can be treated with the same formulae. The decision between
two mathematically but not historically equivalent scenarios can only be made on the basis of additional
information.

It is also easy to show that an erroneous recalculation of distances transmitted in “alien” units
(parasangs, schoinoi, etc.) into stadia for cartographical purposes can also be interpreted as the erro-
neously determined size of the Earth from a mathematical standpoint and can be treated with the same
formulae.

The impressive precision of Ptolemaic coordinates after recalculation seems to rule out the possibility
of the third scenario. Nevertheless, for comparison, we also have recalculated the Ptolemaic positions
under the assumption that the length of the “Ptolemaic” stadion attains 185 m. Our results clearly show
that such a length does not eliminate the longitudinal extension of the Ptolemaic map.60

One should not underestimate the huge amount of work performed by Ptolemy in collecting and
evaluating geographical data. At the latest stage of his work, while creating the famous table of his
coordinates, Ptolemy must have ascribed to the metrical value of a stadium some angular value obtained
by measuring of the circumference of the Earth. The mistake I believe to have shown him to have made
here had far-reaching mathematical and historical consequences.
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Figure 11: Identified Ptolemaic positions in Spain. Top: original Ptolemaic positions referenced to the
Greenwich Meridian as defined with respect to the position of Marseille. Middle: positions recalculated
relative to Marseille. Bottom: positions recalculated relative to the Pillars of Heracles/Gibraltar.
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1   Vidrus                         5   Chalusus        

2   Amisia / Ems              6   Suebus / Oder            

3   Visurgis / Weser         7  Viadua           

4   Albis / Elbe                 8  Vistula / Weichsel         
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Figure 12: Recalculation of positions of rivermouths in Germania Magna to an Earth circumference of
252, 000 units 252, 000 units. The position of the Greenwich Meridian is defined relative to Cologne as
the reference point.
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1   Caspian Gates                               7    Oxeiane 
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3   Alexandreia Eschate / Kujand        9    mouth of Iaxartes / Syr Darya        

4   Kabura / Kabul                             10    mouth of Rha / Volga            

5   Baktra / Balkh                               11    mouth of Daix / Ural                                               

6   Antiocheia Margiane / Merv         12    mouth of Iastus                                         

              

 Marakanda / Samarkand                        8    mouth of Oxos / Amu Darya 
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Figure 13: Recalculation of some positions in Bactria and Sogdiana to an Earth circumference of 252, 000
units 252, 000 units. The position of the Greenwich Meridian is defined relative to Rome as the reference
point.
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3   Alexandreia Eschate / Kujand        10    mouth of Rha / Volga        

7   Oxeiane                                          11    mouth of Daix / Ural            
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Figure 14: Recalculation of positions of the mouths of rivers to an Earth with a circumference of 252, 000
units 252, 000 units relative to Alexandreia Eschate /Kujand. Solutions obtained with the formulae of
the Case 1 are marked with yellow circles and with formulae of the Case 2 with yellow squares.
Map data c©2015 AutoNavi, Basarsoft, Google, Mapa GISrael, ORION-ME, ZENRIN.
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