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ABSTRACT. From Rudolf Clausius’ classical version of Thermodynamics two different traditions of 

research really emerged. If James C. Maxwell and Ludwig Boltzmann pursued the integration of 
thermodynamics with the kinetic theory of gases, others relied on a macroscopic and more abstract 
approach, which set aside specific mechanical models. Starting from 1869, the French engineer 
François Massieu was able to demonstrate that thermodynamics could be based on two “characteristic 
functions” or potentials. Josiah W. Gibbs and Hermann von Helmholtz exploited the structural analogy 
between Mechanics and Thermodynamics: from a mathematical point of view, Helmholtz’s “free 
energy” was nothing else but Gibb’s first potential. In the meantime, in 1880, the young German 
physicist Max Planck aimed at filling the gap between thermodynamics and the theory of elasticity. 
Five years later Arthur von Oettingen put forward a formal theory, where mechanical work and fluxes 
of heat represented the starting point of a dual mathematical structure. In 1891 Pierre Duhem 
generalized the concept of “virtual work” under the action of “external actions” by taking into account 
both mechanical and thermal actions. Between 1892 and 1894 his design of a generalized Mechanics 
based on thermodynamics was further developed: ordinary mechanics was looked upon as a specific 
instance of a more general science.  
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Introduction 
 
In the 1860s and 1870s, the recently emerged Thermodynamics branched out into two 

different directions: the refinement of the kinetic theory of gases, and the questionable 
alliance between mechanical laws and statistical procedures, on the one hand, and the attempt 
at recasting Thermodynamics in accordance with the mathematical structures of Analytical 
Mechanics, on the other.  

Starting from Joseph-Louis Lagrange, and in particular from his Mécanique Analitique 
(1788), Mechanics had undergone a meaningful generalisation, and an abstract physical space 
had replaced the ordinary Euclidean space in the tradition of mathematical physics. In the 
1830s William Rowan Hamilton had put forward a very abstract Mechanics which was based 
on a set of variational Principles: dynamical entities could be chosen as physical co-ordinates.  
In 1839, an Irish mathematician and natural philosopher, James MacCullagh, on the same 
path as of Lagrange, had developed a mathematical theory of optics. On the same track, 
another Irish physicist, George Francis FitzGerald, put forward a Lagrangian theory of 
electromagnetic fields in 1880.1  

In the last decades of the XIX century, electromagnetic theories had already been translated 
into fruitful technologies, which were deeply transforming the way of life of western people. 
The new age of electromagnetism, whose symbolic device was the electromagnetic 
transformer, seemed to supplant, at least in part, the old age of smoky thermal engines. 
Thermodynamics was not able to offer new technologies, but the new theoretical horizon 
opened by Clausius’ second Principle led to three main results: a widespread philosophical 
and cosmological debate, the development of thermo-chemistry, and the mathematisation of 
the discipline.2 Different theoretical pathways were undertaken by physicists, even though we 
can single out two main conceptual streams. If Maxwell and Boltzmann pursued the 
integration of thermodynamics with the kinetic theory of gases, others relied on a 
macroscopic approach in term of continuous variables, which set aside specific mechanical 
models.3 This approach was developed in different countries of Europe and the United States, 
in the course of about two decades. François Massieu, Josiah Willard Gibbs, Hermann von 
Helmholtz, and then Pierre Duhem, explored the connections between the specific contents of 
thermodynamics and the formal structures of Analytical Mechanics. Others, like the young 
Max Planck and the less young Arthur von Oettingen, pursued a sort of formal symmetry 
between thermal and mechanical variables.  

Different mechanical theories of heat were on the stage in the last decades of the nineteenth 
century, and different meanings of the adjective mechanical were at stake. I would like to 
analyse and briefly discuss the second approach to Thermodynamics, and in particular its 
roots in Clausius and Rankine’s researches around the middle of the XIX century, the 
developments which took place in the 1870s and 1880s, and finally Duhem’s design of a very 

                                                        
1 For the primary sources see Hamilton W.R. 1834, MacCullagh J. 1848 (read 9 Dic. 1839), and FitzGerald G.F. 

1880. On Hamilton’s equations see Hankins T.L. 1980, pp. xv-xviii, 61-87, and 172-209. On MacCullagh’s 
Lagrangian approach to Optics, and “Fitzgerald’s electromagnetic interpretation of MacCullagh’s ether”, see 
Darrigol O. 2010, pp. 145-54, and 157-9. 

2 For the methodological and philosophical debated which stemmed from the second principle of 
Thermodynamics, see Kragh  H. 2008, chapters 3 and 4. 

3 On Maxwell and Boltzmann’s theories see Maxwell J.C. 1860, Maxwell J.C. 1867, Boltzmann L. 1872, and 
Boltzmann L. 1877. 
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general theory which stemmed from the formal unification between Mechanics and 
Thermodynamics. From the outset I would like to highlight one of the hallmarks of that 
tradition of research: the assumption of a new physical space, where thermal variables (and 
variables of other kind) merged with time and geometrical variables in order to describe 
complex physical events.  

 



Looking for a Rational Thermodynamics in the late XIX century 

 

4 

1. Mechanical models 
 

In 1860 James Clerk Maxwell, then professor of Natural Philosophy at Marischal College in 
Aberdeen, published the paper  “Illustration of the Dynamical Theory of Gases” in the 
Philosophical Magazine, a scientific journal which had already hosted dynamical theories of 
matter and heat. The starting point was the basic assumption of every kinetic theory of heat: 
matter consists of a huge number of microscopic particles.4  

After having analysed a collision between two spheres “moving in opposite direction with 
velocities inversely as their masses”, Maxwell inquired into the effect of many collisions on 
the distribution of vis viva among the particles of a gas. He was looking for “some regular 
law”, allowing him to compute “the average number of particles whose velocity lies between 
certain limits”. He defined a function f(x) such that  was the number of particles 
whose velocity lay between x and x+dx, where f(x) was the fraction of such particles, N the 
total number of particles, and x, y, z the Cartesian components of particle velocity. He thought 
that “the existence of the velocity x does not in any way affect that of the velocities y or z”, 
since the three components are “all at right angles to each other and independent”. According 
to that hypothesis, Maxwell wrote down the number of particles in a gas whose velocity “lies 
between x and x+dx, and also between y and y+dy, and also between z and z+dz: 

 

N f(x) f(y) f(z) dx dy dz.5 

 

Another simplification arose from the rotational symmetry in the space of velocities: the 
law of the distribution of velocities had to be insensitive to the direction of velocities .  

 
But the directions of the coordinates are perfectly arbitrary, and therefore this number must   
depend on the distance from the origin alone, that is 

€ 

f (x) f (y) f (z) =φ (x 2 + y 2 + z 2)  
Solving this functional equation, we find 

€ 

f (x) = C eAx
2

,          

€ 

φ (r 2) = C 3 eAr
2

.6 
 

The constant A had to be negative, otherwise the number of particles with a given velocity 
would dramatically increase with the value of velocity, and the integration over the whole 

                                                        
4 On the relationship between the kinetic theory of gases and existing atomic models, see Brush S.G. 1976, book 

1, p. 204: “Although the identification of heat with molecular motion was fairly widely accepted after 1850, many 
scientists continued to pursue molecular theories which they considered in some way superior to the kinetic theory, 
though not necessarily denying its applicability for some purposes. The two principal alternatives were the 
“dynamic” view of the atom as a centre of force, and the “atmospheric atom” which exchanged heat vibrations 
with other atoms through an intermediate ether; while these represented opposing world views, they were often 
mixed together.” 

5 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 380. The mutual independence among the components 
does not hold good: the conservation of momentum and energy does not allow us to choose any value of y and z 
components for whatever choice of x component. See Brush S.G. 1976, book 2, pp. 587-8. 

6 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 381. 
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range of velocities would dramatically diverge. After a simple procedure of normalisation, 
Maxwell obtained  

 

. 

 

The mathematical law for the distribution of velocities in a gas would therefore be nothing 
else but the statistical law of distribution of casual errors in every physical process of 
measurement.  

 
It appears from this proposition that the velocities are distributed among the particles according to 
the same law as the errors are distributed among the observations in the theory of the ‘method of 
least squares’. The velocities range from 0 to 

€ 

∞, but the numbers of those having great velocities is 
comparatively small.7  
 

After seven years, Maxwell published a more massive and demanding paper, “On the 
Dynamical Theory of Gases”, in the Philosophical Transaction, the official review of the 
Royal Society.8 The title of the second section, “On the Final Distribution of Velocity among 
the Molecules of Two Systems acting on one another according to any Law of Force”, seems 
misleading, since no law of force was involved in the determination of the distribution. He 
explicitly confined himself to a globally constant distribution over time, wherein “the number 
of molecules whose velocity lies within given limits remains constant”. If a and b were the 
velocities of two molecules of different kind before the collision, a’ and b’ the velocities after 
the collision, and f(v) the required distribution of velocities, then the number of molecules of 
the first and second kind should have been  

 

,   , 

 

where dV was an element of volume.9 

The key passage consisted of two steps. First, Maxwell assumed that “the number of 
encounters of the given kind between these two sets of molecules” was proportional to 

. Then he assumed that “the number of pairs of molecules which change their 

velocities” from a and b to a’ and b’ was “equal” to the number of couples (or collisions) 
wherein velocities were transformed from a’ and b’ into a and b. The first step corresponded 
to a hypothesis of independence between physical events: the members of a couple had no 
correlation. Molecules were looked upon as free particles: they had neither interactions nor 
history. This sounds quite strange from the physical point of view: collisions are ruled by 

                                                        
7 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 381. 
8 In 1860 Maxwell had been appointed to the chair of Natural Philosophy at King’s College in London, but in 

1865 he left London and returned to his Scottish estate.  
9 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 43-4. 
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physical laws, and moreover a definite law of force had been assumed by Maxwell himself. In 
other words, the statistical approach looks upon molecules and collisions as sets of casual 
events.10  

The second step corresponded to a hypothesis of uniformity or equalisation over time: the 
fluctuations in the distribution of velocities were assumed to preserve the state of equilibrium. 
In some way, the equilibrium was assumed rather than deduced from the theory. The 
corresponding relationship, 

 

, 

 

together with the principle of conservation of energy,  

 

 

 

led to distributions of the form 

 

   and   , 

 

where . 

Therefore, “the number of molecules whose component velocities are between” 
, … ,  and was 

 

.11 

 

Even though Maxwell’s 1867 deduction of the law of distribution is different from his 1860 
deduction, it makes reference to the same probabilistic law: the product of probabilities for 
independent events. As already remarked, he assumed the mutual independence between n1 
and n2, namely the absence of whatsoever dynamical correlation between the molecules with 
velocity a and the molecules with velocity b. It seems that Maxwell firmly believed in the 
necessity of a distribution of the kind distribution of errors, pivoted around its average value, 
and was looking for the best way to deduce it. When he got rid of his 1860 deduction while 

                                                        
10 On the difference between the conditions of independence in Maxwell’s 1860 and 1867 papers, see Brush S. 

1976, book 2, pp. 587-8.  
11 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 44-5. Obviously, the hypothesis of statistical 

independence could not be applied to molecules emerging from a collision. See Cercignani C. 1997, p. 69. 
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preserving the same result, no experiment suggested one law of distribution rather than 
another: he expected a Gaussian law of distribution only on theoretical grounds. The motion 
of molecules appears locally predictable, and ruled by definite laws of motion, but globally 
unpredictable, even though it led to a distribution statistically uniform over time.12 

 

In the 1870s, the Austrian physicist Ludwig Boltzmann tried to go far beyond Maxwell’s 
microscopic interpretation of equilibrium in rarefied gases: he aimed at inquiring into the 
processes leading to equilibrium. In the first lines of his 1872 paper “Weiteren Studien über 
das Wärmegleichgewicht unter Gasmolekülen”, he reminded the reader about the foundations 
of the mechanical theory of heat. Molecules were always in motion, but the motion was 
invisible and undetectable: only the “average values” could be detected by human senses. 
Those microscopic undetectable motions gave rise to “well-defined laws” at the macroscopic 
level, which involved the observed average values.13 

A thermodynamic theory required therefore two different levels: a microscopic invisible, 
and a macroscopic visible one. Statistics and probability could bridge the gap between the two 
levels. Just at the end of the first page, Boltzmann sharply stated that “[p]roblems emerging 
from the mechanical theory of heat are probabilistic problems”. He claimed that probability 
did not mean uncertainty: the presence of the laws of probability in the mechanical theory of 
heat did not represent a flaw in the foundations of the theory. Probabilistic laws were ordinary 
mathematical laws as certain as the other mathematical laws: we should not confuse an 
“incomplete demonstration” with a “completely demonstrated law of the theory of 
probability”.14  

The pivotal mathematical entity was “the number of molecules whose living force lies 
between x and , at a given time t, in a given space r”: Boltzmann labelled  
this differential function. From the mathematical point of view, he had to face a “two-steps 
task”: the “determination of a differential equation for ”, and the subsequent 
“integration”. He assumed that “the variation of the function stemmed only from the 
collisions” between couples of molecules. The keystone of the whole procedure was therefore 
the computation of the collisions. The function  did not belong to the tradition of 
mathematical physics: a re-interpretation of the concepts of dynamic equation and time-

                                                        
12 Maxwell devoted two papers to gas theory after 1867. Brush, Everitt and Garber remarked that, in the end, 

“gas theory and electromagnetic theory underwent in Maxwell’s hands closely similar developments from the use 
of a specific model to the successive reformulation of the original ideas in more and more abstract terms”. (See 
Brush S., Everitt C.W.F. and Garber E. 1986b, pp. xvii and xxiii) Although the authors stated that “[t]he attempt 
with electromagnetic fields was more successful because all known phenomena could be brought within the 
formulation”, Maxwell’s more abstract (Lagrangian) approach to electromagnetic phenomena was not so general 
as the authors claimed. See Stein H. 1981, pp. 311-2, and D’Agostino S. 2000, p. 117. 

13 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 316. The expression Wiener Berichte is usually used as 
a short form for the complete name of the Austrian journal where he published important contributions to 
Thermodynamics: “Sitzungsberichte der kaiserlichen Akademie der Wissenschaften – mathematisch-
naturwissenschaftliche Classe”. At the time Boltzmann held the chair of theoretical physics in Graz, and had 
already published some papers on different subjects. His scientific career began with researches on electricity, in 
particular the relationship between electromagnetism and optics. Together with other German-speaking physicists 
(August Föppl for instance), he then introduced Maxwell’s electromagnetic theory to the Continental scientific 
community. See Dugas R. 1959, p. 135, Brush 1976, book 1, p. 244, and Buchwald J.Z. 1985, pp. 189 and 197. 

14 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 317-8. 
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evolution of a physical system was at stake. That function had to bridge the gap between two 
different traditions in Mechanics: the laws of scattering between solid bodies, which were 
confined at the invisible microscopic level of interacting molecules, and the equations of 
motions, which ruled the macroscopic observable behaviour of the whole gas. Boltzmann 
demonstrated that the “fundamental equation for the variation of  the function ” had the 
following structure:  

 

. 

 

Immediately he remarked that the stationary function , which was 
nothing else but Maxwell distribution of velocities, made  vanish in the above 
equation.15 

Boltzmann aimed at a generalisation of Maxwell’s results: he focussed on another function 
E generated by , and on its time derivative: 

 

. 

. 

. 

 

After a long and demanding computation, he showed that “E must necessarily decrease”, 
and he expected that it approached a minimum value, which corresponded to . This 
is a very sensitive issue, because the decrease of a function does not assure the existence of a 
minimum value. Only in this specific case, , which was satisfied for every stationary 
function of the kind 

 

.16 

  

Boltzmann thought that the mathematical result had a deep meaning in the context of the 
kinetic theory and Thermodynamics:  could be associated to the integral , 

which “is in general negative, and vanishes in the limiting case of a reversible cyclic process”. 

                                                        
15 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 322 and 332-4. 
16 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 335 and 344-5. 
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It seemed to Boltzmann that his interpretation of the second Principle was more general than 
previous interpretations. In particular, it could account for irreversible processes, just the kind 
of processes “really taking place in nature”, whereas the reversible ones were “purely ideal”.17 

 

In 1877 he published an even longer paper, where he reminded the reader that the function 
E he had introduced in 1872 could never increase, and that it reached its minimum value at 
thermal equilibrium. His physical model of gas was not so far from the model he had put 
forward five years before. The gas was “contained in a vessel with rigid and elastic walls”, 
and the molecules interacted as they were equally rigid and elastic balls. Another suitable 
model was that of “centres of force” endowed with a specific law of force: only when their 
distances became “less than a given value”, they experienced some kind of interaction. This 
allowed Boltzmann to combine two different processes, which stemmed from two different 
mechanical traditions: the continuity of unperturbed trajectories, and the discontinuity of 
sudden collisions.18  

The molecules could assume only discrete values of velocity: the model was qualified by 
Boltzmann himself as “fictitious” and “not corresponding to an actual mechanical problem”, 
although “much easier to handle mathematically“. The series of available “living forces” 
corresponded to an “arithmetic progression”  with an upper bound 

. These values of the energy could be “distributed over the n molecule in all possible 
ways”, provided that the sum of all energies was preserved over time, and assumed a given 
value .19 

He re-defined “the measure of the permutability” in a slightly different way, 
 

, 

 
where x,y,z were spatial coordinates and u,v,w velocity coordinates. The integral was 

extended to a six-dimensional hyper-space, and the minus before the integral transformed the 
search for the minimum into the search for the maximum. This was the quantity whose value 
had to be computed “when the gas has reached thermal equilibrium”. As already shown, at the 
equilibrium, 

 

, 

 

                                                        
17 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 345-6. 
18 Boltzmann L. 1877, in Boltzmann L. 1909, II Band, p. 166. Dugas reminded us that Boltzmann’s theoretical 

representation of atoms and molecules evolved over time. In the first volume of his Vorlesungen über Gastheorie 
(1895-1898), we find molecules as “elastic spheres” and then molecules as “centres of force”, whereas in the 
second volume, molecules are represented as “mechanical systems characterized by generalized coordinates”. See 
Dugas R. 1959, pp. 25 and 79, footnote 5 included. 

19 Boltzmann L. 1877, in Boltzmann L. 1909, II Band, pp. 167-9. 
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where V was the volume of the gas, m the mass of every molecule, T the average living 
force, and N the number of molecules. When we put the function into , the integral yields  

 

.20 

 

Apart from the reversed signs and the last constant on the right-hand side, Boltzmann 
arrived essentially at the expression already found in 1872, but in this case he tried to 
carefully compute the entropy, starting from a particular expression of the first Principle, and 
the equation of state for perfect gases: 

 

,   . 

 

The computation of entropy required only some simple steps, and it led to 

 

€ 

dQ
T∫ = N dT

T∫ +
pdV
T

= N lnT +C1 +
2
3
NT
VT

dV∫∫ =
2
3
N ln VT 3 / 2( )+C . 

 

Once again Boltzmann stressed the structural similarity between the function , 
representing the probability of a given state, and the entropy  in any “reversible change 
of state”.21 

 

In reality, in the 1880s, on the European Continent, some scientists cast doubts on atomism 
and microscopic interpretations of the second principle of Thermodynamics: they pursued a 
phenomenological and macroscopic approach, which set aside specific mechanical models. In 
1893, Poincaré remarked that Mechanics required that “all phenomena are reversible”, even 
though every experience contrasted that requirement: thermal conduction was a well-known 
instance of irreversibility. That a scientist could expect thermal irreversibility to stem from 
the laws of Mechanics, seemed logically inconsistent to Poincaré: how could we rely on a 
theory wherein “we find reversibility at the outset, and irreversibility at the end”? 22 

                                                        
20 Boltzmann L. 1877, in Boltzmann L. 1909, II Band, pp. 215-6. The general solution of the integral-differential 

equation for  was found in 1916-7. See Brush 1976, book 1, p. 237, and book 2, p. 449.  
21 Boltzmann L. 1877, in Boltzmann L. 1909, II Band, pp. 216-7. For a comparison with his 1872 line of 

reasoning, see Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 399-400. Cassirer found that Boltzmann had 
managed to remove the “paradoxical and extraneous nature  (Fremdheit)” of the second Principle of 
Thermodynamics in the context of Mechanics. Just for this reason, he qualified Boltzmann as “one of the most 
rigorous representatives of classic Mechanics”. See Cassirer E. 1936, pp. 95-6. The fact is that, in Boltzmann’s 
theory, the second Principle did not stem from Mechanics, but from statistical and probabilistic hypotheses 
unrelated to Mechanics. Just for this reason, I find that Boltzmann was not a “classical physicist”.  

22 Poincaré H. 1893, pp. 534-7. In 1896 and 1897 Boltzmann answered systematically to Zermelo and Poincaré’s 
criticism, and stressed the intrinsic statistical nature of his approach: from his point of view, “Poincaré’s theorem” 
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In 1894, Boltzmann took part to the annual meeting of the British Association for the 
Advancement of Science, and his communications raised some debate, which continued in the 
pages of the scientific journal Nature in 1895. The British physicists Edward P. Culverwell, 
Joseph Larmor, Samuel H. Burbury, George H. Bryan, and Henry W. Watson’s discussed and 
criticised Boltzmann’s theory. The British journal also hosted a paper where Boltzmann tried 
to clarify his probabilistic approach to Thermodynamics.23  

However, in the second half of the nineteenth century, a different pathway to 
Thermodynamics was undertaken by engineers who were familiar with abstract 
generalisations and Analytical Mechanics. The most important difference between this 
pathway and Maxwell and Boltzmann’s pathway dealt with the relationship between 
Thermodynamics and Mechanics. According to the former, a general mathematical 
framework had to be set up, without any reference to microscopic structure underlying the 
physical system under consideration. According to the latter, microscopic mechanical models, 
mixed with extra-mechanical hypothesis of probabilistic nature, were expected to account for 
the thermodynamic behaviour of macroscopic systems. Expressions like “mechanical theory 
of heat” had different meanings when interpreted in the two different perspectives: formal 
similarities between the mathematical structures of Thermodynamics and Mechanics in the 
first case, and specific mechanical models in the second.  

 

                                                        
was “completely in accordance” with his own theorems. In 1896 he remarked that the entity of Poincaré’s 
recurrence time “makes a mockery of every attempt at observing it”, and in 1897 stressed that “[i]n practice … a 
numerical upper boundary for the time of recurrence … cannot be specified”. See Boltzmann L. 1896, in 
Boltzmann L. 1909, III Band, p. 571, and Boltzmann L. 1897, in Boltzmann L. 1909, III Band, p. 595. For the 
debate, see Dugas R. 1959, pp. 207-8 and 212-3, Brush S. 1976, book 1, p. 96, and Brush S. 1976, book 2, pp. 356-
63. In 1906 Poincaré returned to the concept of entropy, and put forward two different kinds of entropy. See 
Cercignani C. 1997, pp. 98-9, 103, and 149. 

23 See, for instance, Culverwell E.P. 1895, p. 246, and Boltzmann L. 1895, in Boltzmann L. 1909, III. Band, p. 
535. See also Brush S. G. 1976, book 2, p. 622. 
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2. The roots of a formal analogy 
 
In 1854 Clausius stated that the equivalence between heat and work, and “Carnot’s 

proposition” did not necessarily clash, provided that the latter was slightly modified. To the 
above law of equivalence he associated another law of equivalence, in order to maintain a sort 
of symmetry in the axiomatic structure of Thermodynamics: a law of equivalence between 
“transformations”. He specified that two kinds of transformations were at stake in thermal 
machines: the transformation of heat into work, and the transformation of an amount of heat, 
which was stored in the boiler at a high temperature, into heat which is received by the cooler 
at a low temperature. Clausius pointed out that the two kinds of transformation were tightly 
linked to each other: the former could not take place without the latter.24 

The second law became a law of equivalence between “transformations”, in order to 
maintain a sort of symmetry in the axiomatic structure of Thermodynamics. This formulation 
of the second law, pivoted on the concept of “equivalence value” , where  was a 
function of temperature. From the linguistic and conceptual points of view, the two laws of 
Thermodynamics were nothing else but two principles of equivalence: if the first stated the 
equivalence between heat and work, the second stated the equivalence between 
mathematically well-defined values of “transformation”.25 

He assumed the transformation of work into heat as a positive quantity, and the transfer of 
heat from a high to a low temperature equally positive. In the case of  bodies, to 
be found at the temperatures , he assumed that the quantities  of 
exchanged heat were positive when received, and negative when sent off. Then he defined a 
quantity  as the sum of all “the values of transformation”  

 

. 

 
In general, when temperatures changed in the course of every transformation, the sum had 

to be replaced by the integral 
 

. 

 

In the case of “reversible cyclic processes”, the sum or the integral vanishes ( ), 

as required by a law of conservation: the sum of all contribution along a closed path must 
necessarily vanish.26 

                                                        
24 Clausius R. 1854, in Clausius R. 1864, p. 133: “In allen Fällen, wo eine Wärmemenge in Arbeit verwandelt 

wird, und der diese Verwandlung vermittelnde Körper sich schliesslig wieder in seinem Anfangszustande befindet, 
muss zugleich eine andere Wärmemenge aus einem wärmeren in einem kälteren Körper übergehen, und die 
Grösse der letzteren Wärmemenge im Verhältnis zur ersteren ist nur von den Temperaturen der beiden Körper, 
zwischen welchen sie übergeht, und nicht von der Art des vermittelnden Körpers abhängig”. See also pp. 127-8. 

25 Clausius R. 1854, in Clausius R. 1864, p. 143. 
26 Clausius R. 1854, in Clausius R. 1864, pp. 140, 144-5, and 147. 
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A formal analogy between Mechanics and Thermodynamics was thus established. The sum 
of “the contents of transformation (Verwandlungsinhalt)” had to vanish in pure, “reversible 
(umkehrbar)” thermodynamic processes, as well as the sum of mechanical works along a 
closed path had to vanish in pure mechanics, wherein dissipative effects were neglected. 
When the processes were irreversible, there was a loss of “Verwandlungsinhalt”, and the 
above integral became positive: the initial conditions could not be restored, and the 
transformation was “uncompensated”.27 

 
The tradition of mechanics also offered structural analogies to Rankine: the whole of 

physics could be unified by the generalisation of the concepts of “Substance”, “Mass”, 
“Work”, and energy. He insisted that such terms had to be looked upon as “purely abstract” or 
as “names” which made reference to “very comprehensive classes of objects and 
phenomena”, rather than associated to “any particular object” or “any particular phenomena”. 
He attained a further generalisation by introducing the terms “Accident” and “Effort”. If the 
former could be identified with “every variable state of substances”, the latter was a 
generalisation of the concepts of force and pressure. The concept of “Passive Accident” was 
not fundamentally different from the concept of accident, apart from the further qualification 
of “condition which an effort tends to vary”. It had to be distinguished by the concept of 
“Complex Accident”, which corresponded to “the whole condition or state of a substance”: for 
instance, “thermic condition of an elastic fluid”, and “condition of strain … in an elastic 
solid” were complex accidents for they required more than one independent variable 
(accident) to be specified.28 

The concept of work encompassed accidents and efforts, and was a key concept in 
Rankine’s theory. The new meaning of the word “work” stemmed from the generalisation of 
the meaning of the words force and displacement, which corresponded to the new words 
effort and accident. The generalisation of the concept of work entailed the generalisation of 
the concept of energy, which was the core of Rankine’s Energetics. The concept of “Actual 
energy” was a generalisation of the mechanical living force: it included “heat, light, electric 
current”, and so on. The concept of “Potential energy” was extended far beyond gravitation, 
elasticity, electricity and magnetism. It included “chemical affinity of uncombined elements”, 
and “mutual actions of bodies, and parts of bodies”. In general, work was the result of “the 
variation of any number of independent accident, each by the corresponding effect”: 

 
.29 

 
Rankine’s theoretical design required the re-interpretation of thermodynamic 

transformations in terms of transformations of actual energy, and then a further 
generalisation, in order to extend that re-interpretation to all physical sciences.30  

                                                        
27 See Clausius R. 1854, in Clausius R. 1864, pp. 151-2: “Wir werden uns nun zur Betrachtung der nicht 

umkehrbaren Kreisprocesse. [...] Die algebraische summe aller in einem Kreisprocesse vorkommenden 
Verwandlungen kann nur positiv sein. Wir wollen eine solche Verwandlung, welche am Schlusse eines 
Kreisprocesses ohne eine andere entgegengesetzte übrig bleibt, und welche nach diesem Satze nur positiv 
vorkommen kann, kurz eine uncompensirte Verwandlung nennen.” 

28 Rankine M. 1855, in Rankine M. 1881, pp. 214-6. 
29 Rankine M. 1855, in Rankine M. 1881, pp. 216-7 and 222. 
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From the outset, explicit meta-theoretical commitments emerge from Rankine’s paper. He 
distinguished between two kinds of scientific practice: the “ABSTRACTIVE” and the 
“HYPOTHETICAL”. In the former, scientists confined themselves to a mathematical re-
interpretation and classification of physical phenomena; in the latter, they relied on models 
and analogies, in order to catch the intimate nature of phenomena or the hidden structures 
underlying them.31  

Obviously, Rankine’s reference to the possibility of practising science without making 
recourse to “anything hypothetical” is not consistent with whatever kind of actual scientific 
practice: it seems more an idealisation or a rhetorical contrivance than an actually pursued 
design. Nevertheless, the distinction put forward by Rankine was not meaningless, and his 
energetics was a sort of mathematical phenomenology interconnected with a strong 
commitment to theoretical unification. He did not distrust models and analogies in the strict 
sense, for he tried to extend the formal framework of mechanics to all physics. He distrusted 
too specific mechanical models, in particular their narrow scope.32  

In reality, Rankine did not disdain mechanical models: in 1851 he had devoted a paper to 
the relationship between heat and centrifugal forces arising from microscopic vortices. In 
1853, in the paper “On the Mechanical Action of Heat – Section VI”, he had discussed the 
“supposition” of “molecular vortices”, the hypothesis that “heat consists in the revolutions of 
what are called molecular vortices”, and he had more specifically assumed that “the elasticity 
arising from heat is in fact centrifugal force”.33  

 

                                                        
30 In his 1855 paper, the passages wherein he displayed his ambitious design are extremely synthetic. If we want 

to understand and appreciate the complex network of assumptions and derivations, we should first take a look at 
two papers he had read before the Philosophical Society of Glasgow in January 1853 (“On the Mechanical Action 
of Heat” and “On the General Law of the Transformation of Energy”), and then return to his 1855 paper.  

31 See Rankine M. 1855, in Rankine M. 1881, p. 210: “According to the ABSTRACTIVE method, a class of object or 
phenomena is defined by describing, or otherwise making to be understood, and assigning a name or symbol to, 
that assemblage of properties which is common to all the objects or phenomena composing the class, as perceived 
by the senses, without introducing anything hypothetical. According to the HYPOTHETICAL method, a class of object 
or phenomena is defined, according to a conjectural conception of their nature, as being constituted, in a manner 
not apparent to the senses, by a modification of some other class of objects or phenomena whose laws are already 
known. Should the consequences of such a hypothetical definition be found to be in accordance with the results of 
observation and experiment, it serves as the means of deducing the laws of one class of objects or phenomena from 
those of another.” 

32 Rankine M. 1855, in Rankine M. 1881, pp. 210 and 213. It is worth noting that the distinction between 
abstractive and hypothetical theories was rephrased at the end of the century, in the context of the emerging 
theoretical physics (See the Foreword in the present book). Rankine’s choice of labelling “objective” and 
“subjective” the two interpretations of the “hypothetical method” appears quite misleading.  

33 See Rankine M. 1853a, in Rankine M. 1881, p. 310. In his 1851 paper, he reminded the reader about a specific 
atomic model he had already outlined the year before. See Rankine 1851, in Rankine M. 1881, p. 49: “In that paper 
the bounding surfaces of atoms were defined to be imaginary surfaces, situated between and enveloping the atomic 
nuclei, and symmetrically placed with respect to them, and having this property – that at these surfaces the 
attractive and repulsive actions of the atomic nuclei and atmospheres upon each particle of the atomic atmosphere 
balance each other.” 
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3. A family of Potentials 
 
After fourteen years, a French engineer took the path of a mathematical generalisation of 

Thermodynamics. In two short papers published in the Comptes Rendus, François Massieu 
tried to dress Thermodynamics with the garments of a general mathematical theory. The 
infinitesimal amount of heat  received by a body could produce three effects: “external 
work” of dilatation, “internal work”, and an increase of body “sensible heat”. The last two 
effects could not be identified separately. From the mathematical point of view, at the 
microscopic level, a single function  accounted for the sum of “mechanical and thermal 
effects, which merge with each other”, in accordance with the principle of equivalence 
between heat and work”. The external work  was “thermally equivalent” to , 
wherein  was the well-known conversion factor between mechanical and thermal measures. 
The first principle could therefore be expressed by the equation 

 
. 

 

If  was the “absolute temperature” , at the end of a “closed reversible cycle”, 
the result  

 

 

 
followed from “Joule and Carnot combined principles”. Therefore  was “the 

complete differential  of a function  of the variables which are sufficient to define the 
state of the body”.34   

After having chosen  and  (volume and temperature) as independent variables, and after 
some pages of derivations and other computations, he arrived at a function  whose 
differential 

 

 

 
was a complete differential of the same variables. Massieu labelled “characteristic function 

of the body” the function . The most important mathematical and physical step consisted in 
deriving “all body properties dealing with thermodynamics” from  and its derivatives. Not 
only could  and  be expressed in terms of the function , but also  could be expressed 
in terms of  and : 

 

   and  ,  or    and  .35 

                                                        
34 Massieu F. 1869a, p. 858. François Massieu was a mining engineer and professor at Rennes university. 
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Then Massieu introduced a second characteristic function  in terms of the two variables 
 and . He first defined a new function , and then put into operation the 

already mentioned and quite demanding mathematical engine. In the end, 
 

  and  ,  or    and  . 

 
In the case of ideal gases, 
 

, 

 
and  and  resulted the same function, apart from a constant value.36 

Massieu claimed that not only could , , ,  and  be derived from  and , but also 
the specific heats at constant pressure or volume  and , and the coefficient of dilatation at 
constant pressure or volume  and  could as well. Conversely he was able to give the 
specific mathematical expressions of  and  in terms of , , , and the specific heats  
and , for ideal gases, saturated vapours and superheated vapours.37 

After seven years, in an essay of almost one hundred pages published in the Mémoires de 
l’Institut National de France, he resumed the subject matter, and generalised and deepened 
his theoretical approach. Indeed, compared with the previous short paper, the essay had a 
wider scope, and exhibited an explicit meta-theoretical commitment. At first, he regretted “the 
poor connections among the different properties of bodies, and among the general laws of 
physics“. Nevertheless, according to Massieu, this gap had begun to be filled just by the 
unifying power of Thermodynamics, which he identified with “the mechanical theory of 
heat”.38  

It is worth remarking that, in Massieu’s theoretical and meta-theoretical context, 
“mechanical” did not mean microscopic mechanical models in the sense of Maxwell and 
Boltzmann, but a mathematical approach on the track of Analytical Mechanics. According to 
Massieu, this “mechanical theory of heat” allowed mathematicians and engineer to “settle a 
link between similar properties of different bodies”. Thermodynamics could rely on a 
consistent set of general and specific laws, and his “characteristic functions” could be looked 
upon as the mathematical and conceptual link between general and specific laws.39 

                                                        
35 Massieu F. 1869a, p. 859, and Massieu F. 1869b, p. 1058. In the first paper, Massieu did not distinguish partial 

from total derivatives. 
36 Massieu F. 1869b, pp. 1059-60. 
37 Massieu F. 1869b, pp. 1060-1.  
38 See Massieu F. 1876, p. 2: “En ce qui concerne les propriétés mécaniques et calorifiques des corps, la 

thermodynamique, ou théorie mécanique de la chaleur, a comblé la lacune. En effet, des deux principes généraux 
qui servent de base à cette science nouvelle découlent des relations qui n’avaient pu trouver antérieurement une 
expression nette et vraiment scientifique.” 

39 See Massieu F. 1876, pp. 2-3 : “Les principes fondamentaux de la thermodynamique peuvent être représentés 
par deux équations générales applicables à toutes les substances ; qu’on imagine, en outre, les formules ou 
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In this 1876 essay, the deduction of the characteristic function is shorter and simpler than in 
the previous paper. From  and , we obtain . 
The addition of the term  to both members yielded 

 
,   , 

. 

 
Since the first member was a total differential, so was the second, and Massieu could write  
 

,   , 

 
where the function H corresponded to the function  of the previous paper. Moreover 

 

, ,    or  .40 

 
The choice of  and  instead of  and  as independent variables led to Massieu’s second 

characteristic function , which corresponded to the function  of the previous paper. A 
two-fold strategy, both mathematical and physical, was at stake. On the one hand, the 
knowledge of specific parameters and specific laws describing the physical system under 
consideration allowed the researcher to write explicit expression for ,  and , and then 

.  
 

Ces formules pourront être d’un usage commode lorsque l’on connaîtra un corps par 
l’expression de sa chaleur spécifique  à pression constante, et par la loi qui lie son volume  à 
sa pression  et à sa température  ; elles permettront d’obtenir les expressions de  et de , 
et par suite l’expression de la fonction caractéristique  de ce corps.41 

 
On the other hand, all parameters and specific equations describing the specific system 

could be derived from the knowledge of : in Massieu’s words, after having put the 
mathematical engine into operation, “it is only a matter of computation”.  

 
Lors donc qu’on voudra vérifier l’exactitude d’une loi, on l’exprimera au moyen de la fonction 

caractéristique ; s’il s’agit d’une loi générale applicable à tous les corps, son expression devra se 
réduire à une identité ; s’il s’agit d’une loi applicable seulement à une catégorie de corps 

                                                        
équations spéciales qui expriment les diverses propriétés calorifiques et mécaniques d’un corps déterminé, telle 
que l’expérience peut les fournir directement, ces équations devront être compatibles avec les équations générales 
de la thermodynamique, dont on pourra alors faire usage pour réduire, par élimination, les formules relatives à 
chaque corps à un nombre moindre de relations. Je suis parvenu à effectuer cette élimination d’une façon 
entièrement générale, et je montre, dans ce mémoire, que toutes les propriétés d’un corps peuvent se déduire d’une 
fonction unique, que j’appelle la fonction caractéristique de ce corps, et dont je donne l’expression pour les 
diverses fluides.” 

40 Massieu F. 1876, pp. 9-10. 
41 Massieu F. 1876, p. 29. 
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caractérisés par certaines propriétés, l’expression de la loi devra encore se réduire à une identité 
lorsqu’on aura tenu compte de ces propriétés.42 

 
 
An abstract approach and wide-scope generalisations were also the hallmarks of J. Willard 

Gibbs’s researches on Thermodynamics.43 In the first lines of his collection of papers, Gibbs 
stated that his theoretical approach was based on the two fundamental principles of 
Thermodynamics, which had been put forward by Clausius in 1865. Starting from two basic 
entities, energy and entropy, he would have set up “the laws which govern any material 
system”: energy and entropy’s “varying values” would “characterize in all that is essential” 
the transformations of every system. His theoretical physics dealt with a “thermodynamic 
system”, because “such as all material systems are”: Thermodynamics was looked upon as a 
generalisation of ordinary mechanics. In the building up of his general theory, he followed the 
analogy with “theoretical mechanics”, which took into account “simply mechanical systems 
… which are capable of only one kind of action”, namely “the performance of mechanical 
work”. In this specific case, there was a function “which expresses the capability of the 
system for this kind of action”, and the condition of equilibrium required that “the variation of 
this function shall vanish”.  In his more general mechanics, there were two functions 
corresponding to “the twofold capability of the system”. According to Gibbs, every system “is 
capable of two different kinds of action upon external systems”, and the two functions “afford 
an almost equally simple criterion of equilibrium”.44 

Immediately he put forward two complementary criteria of equilibrium for isolated systems, 
the first under the condition of a constant energy , and the second under the condition of a 
constant entropy . 

 
I. For the equilibrium of any isolated system it is necessary and sufficient that in all possible 
variations of the state of the system which do not alter its energy, the variation of its entropy shall 
either vanish or be negative. … the condition of equilibrium may be written 

    
II. For the equilibrium of any isolated system it is necessary and sufficient that in all possible 
variations of the state of the system which do not alter its entropy, the variation of its energy shall 
either vanish or be positive. This condition may be written (1)  (2) 

   45 
 
In other words, in transformations taking place at constant energy, the equilibrium 

corresponded to the maximum entropy, whereas in transformations taking place at constant 
entropy, the equilibrium corresponded to the minimum energy. As a first application, he 
considered “a mass of matter of various kinds enclosed in a rigid and fixed envelope”, which 

                                                        
42 Massieu F. 1876, p. 43. 
43 He was an American engineer who had accomplished his scientific training in Paris, Berlin and Heidelberg: 

after having been appointed to the chair of mathematical physics at Yale in 1871, he published a series of 
fundamental papers under the common title “On the equilibrium of heterogeneous substances” in the Transactions 
of the Connecticut Academy in the years 1875-78. 

44 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 55-6. 
45 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 56. 



Looking for a Rational Thermodynamics in the late XIX century 

 

19 

was impermeable to both matter and heat fluxes. It was a very simplified case, wherein 
“Gravity, Electricity, Distorsion of the Solid Masses, or Capillary Tensions” were excluded.46  

For every “homogeneous part of the given mass” Gibbs wrote down the equation 
 

, 
 

which was nothing else but the first principle of thermodynamics. The first term in the 
second member was “the heat received”, and the second term “the work done”; v, t, and p 
were volume, temperature, and pressure. Since Gibbs was not confining himself to “simply 
mechanical systems”, he let “the various substances S1, S2, … Sn of which the mass is 
composed” change their mass. As a consequence, the energy  of the homogeneous 
component of the system could also depend on the corresponding variable masses m1, m2, … 
mn: 

 
, 

 
where 1, 2, … n denoted “the differential coefficients of  taken with respect to m1, m2, 

… mn”. In general, also “component substances which do not initially occur in the 
homogeneous mass considered” had to be taken into account. To the coefficients x Gibbs 
attributed the qualification of “potential for the substance Sx”.47  

In more complex systems, each homogeneous sub-set depended on the (n+2) variables t, v, 
m1, m2, … mn, and the whole system depended on (n+2) , wherein  was “the number of 
homogeneous parts into which the whole mass is divided”. The series of equations involving 
t, p, and 1, 2, … n contained exactly ( -1)(n+2) conditions among the (n+2)  variables. 
From the mathematical point of view, the remaining unknown variables were (n+2). If the 
volume of “the whole mass”, and “the total quantities of the various substances” were known, 
then additional (n+1) conditions were available. Therefore only one unknown variable 
remained, but the knowledge of “the total energy of the given mass”, or alternatively “its total 
entropy”, led to “as many equations as there are independent variables”.48 Alongside the 
algebraic problem, which Gibbs showed to be solvable, there was a very general physical 
problem: his general mathematical theory allowed him to derive the mechanical, thermal and 
chemical properties of a given physical system. 

In the subsequent section, “Definition and Properties of Fundamental Equations”, Gibbs put 
forward other “fundamental equations” for a thermodynamic system, which involved new 
thermodynamic functions. The adjective “fundamental” meant that “all its thermal, 
mechanical, and chemical properties” of the system could be derived from them. He defined 
three functions  

 
   ,      ,   .  

 

                                                        
46 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 62. 
47 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 63-5. 
48 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 66. 
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Under specific conditions, the functions , , and  assumed specific meanings, and led 
to new conditions of equilibrium.49 

Gibbs was weaving the plot of a more general mechanics of equilibrium: he followed the 
track of Analytical Mechanics, but aimed at a wider-scope mechanics, which encompassed 
mechanics, thermodynamics and chemistry. 

From the mathematical point of view, the fundamental functions , , , and  were 
interchangeable:  as a function of volume and entropy could be replaced by  as a function 
of temperature and volume, by  as a function of entropy and pressure, or by  as a function 
of temperature and pressure. In brief, every fundamental function, associated to its two 
independent variables, defined a threefold system of co-ordinates, wherein the graph of the 
corresponding function  could be drawn: four functions , , 

, and  could be defined. We have in front of us a sort of symmetry, 
which transforms the space  into the space , , or .50 

He did not try to describe complex thermodynamic systems by means of mechanical 
models: on the contrary, purely mechanical systems were looked upon as specific instances of 
thermodynamic ones. The relationship between Mechanics and Thermodynamics consisted of a 
formal analogy: the mathematical structure of Mechanics offered a formal framework for the 
mathematical structure of Thermodynamics. 

The same view was confirmed in a subsequent abstract Gibbs published in the American 
Journal of Science in 1878. From the outset he stressed the role of entropy, whose importance 
did “not appear to have been duly appreciated”: he claimed that “the general increase of 
entropy … in an isolated material system” would “naturally” suggest that the maximum of 
entropy be identified with “a state of equilibrium”. He emphasised the role of the function  
besides the functions  and , and the corresponding condition of equilibrium: when “the 
temperature of the system is uniform”, the condition of equilibrium could “be expressed by 
the formula” . This inequality seemed to Gibbs suitable for equilibrium in “a purely 
mechanical system”, as a mechanical system was nothing else but “a thermodynamic system 
maintained at a constant temperature”. In the conceptual “transition” from “ordinary 
mechanics” to thermodynamics, the functions -  and -  could “be regarded as a kind of 
force-function”, namely a generalisation of the concept of mechanical potential. The 
conditions of equilibrium  and  would represent “extensions of the criterion 

employed in ordinary statics to the more general case of a thermodynamic system”.51 

                                                        
49 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 89. 
50 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 89, 93, and 116. See, in particular p. 93: “In the above definition 

we may evidently substitute for entropy, volume, and energy, respectively, either temperature, volume, and the 
function ; or entropy, pressure, and the function ; or temperature, pressure, and the function .” 

51 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 354-5. As remarked by Truesdell in the second half of the twentieth 
century, Gibbs built up a remarkable “axiomatic structure”, but his theory was “no longer the theory of motion and 
heat interacting, no longer thermodynamics, but only the beginnings of thermostatics” (Truesdell C. 1984, p. 20). 
The same concept is re-stated in Truesdell C. 1986, p. 104. Nevertheless Truesdell appreciated Gibbs’ stress on 
entropy. See Truesdell C. 1984, p. 26: “While he made his choice of entropy and absolute temperature as primitive 
concepts because that led to the most compact, mathematically efficient formulation of special problems as well as 
of the structure of his theory, of course he knew that entropy was not something obvious, not something that comes 
spontaneously to the burnt child who is learning to avoid the fire.” 
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The role of entropy, the structural analogy between Thermodynamics and Analytical 

Mechanics, and a unifying theoretical framework for physics and chemistry were also the 
main features of Helmholtz’s pathway to Thermodynamics. At the beginning of the 1880s, he 
was a scientific authority: it is worth stressing that, in the scientific community of the time, he 
played a role quite different from Massieu, Rankine and Gibbs. After having made important 
contributions to physics and physiology, in 1882 Helmholtz put forward a mathematical 
theory of heat pivoted on the concept of “free energy”.52  

From the outset he put forward a unified theoretical approach for physical and chemical 
processes, based on the two principles of Thermodynamics. In particular, he found that 
thermo-chemical processes, in particular the production or dissolutions of chemical 
compounds, could not be interpreted in terms of mere production or consumption of heat. A 
more satisfactory theory had to take into account the fact that an amount of heat was not 
indefinitely convertible into an equivalent amount of work, according to Clausius’ 
interpretation of the Carnot law.53 

Helmholtz labelled  the absolute temperature, and  the parameters defining the state of 
the body: they depended neither on each other nor on temperature. If Clausius had introduced 
“two functions of temperature and another parameter, which he called the Energy U and the 
Entropy S”, Helmholtz showed that “both of them can be expressed as differential quotients of a 
completely defined Ergal” or thermodynamic potential. If  was the external force 
corresponding to the parameter , and  the corresponding work, then the total external 
work was . According to the first principle,  

 

, 

. 

 
Hierin bezeichnet  das mechanische Aequivalent der Wärmeeinheit und  die ganze bei 

der Aenderung  zu erzeugende, frei verwandelbare Arbeit, welche theils auf die Körper der 
Umgebung übertragen, theils in lebendige Kraft der Massen des Systems verwandelt werden kann. 

                                                        
52 After an academic career as a physiologist at Königsberg and Heidelberg universities, he had been appointed 

professor of physics at Berlin university in 1871, and then rector for the academic year 1877-8. He had delivered 
scientific lectures in many German universities and even in English universities and institutions, not to mention the 
honours received from French and English institutions. For a brief scientific biography, see Cahan D. 1993b, p. 3. 
For a general account of Helmholtz’s contributions to Thermodynamics and Thermo-Chemistry, see Bierhalter G. 
1993, and Kragh H. 1993. 

53 Helmholtz H. 1882, pp. 958-9. It is worth remarking that, since the 1860s, Thermo-Chemistry “rested on the 
Thomsen-Berthelot principle”. According to that principle, chemical reactions “were accompanied by heat 
production”, and in these processes “the most heat was produced”. In the same years, Helmholtz himself and W. 
Thomson had put forward the “general idea that in a galvanic cell chemical energy was completely transformed 
into electric energy”. Helmholtz realized that the second Principle of Thermodynamics required a reassessment of 
his previous point of view. See Kragh H. 1993, pp. 404 and 409.  
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Diese letztere ist eben auch als eine den inneren Veränderungen des Systems gegenüberstehende 
äussere Arbeit zu betrachten.54 
 
Beside this generalisation of the first principle, Helmholtz put forward a similar 

generalisation of the second law. He defined the entropy S as , or more specifically 
 

. 

 
Then he derived an equivalent expression from the first Principle: 
 

, 

 
and the physical equivalence led to the mathematical relations 
 

     and     . 55  

 
From the second equation, a simple and interesting expression for generalised forces 

followed: 
 

   or   .    

 
The function  played the role of a generalised potential for the forces : 

 

. 

 
According to Helmholtz, the function  represented the potential energy or the “Ergal” in 

the thermodynamic context. The functions U and S could be derived from  by simple 
derivation: 

 

,   and      or   .56 

                                                        
54 Helmholtz 1882, pp. 966-7. 
55 Helmholtz H. 1882, p. 967. 
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The function  also represented the “free energy”, namely the component of the internal 

energy which could be transformed into every kind of work. If U represented the total internal 
energy, the difference between U and , namely , represented the “bound energy”, 
namely the energy stored in the system as a sort of entropic heat.57 

In the second section of his paper, Hemholtz tried to re-interpret “the other two quantities 
dW and dQ which appears in Clausius’ equations”. For this purpose he found it necessary to 
introduce two differential operators: he labelled  the variation of whatever function  when 
the parameters  changed but the temperature did not, whereas the symbol  corresponded 
to a complete variation, when the temperature also changed. For a function  of  and ,  

  

      and      . 

 
The external work or what he called “freely convertible external work”  could be 

expressed in term of the new derivatives. Since , 

 

58 

 
According to the new symbols, the first principle assumed the form 
 

. 

 
The free energy represented only a part of the total energy : the remaining part was 

labelled “bound energy” or “bound work” or . From the mathematical point of view, 
. Helmholtz offered a mathematical and conceptual alternative to the first principle 

expressed in terms of W and Q:   instead of .  

Helmholtz’s mechanical approach to Thermodynamics was in accordance with the tradition 
of Analytical Mechanics. In the subsequent years, he tried to follow a slightly different 
pathway, wherein some hypotheses on the mechanical nature of heat were put forward. He 
tried to give a microscopic explanation of heat, without any recourse to specific mechanical 
models. This point deserves to be mentioned: in 1884, in the paper “Principien der Statik 
monocyklischer Systeme”, Helmholtz followed an intermediate pathway, which was neither 
Boltzmann nor Massieu-Gibbs’ pathway. He introduced a microscopic Lagrangian 
coordinate, corresponding to a fast, hidden motion, and a set of macroscopic coordinates, 

                                                        
56 Helmholtz H. 1882, pp. 968-9. As I have shown in the previous chapter, the last two equations had already been 

derived from the French engineer Massieu: Helmholtz did not seem aware of Massieu’s result, which had probably 
not crossed the France borderlines. 

57 Helmholtz H. 1882, p. 971. 
58 Helmholtz H. 1882, pp. 972-3. 
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corresponding to slow, visible motions. The energy associated with the first coordinate 
corresponded to thermal energy, whereas the energy associated with the others corresponded 
to external thermodynamic work.59 

 

                                                        
59 Buchwald stressed that Helmholtz put forward an Analytical-Mechanical approach to the microscopic level 

“without simultaneously adopting a fully reductionist atomistics” (Buchwald J.Z. 1993, pp. 335). See also Cahan 
D. 1993b, p. 10. For a detailed analysis of Helmholtz’s 1884 paper, and similar theoretical researches which 
appear in the sixth volume of his Vorlesungen über Theoretische Physik, see Bierhalter G. 1993, pp. 437-42. 
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4. Physical and mathematical symmetries 
 
In the meantime, in 1880, the young German physicist Max Planck was pursuing a slightly 

different target. He lamented that the theory of mechanical processes, in particular mechanical 
elasticity, had been put forward without any connection with the thermal properties of bodies, 
and the thermal actions on them. He aimed at filling the gap between thermodynamics and the 
theory of elasticity. In the dissertation Gleichgewichtzustände isotroper Körper in 
verschiedenen Temperaturen, which he published in order to be given the venia legendi, he 
outlined a mathematical theory where the mechanics of continuous media merged with 
thermal processes. He relied on the two principles of “the mechanical theory of heat”, and 
“specific assumptions on the molecular structure (Beschaffenheit) of bodies” were “not 
necessary”. In accordance with this theoretical option, he assumed that isotropic bodies 
consisted of “continuous matter”.60 

The body could be subject to “an external pressure”, and the condition of equilibrium was 
assured by the counteraction of “internal elastic forces”. Both mechanical work and fluxes of 
heat could act on the body: under those actions, both the reciprocal of density (“spezifische 
Volumen”) and temperature  could change from 

€ 

(v;T )  to 

€ 

(v';T ' ) . In particular the 
geometrical co-ordinates of a point inside the body underwent a transformation in accordance 
with the equations 

 

€ 

x = x0 +ξ; y = y0 +η; z = z0 +ζ , 

 
where 

€ 

x0,y0,z0  are the initial values and 

€ 

ζ ,η,ζ  the infinitesimal variation. The elastic 
forces acting on the surfaces parallel to the planes YZ, ZX, and XY were labelled by Planck 

€ 

X = (Xx ,Xy ,Xz ), 

€ 

Y = (Yx ,Yy ,Yz ) , and 

€ 

Z = (Zx ,Zy ,Zz ) , where 

€ 

Xy = Yx ,Yz = Zy ,Zx = Xz, “as 
usually assumed in the theory of elasticity”.61 

In the internal part of the body, the conditions of equilibrium were 
 

€ 

∂Xx
∂x

+
∂Xy
∂y

+
∂Xz
∂z

= 0 ,  

€ 

∂Yx
∂x

+
∂Yy
∂y

+
∂Yz
∂z

= 0 ,  

€ 

∂Zx
∂x

+
∂Zy
∂y

+
∂Zz
∂z

= 0 , 

 

                                                        
60 Planck became Privatdocent at the University of Munich in 1880, and was appointed as extraordinary professor 

of physics at the University of Kiel in 1885. In 1889, two years after Kirchhoff’s death, he became assistant 
professor at the University of Berlin, and director of the Institute for Theoretical Physics: in 1892 he was appointed 
ordinary professor. See McCormmach R. and Jungnickel C. 1986, vol. 2, pp. 51-2, 152, and 254, and Gillispie 
C.C. (ed.), Volume XI, p. 8. 

61 Planck M. 1880, pp. 3-4. On the developments of the theory of elasticity in the first half of the XIX century, see 
Darrigol O. 2002, in particular sections from 2 to 6. 
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whereas on the external surface they were 
 

€ 

Ξ+αXx + βXy +γXz = 0
Η +αYx + βYy +γYz = 0
Ζ+αZx + βZy +γZz = 0

, 

 
where 

€ 

(Ξ,Η,Ζ)  were the components of the external force, 

€ 

(α ,β ,γ)  the directive cosines, 
and 

€ 

dΦ=Ξ⋅ dξ +Η ⋅ dη +Ζ ⋅ dζ  the work done by the external force.62 

The first principle of thermodynamics allowed a unified account of phenomena, and a 
unified overview on physical space. If 

€ 

T '= T + τ  was the relationship between initial and final 
temperature in the course of a transformation, Planck specified that, in the end, energy 
depended on 

€ 

τ  and on the derivative of 

€ 

(ξ ,η,ζ )  with reference to 

€ 

(x, y, z). In particular it 
depended on the seven new variables 

€ 

δτ  and 

€ 

δxx ,δyy ,δzz ,δxy +δyx ,δyz +δzy ,δzx +δxz , where 

 

€ 

xx =
∂ξ
∂x
, yy =

∂η
∂y
, zz =

∂ζ
∂z
,  

€ 

xy =
∂ξ
∂y
, yx =

∂η
∂x
, yz =

∂η
∂z
, zy =

∂ζ
∂y
, zx =

∂ζ
∂x
, xz =

∂ξ
∂z

.63 

 
After having simplified typographically “the dilatation of the unitary volume” by means of 

a new variable 

€ 

Θ = (xx + yy + zz ) , Planck chose an expression for the energy 

€ 

dU  of “the 
element of mass 

€ 

dM ” in terms of the new variables: 
 

€ 

dU = dM[const + k ⋅ τ + l ⋅Θ+
m
2
⋅ τ 2 + p ⋅ τΘ+

q
2
⋅Θ2  

€ 

+ r ⋅ (xx
2 + yy

2 + zz
2) +

r
2
(xy

2 + yz
2 + zx

2) . 

 
The formal structure of entropy was not so different from that of energy: 
 

€ 

dS = dM[const + k' ⋅τ + l' ⋅Θ+
m'
2
⋅ τ 2 + p' ⋅τΘ+

q'
2
⋅Θ2  

€ 

+ r ' ⋅(xx
2 + yy

2 + zz
2) +

r '
2
(xy

2 + yz
2 + zx

2) , 

Planck could compare the two expression and the two sets of coefficients by means of the 
relationship between energy and entropy: 

 
                                                        

62 Planck M. 1880, pp. 4-6. He specified that elastic forces could not rely on “a potential”, because “they 
depended on temperature” (p. 8). 

63 Planck M. 1880, pp. 9-10. 
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€ 

dS =
dQ
T

=
dU − dΦ

T
.64 

 
The comparison gave rise to seven relationships between the derivatives of 

€ 

u  and 

€ 

s, 
namely the densities of energy and entropy: 

 

€ 

∂u
∂τ

= T ' ∂s
∂τ

, 

€ 

∂u
∂xx

+ v' Xx = T ' ∂s
∂xx

, 

€ 

∂u
∂yy

+ v'Yy = T ' ∂s
∂yy

, 

€ 

∂u
∂zz

+ v'Zz = T ' ∂s
∂zz

, 

€ 

∂u
∂xy

+ v' Xy = T ' ∂s
∂xy

, 

€ 

∂u
∂yz

+ v'Yz = T ' ∂s
∂yz

, 

€ 

∂u
∂zx

+ v'Zx = T ' ∂s
∂zx

. 

 
The first relationship led to  
 

€ 

k = Tk' , m = Tm'+k' , p = Tp' . 

 
The second, third and fourth led to  
 

€ 

Xx =
Tl'−1
v

+
l'
v
⋅ τ −

(q − l) −T (q'−l' )
v

⋅Θ−
2(r −Tr' )

v
⋅ xx ,      (1) 

 
and similar expressions for 

€ 

Yy  and 

€ 

Zz . 

 
The fifth, sixth and seventh led to  
 

€ 

Xy = −
r −Tr'
v

⋅ xy ,         (2) 

 

                                                        
64 Planck M. 1880, pp. 12-6. 
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and other similar expressions for 

€ 

Yz  and 

€ 

Zx .
65 

The combinations of coefficients in (1) and (2) could be typographically simplified in 
accordance with simple physical remarks and the typographical tradition of the theory of 
elasticity. If the first expression in (1) corresponded to the external pressure, the third 
expression corresponded to the traditional term 

€ 

λ , whereas the fourth expression in (1) and 
that in (2) corresponded to the traditional term 

€ 

µ . In brief: 

 

€ 

P =
Tl'−1
v

, 

€ 

λ =
(q − l) −T (q'−l' )

v
, 

€ 

µ =
r −Tr'
v

, 

 
and therefore 
 

€ 

Xx = P+
l'
v
⋅ τ − λ ⋅Θ−2µ ⋅ xx , 

€ 

Xy = −µ ⋅ xy .
66 

 
Internal energy, entropy, and the specific heats could be expressed in terms of 

€ 

k,λ ,µ , and 
the other coefficient 

€ 

α , which represented “the variation of the specific volume with 
temperature, at constant pressure”, namely 

 

€ 

α =
v'−v
T '−T
 

 
 

 

 
 
P

= v Θ
τ

 

 
 

 

 
 
P

. 

 

If 

€ 

u = k ⋅ τ + α λ +
2
3

µ
 

 
 

 

 
 T −Pv

 

 
 

 

 
 ⋅Θ and 

€ 

s =
k
T
⋅ τ +α λ +

2
3

µ
 

 
 

 

 
 ⋅Θ , then the constant 

€ 

k  could 

be identified with “the specific heat at constant volume”. Planck showed that the specific heat 
at constant pressure could be expressed by  

 

€ 

c = k +α 2 λ +
2
3

µ
 

 
 

 

 
 
T
v

. 

 
In the end,  
 
                                                        

65 Planck M. 1880, pp. 17-8. 
66 Planck M. 1880, p. 19. For the introduction of parameters 

€ 

λ  and 

€ 

µ  in the theory of elasticity in the first half of 
the XIX century, see Darrigol O. 2002, pp. 110, 113, and 122-4. 
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€ 

Xx = P+
α(3λ +2µ)

3v
⋅ τ − λ ⋅Θ−2µ ⋅ xx .67 

 
In brief, energy, entropy, and elastic stresses depended on a combination of mechanical and 

thermal variables, which were multiplied by a combination of mechanical and thermal 
coefficients In the remaining part of the chapter, Planck showed some applications to specific 
states of matter: solid bodies, fluid drops, and vapours and gases. 

 
Two years later, in the paper “Vaporising, melting, and sublimating” (“Verdampfen, 

Schmelzen und Sublimiren”), he claimed once again that his theoretical approach was based 
on “the two principles of the mechanical theory of heat”, and was “completely independent of 
any assumption on the internal structure of bodies”. In physical-chemical transformations 
there were “several states corresponding to relative maxima of entropy”, but there was only 
one “stable state of equilibrium”, which corresponded to “the absolute maximum of entropy”: 
the others states were nothing more than “unstable states of equilibrium”. In the last part of 
his paper, Planck stressed that his previous statements were pure consequences of a more 
general law: “in natural processes, the sum of the entropies of the parts of a given body does 
increase”. Only in reversible processes, the entropy would remain unchanged, but those kinds 
of processes did “not really exist”: they could “be looked upon as merely ideal”. When a 
physical system reached the maximum entropy, “no transformation” could “take place any 
more”. The maximum entropy would therefore correspond to “a stable state of equilibrium”, 
and this correspondence between entropy and equilibrium would represent “the best way to 
base the search for the conditions of equilibrium on rational grounds”, both in physics and 
chemistry.68  

 
In 1885 the German speaking physicist Arthur von Oettingen, who held the chair of Physics 

in Dorpat University (now Tartu, Estonia), undertook an even more ambitious design: a 
formal theory, where mechanical work and fluxes of heat represented the starting point of a 
dual mathematical structure. A large family of thermal and mechanical “capacities” 
emerged.69 

                                                        
67 Planck M. 1880, pp. 21-3. 
68 Planck M. 1882, pp. 452 and 472. The distinctive feature of an unstable equilibrium was the establishment of “a 

finite change of state” as a consequence of “an arbitrary small change in external conditions”. According to 
Planck, a specific instance of unstable equilibrium was offered by “explosions in mixtures of gases”, where the 
addition of “a convenient but arbitrary small amount of energy” could trigger off sudden and dramatic 
transformations (Ibidem, p. 474). Planck held the same position on the foundation of Thermodynamics for many 
years. In 1891, in a paper he read at the annual meeting of German scientists, Planck claimed that Maxwell and 
Boltzmann’s skilful “analysis of molecular motion” was not “adequately rewarded by the fruitfulness of the results 
gained”. In particular, he found that the kinetic theory was not at ease with phenomena placed on the borderline 
between Physics and Chemistry: he did not expect that it could “contribute to further progress” in that field. See 
Kuhn T.S. 1987, p. 22. Similar remarks can be found in the book on the foundation of Thermochemistry Planck 
published in 1893.  

69 After having studied at Dorpat, in Livonia (now Tartu, Estonia), he spent some years in Augustine César 
Bequerel and Henri Victor Régnault’s laboratories in Paris, and then in Heinrich Gustav Magnus, Johann Christian 
Poggendorff and Heinrich Wilhelm Dove’s laboratories in Berlin. In 1868 he became Professor of Physics at 
Dorpat. 
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His very long paper was published in the Mémoires de l’Académie impériale des sciences 
de Saint-Pétersbourg, and its complete title was “Die thermodynamischen Beziehungen 
antithetisch entwickelt” (Antithetically developed thermodynamic connections). The German 
adjective and adverb “antithetisch” might be interpreted in two different ways: either the 
opposition to traditional approaches to thermodynamics, or the development of antithetical or 
complementary mathematical relations in the body of knowledge of thermodynamics. In some 
way, both interpretations are suitable, because both of them manage to catch the original 
content of the paper. From the outset the author stressed that the great number of 
“multifarious relations” in physics could be encompassed by “a unitary viewpoint”, and could 
be “grouped and ordered in a rigorous system”. Thermodynamics in particular was in that 
favourable condition, even though, generally speaking, “textbooks failed to fulfil that unitary 
commitment”. Oettingen specified that “the new exposition of the subject matter” was 
developed in accordance with a dual approach: for every set of relations, a set of 
complementary ones emerged. From the typographical point of view, this complementarity 
led to a two-columns exposition, where two sets of variables, functions, and laws were 
compared to each other, and sometimes the mathematical symmetries were explicitly 
stressed.70 

The whole body of knowledge of thermodynamics could be based on four “main variables” 
or parameters, and two kinds of energy. In the left column he put temperature and entropy, 
and the corresponding energy, which was “the current energy Q”, or in other words the flux 
of heat. In the right column he put volume and pressure, and the corresponding energy, which 
was the “potential energy S”, namely the mechanical energy which actually appeared under 
the form of mechanical work. In brief 

 

€ 

dQ = t ⋅ du , 
 

where 

€ 

t  was “the absolute temperature” and 

€ 

u  “the entropy or Adiabate”. Temperature 
was a measure of the amount of “current 
energy of molecules”. 

€ 

dS = −p ⋅ dv , 

 
where 

€ 

p was “the pressure” and 

€ 

v  “the 
specific volume”. Pressure was the measure 
of “the dead energy of the body against the 
outer wall” 

 

 
If a flux of “current energy” led necessarily to a variation of entropy in the physical system, 

a flux of “potential energy” led necessarily to a variation in the volume of the system. In brief 
 

€ 

du =
dQ
t

, 

€ 

dv =
dS
p

.  

 

                                                        
70 Oettingen A. 1885, p. 1. His long essay was divided into three parts: “General relations of Thermodynamics for 

every state of aggregation” (“Allgemeine Beziehungen der Thermodynamik, für alle Aggregatformen”), “Theory 
of thermal heat capacity based on a new hypothesis” (“Theorie der thermischen Wärmecapacität auf Grund einer 
neuen Hypothese”), and “Theory of gases” (“Theorie der Gase”).  
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Conversely, a system at “constant Adiabate” could undergo transformations only by a 
transfer of “potential energy”, and a system at “constant volume” only by a transfer of 
“current energy”.71 

In general the state of a system could be described by two parameters among the four 

€ 

t, u, p, v , but the two more meaningful representations corresponded to the choices 

€ 

(u, t)  and 

€ 

(v, p) . After having discussed about the opportunity to label “Adiabate” or “Entropie” the 
differential form 

€ 

dQ /T , Oettingen insisted on the physical and linguistic symmetry between 
thermal and mechanical variables and functions. Within the framework of his combinatorial 
mathematical physics, many “differential quotients” or “coefficients” found room: among 
them, some enjoyed a relevant physical meaning and deserved a specific label. For instance, 

 
 
Coefficients of compression: 
 
Coefficients of expansion: 
 
Coefficients of tension: 

€ 

dp
dv
 

 
 

 

 
 
u / t

 

€ 

dv
dt

 

 
 

 

 
 
p / u

 

€ 

dp
dt

 

 
 

 

 
 
v / u

 
€ 

dt
du
 

 
 

 

 
 
p / v

 

€ 

du
dp

 

 
 

 

 
 
t / v

 

€ 

dt
dp
 

 
 

 

 
 
v / u

 

 
The subscript pointed out the constancy of the corresponding variable. Even more 

meaningful it appeared the list of “energy coefficients” or “capacities”: among them, the 
ordinary heat capacities could be found. That list was a dual one indeed: if on the left the list 
of “heat capacities” (“Wärmecapacitäten”) was displayed, on the right we can see the list of 
“work capacities” (“Arbeitscapacitäten”). The whole list required series of two adjectives for 
the substantive “capacity”. 

 
Thermal heat capacities: 

€ 

dQ
dt

 

 
 

 

 
 
v

=Cv  

€ 

dQ
dt

 

 
 

 

 
 
p

=Cp  

 
Barometric heat capacities: 

€ 

dQ
dp

 

 
 

 

 
 
v

= Fv  

€ 

dQ
dp

 

 
 

 

 
 
t

= Ft  

 
Metric heat capacities: 

Thermal work capacities: 

€ 

dS
dt

 

 
 

 

 
 
u

=Φu 

€ 

dS
dt

 

 
 

 

 
 
p

=Φp  

 
Barometric work capacities: 

€ 

dS
dp

 

 
 

 

 
 
u

=Γu  

€ 

dS
dp

 

 
 

 

 
 
t

=Γt  

 
Entropic work capacities: 

                                                        
71 Oettingen A. 1885, pp. 2-3. 
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€ 

dQ
dv

 

 
 

 

 
 
t

= Lt  

€ 

dQ
dv

 

 
 

 

 
 
p

= Lp  

€ 

dS
du
 

 
 

 

 
 
t
= Λ t  

€ 

dS
du
 

 
 

 

 
 
p

= Λ p .72 

 
At the same time, other algebraic relations and symmetries emerged. 
 

€ 

Fv =Cv
dt
dp
 

 
 

 

 
 
v

 

€ 

Lt = Ft
dp
dv
 

 
 

 

 
 
t
 

€ 

Cp = Lp
dv
dt

 

 
 

 

 
 
p

 

€ 

Fv ⋅Lt ⋅Cp +Cv ⋅Ft ⋅Lp = 0  

€ 

Φu =Γu
dp
dt

 

 
 

 

 
 
u
 

€ 

Λ p =Φp
dt
du
 

 
 

 

 
 
p

 

€ 

Γt = Λ t
du
dp

 

 
 

 

 
 
t

 

€ 

Φu ⋅Γt ⋅ Λ p +Φp ⋅Γu ⋅ Λ t = 0.73 

 
The above relations could find a meaningful simplification in the case of gases, or precisely 

the so-called ideal gases. In this case, three conditions had to be fulfilled: 
1. the specific heats 

€ 

Cv  and 

€ 

Cp  had to be constant, 

2. the internal energy 

€ 

E  depended only on temperature, and 
3. the equation of state for ideal gas 

€ 

p ⋅ v = Rt  was assumed. 

In this case, a series of simple relations followed: 
 

€ 

Cv =Φu = const.,    

€ 

Cp =Φu −Φp = const.,     

€ 

Lt = p,     

€ 

Γt = v ,     

€ 

Λ t = −t .74 

 
Oettingen was aware of the existence of recent abstract approaches to Thermodynamics. In 

particular, he attempted to link his approach to Helmholtz’s recent developments, and in this 
context the concepts of “free and bound energy” played a relevant role. In reality, in 
accordance with his dual and complementary framework, he relied on a series of four 
functions, “free, bound, total and lost energies” (“freie, gebundene, totale und verlorene 
Energie”). A two-fold representation, and an intrinsic symmetry emerged once again. He first 
introduced the two functions “bound energy   

€ 

G = t ⋅ u“ and “lost energy   

€ 

V = −p ⋅ v  “, and then 
defined “free energy” and “total energy” as 

 

                                                        
72 Oettingen A. 1885, pp. 4-8. A graphic interpretation of heat and work capacities was available both in 

€ 

(u, t)  
and 

€ 

(v, p)  spaces. In particular, the values of 

€ 

Cv  and 

€ 

C p  could be found in the horizontal axes 

€ 

u  of the plane 

€ 

(u, t) , and the values of 

€ 

Γu and 

€ 

Γt  could be found on the horizontal axes 

€ 

v  of the plane 

€ 

(v, p) . 
73 Oettingen A. 1885, pp. 9-10. 
74 Oettingen A. 1885, pp. 16-7. 



Looking for a Rational Thermodynamics in the late XIX century 

 

33 

  

€ 

F = E −G = E − t ⋅ u    

€ 

T = E −V = E − (−p ⋅ v)  

  
The differentiation of the functions yielded: 
 

  

€ 

dE = dF + dG = dQ+ dS  
 

  

€ 

dG = t ⋅ du + u ⋅ dt = dQ+ u ⋅ dt  
 

  

€ 

dF = dQ+ dS − t ⋅ du − u ⋅ dt = dS − u ⋅ dt  

  

€ 

dE = dT + dV = dQ+ dS  
 

  

€ 

dV = −p ⋅ dv − v ⋅ dp = dS − v ⋅ dp 

 

  

€ 

dT = dQ+ dS + p ⋅ dv + v ⋅ dp = dQ− (−v ⋅ dp) .75 

 
The two couples of functions or potentials   

€ 

(F ;G)  and   

€ 

(T ;V)  allowed physicists to split 
internal energy into two parts, and the split could be performed in two different ways. 
Moreover, if the traditional split 

€ 

dE = dQ+ dS  of the state function 

€ 

E  did not lead to state 
functions or potentials, the two new splits led to two couples of state functions. In Oettingen’s 
dual framework, free energy and total energy appeared as the generalisation of mechanical 
work and flux of heat, or better a sort of actual work and heat, once some kind of disturbing 
terms were subtracted. In isothermal and iso-entropic processes, the mechanical feature of 
“free energy” emerged, and conversely the thermal feature of “total energy” emerged in 
isobaric and iso-volumic processes. When his discussion is translated into an ordered list of 
mathematical expressions, the symmetries between the couples   

€ 

(F ;G)  and   

€ 

(T ;V)  is really 
astonishing. 

 
Iso-thermal processes: 

€ 

dt = 0 
 

  

€ 

dF = dS  
 

  

€ 

dG = dQ  
 
Iso-entropic processes: 

€ 

du = 0  and 

€ 

dQ = 0  
 

  

€ 

dG = u ⋅ dt  
 

  

€ 

dF = dS − u ⋅ dt = dS − dG  

  

€ 

→ dS = dF + dG  

Iso-baric processes: 

€ 

dp = 0 

 

  

€ 

dT = dQ  
 

  

€ 

dV = dS  
 
Iso-volumic processes: 

€ 

dv = 0 and 

€ 

dS = 0  
 

  

€ 

dV = −v ⋅ dp 

 

  

€ 

dT = dQ− (−v ⋅ dp) = dQ− dV  

  

€ 

→ dQ = dT + dV .76 
 
He criticised the concepts of “disordered motion” and “measure of disorder” when referred 

to entropy, because the “complexity of the concept of Adiabate” required that it was 
                                                        

75 Oettingen A. 1885, pp. 21-2. 
76 Oettingen A. 1885, pp. 21-3. With regard to the thermodynamic potentials, he also acknowledged the 

contributions of Massieu, Maxwell, and Gibbs. 
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associated with “a plurality of conditions”. Moreover, from the point of view of physical 
dimensions, entropy or Adiabate was quite different from the living force of molecules, 
however disordered it may be. It appeared to Oettingen that perhaps the concept of “bound 
energy could be put in connection with a disordered motion”, but every “overlap between that 
disorder and the function 

€ 

u  had to be excluded”. Entropy was a physical entity not so 
different from volume, and as such it could never become negative. In a body, “the content of 
heat could not be completely stolen”, in the same way that its volume could also not be. In 
other words, the content of disordered motion could not vanish: in no way could “absolute 
immobility” be actually realized.77  

In the last pages of the first part of his essay, Oettingen showed that even Gibbs’ third 
potential   

€ 

N = E − tu + pv  could find room in his mathematical framework: it could be 
expressed alternatively as  

 

    

€ 

N =F +T −E      or          

€ 

N = E −G −V .  
 
As a further combinatorial synthesis he displayed the derivatives of the five functions 

    

€ 

F,G,T,V, N  with reference to the four basic parameters 

€ 

p, v, t, u . Every derivative could 
be performed under the condition of constancy of one of the other parameters. In other words, 
those derivatives had the formal structure 

 

€ 

dPk
dx j

 

 
  

 

 
  
xl

k =1,2,3,4,5; j,l =1,2,3,4 , 

 
where 

€ 

Pk  represents the five potentials, and 

€ 

xk , xl  two among the four basic parameters. As 
a whole, 60 derivatives could be written down (5x4x3), and each of them corresponded to a 
specific combination of parameters and “capacities”. The list could be reversed, and every 
basic parameter and every “capacity” corresponded to some derivatives of thermodynamic 
potentials. In brief: 

 

  

€ 

u = −
dF
dt

 

 
 

 

 
 
v

=
dG
dt

 

 
 

 

 
 
u

= −
dN
dt

 

 
 

 

 
 
p

;     
  

€ 

t =
dT
du

 

 
 

 

 
 
p

=
dG
du

 

 
 

 

 
 
t

; 

  

€ 

v =
dT
dp

 

 
 

 

 
 
u

= −
dV
dp

 

 
 

 

 
 
v

=
dN
dp

 

 
 

 

 
 
t

;       
  

€ 

p =
dF
dv

 

 
 

 

 
 
t

=
dV
dv

 

 
 

 

 
 
p

. 

 
A well-defined symmetry shows that the second line can be obtained from the first by 

means of the exchanges of potentials   

€ 

F ↔T  and   

€ 

G↔V , and the exchanges of variables 

€ 

t↔ p  and 

€ 

u↔ v . 

With regard to capacities, both thermal and mechanical, internal energy had to be added to 
the list of potentials to be derived. In brief: 

                                                        
77 Oettingen A. 1885, pp. 24-5. 
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€ 

Cv =
dE
dt

 

 
 

 

 
 
v
, Cp =

dT
dt

 

 
 

 

 
 
p

;     
  

€ 

Γu =
dE
dp

 

 
 

 

 
 
u

, Γt =
dF
dp

 

 
 

 

 
 
v

 

  

€ 

Fv =
dE
dp

 

 
 

 

 
 
v

, Ft =
dG
dp

 

 
 

 

 
 
t

;     
  

€ 

Φu =
dE
dt

 

 
 

 

 
 
u
, Φp =

dV
dt

 

 
 

 

 
 
p

 

  

€ 

Lt =
dG
dv

 

 
 

 

 
 
t
, Lp =

dT
dv

 

 
 

 

 
 
p

;     
  

€ 

Λ p =
dV
du

 

 
 

 

 
 
p

, Λ t =
dF
du

 

 
 

 

 
 
t

. 

 
Once again, we see that the above mentioned symmetries operate between the two couples 

of every line.78 
In the end Oettingen pointed out the generality of his approach, which was valid “for any 

state of aggregation”, even though the theory required “reversible processes”. The choice of 
basic parameters or variables did not affect such a generality: in particular, the variable 

€ 

v  
could be replaced by a set of geometrical parameters, “just as Helmholtz had done”. 
Nevertheless he did not specify how the wonderful symmetries of the equations might be 
preserved in the case of irreversible processes. He thought he had fulfilled his explicit 
“intention”, namely to collect “into a self-contained system all existing knowledge” on 
thermodynamics.79  

 
 

                                                        
78 Oettingen A. 1885, pp. 23 and 26-9. He was extremely accurate in displaying long series of derivatives, but did 

not stress the symmetries emerging from the combinatorial game. 
79 Oettingen A. 1885, p. 31. 
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5. The general equations of Thermodynamics 
 
The following year the young mathematical physicist Pierre Duhem published a book on 

thermodynamic potentials and their applications to electrical and chemical processes.  He 
recollected the main steps of Gibbs’ logical pathway: he listed Gibbs’ potentials 

 and , which were quite similar to Massieu’s functions, and 
Gibbs’ laws of equilibrium involving energy and entropy. He also mentioned Helmholtz’s 
“distinction between two kinds of energy, the free energy … and the bound energy”: 
Helmholtz’s free energy F was nothing else but Gibbs’ function , which in its turn was 
proportional to Messieu’s “fonction caractéristique” H: .80 

Duhem wrote the first principle of Thermodynamics as 
 

,     

 

where dQ was a quantity of heat,  the variation of living force, d  the variation 

of the external work, A the thermal equivalent of the mechanical work, and dU represented 
“the total differential of a function well specified apart from a constant”. With regard to the 
second principle, Duhem reminded the reader of Clausius’ interpretation of dQ/T as “unit of 
transformation or merely transformation”, and the corresponding theorem, “[t]he sum of 
transformations throughout a close eversible cycle is nought”. Then he reminded the reader 
of the extension of Clausius’ theorem to reversible “transformations different from a closed 
cycle”: the integral  depended “only on the initial and final state of the system”. 

Subsequently Clausius had included non-reversible closed cycles, which had led to a more 
general statement “[t]he algebraic sum of transformations occurring in a non-reversible 
closed cycle must be positive”. Including “whatever series of non-reversible transformations”, 
he had further widened the scope of the principle: the key concept was the “non-compensated 
transformation”. If a physical system passed from the initial state (0) to the final state (1) 
through different steps, one of them being at least non-reversible, and then came back to (0) 
through a series of reversible (r) steps,  

 

   namely   . 

 

                                                        
80 Duhem P. 1886, pp. VI and IX. Physical remarks and historical reconstructions are tightly linked to each others: 

it is one of the long-lasting hallmarks of Duhem’s scientific practice. The coefficient E was nothing else but 
“l’équivalent mécanique de la chaleur”. The relationship between the mechanical equivalent of heat E and the 
thermal equivalent of mechanical work A is of course EA = 1.  
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Making use of the definition of entropy , Duhem reported Clausius’ result 

as 
 

. 

 
On the track of Clausius’ theoretical pathway, Duhem qualified N as “the sum of non-

compensated transformations”. In the specific case of isothermal transformations, he could 
write (5) , where  could be interpreted as “an amount of work which can be 
naturally qualified as non-compensated work”.81  

These concepts emphasised the formal analogy between Mechanics and Thermodynamics. 
For systems without any macroscopic living force, the first Principle became 

, and for isothermal transformations, the other equations became 

 

  and  . 

 
A new mathematical expression for the non-compensated work  followed: 
 

. 

 
If external forces stemmed “from a potential W”, the last equation became 
 

, 

 
and Duhem could define a more general potential . The very synthetic 

expression   (8) followed : in his words, “non-compensated work … is equal to 
the opposite of the variation of ” in an isothermal transformation. The analogy between 
mechanics and thermodynamics led Duhem to choose the name “thermodynamic potential of 
the system” for the function .82 

In two specific instances, at constant volume or pressure, Duhem’s thermodynamic 
potential had important consequences from the theoretical point of view, and from the point 

                                                        
81 Duhem P. 1886, pp. 3-7. It is worth noticing that Duhem labelled “principle” rather “theorem” Clausius’ 

statement about entropy or “transformation”, which corresponded to the second principle of thermodynamics. It is 
also worth noticing that the word “transformation” assumed two different meanings in Duhem’s paper: the general 
meaning of “change”, and the specific meaning of “entropy”. 

82 Duhem P. 1886, pp. 7-8. 
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of view of “applications”. In the first case, W = 0, and the potential  became 
, which was “Helmholtz’s free energy” or Gibbs’  function. In the second 

case, dW = pdv = d(pv), and the potential  became , which was 
“nothing else but Gibbs’  function”.83 

After three years, while he was lecturing at Lille university, Duhem began to outline a 
systematic design of rephrasing Thermodynamics. He published a paper in the official revue 
of the Ecole Normale Supérieure, wherein he displayed what he called the “general equations 
of Thermodynamics”. Once again he made reference to the recent history of 
Thermodynamics. Apart from Clausius, who “had already devoted a paper to a systematic 
review on the equations of Thermodynamic”, four scientists were credited by Duhem with 
having carried out “the most important researches on that subject”: F. Massieu, J.W. Gibbs, 
H. von Helmholtz, and A. von Oettingen. If Massieu had managed to derive Thermodynamics 
from a “characteristic function and its partial derivatives”, Gibbs had shown that Massieu’s 
functions “could play the role of potentials in the determination of the states of equilibrium” 
in a given system. If Helmholtz had put forward “similar ideas”, Oettingen had given “an 
exposition of Thermodynamics of remarkable generality”. Duhem did not claim that he would 
have done “better” than the scientists quoted above, but he thought that there was real 
“interest” in putting forward “the analytic development of the mechanical Theory of heat”, 
making recourse to “very different methods”.84 

In the first section, “Etude thermique d’un système dont on se donne les équations 
d’équilibre”, he took into account a system whose elements had the same temperature: the 
state of the system could be completely specified by giving its temperature  and n other 
independent quantities , , …, . He then introduced some “external forces”, which 
depended on , , …,  and , and held the system in equilibrium. A virtual work 

 corresponded to such forces, and a set of n+1 equations 
corresponded to the condition of equilibrium of the physical system:  

 
 

 

 
.85 

 
From the thermodynamic point of view, every infinitesimal transformation involving the 

generalized displacements , , …,  and  had to obey to the first law 
, which could be expressed in terms of the (n+1) generalised 

Lagrangian parameters:  
 

                                                        
83 Duhem P. 1886, pp. 9-10. 
84 Duhem P. 1891, pp. 231-2. Duhem specified that the paper stemmed from his activity as a lecturer “de la 

Faculté de Sciences de Lille”. See Ibidem, p. 232. From the Duhem theoretical context it is clear that the 
expression “mechanical Theory of heat” cannot be interpreted in the same sense as Maxwell and Boltzmann.  

85 Duhem P. 1891, p. 233-4. 
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 . 

 
The amount of heat could be written as a sum of (n+1) terms:  
 

, or  

,  

 
wherein  
 

,  ,  … …, ,  . 

 
The alliance between Mechanics and Thermodynamics led to a sort of symmetry between 

thermal and mechanical quantities. The n+1 functions , , …, , , which Duhem re-
wrote as , , …, , C, played the role of generalized thermal capacities, and the last 
term C was nothing else but the ordinary thermal capacity: in some way, the second 
typographical choice re-established the traditional asymmetry.86 

In the following pages Duhem inquired into the connection between the mathematical and 
physical aspects of the principle of equivalence. Starting from the first and second Principles 
of Thermodynamics, he arrived at the equations 

 

 

. 

 
He stressed the relationship between mathematical and physical equivalences. The physical 

equivalence between work and heat corresponded to a mathematical equivalence between 
their n+1 differential coefficients A, B, …, L, , and , , …, . In its turn, the 
mathematical equivalence expressed by the last equations required the existence of a function 
of state U, namely “a uniform function of , , …, , and , so that ”.87 

The Lagrangian parameter  could be chosen without any restriction: it did not have to be 
necessarily identified with the absolute temperature. In general, the absolute temperature 
could be a function  of . This means that the function entropy, a “uniform, finite, and 
continuous function of , , …, , and ”, could be defined as 

                                                        
86 Duhem P. 1891, p. 234. 
87 Duhem P. 1891, p. 235. 
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. 

 
New mathematical equivalences could be derived: 
 

, or  , 

.88 

 
Even in this case, the mathematical and physical steps could be reversed. The mathematical 

equivalence expressed by the last equations required the existence of a function of state S, 
namely “a uniform function S of the state of the system” . In the context of the 
generalised theory, the functions internal energy U and entropy S also emerged as two basic 
state-functions.89 

The above mentioned mathematical equivalences had an important consequence from both 
the mathematical and physical points of view. In fact, they led to a series of equations of the 
kind 

 

. 

 
As Duhem remarked, this equation says that the n+1 differential coefficients A, B, …, L, 

and , “cannot be chosen arbitrarily”. In particular it suggests that “a uniform, finite, and 
continuous function  of n+1 parameters , , …, , and  there exist”. The 
gradient of  can be written component by component, taking care of the specific behaviour of 
the component , which was “independent of the function ”: 

 

, , … .90 

 

                                                        
88 Duhem P. 1891, pp. 235-6. Here a sort of asymmetry between mechanical and thermal parameters emerges. 
89 Duhem P. 1891, p. 236. Duhem acknowledged that his mathematical and physical approach had already been 

outlined by Clausius, Kirchhoff, and Reech in the 1850s and 1860s. See Ibidem, p. 237. 
90 Duhem P. 1891, pp. 237-8. 
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What do we know about the functions  and , which could not be derived by the 
same procedure? The knowledge of the “equilibrium equations of a system” allowed Duhem 
to compute the partial derivatives of the thermal capacity C with regard to all the parameters 
which described the state of the system, “apart from its derivative with regard to 
temperature”. The thermal capacities were therefore known “except for an unspecified 
function of temperature”:  

 

(9)   ,  

        

 
The last set of equations shows how deeply entangled were the thermal and mechanical 

properties of a physical system.91  
The complex net of equations developed by Duhem could be simplified by an appropriate 

choice of Lagrangian parameters: the choice of the absolute temperature as thermal 
parameter, namely =T and F(T)=T, let  simpler expressions for C derivatives emerge. A 
further simplification could be attained by choosing the parameters , , …, and  in order 
to keep at rest the whole system when the parameter  changed. In this case, “the mere 
change of  cannot involve any work done by external forces”, and a sort of split between 
thermal and mechanical features of the system was imposed. Nevertheless, the existence of 
mathematical links between the mechanical derivatives of the thermal scalar C and the 
thermal derivatives of the generalised mechanical vector (A, B, …, L) shows us the 
persistence of the deep connection between mechanical and thermal effects, even when the 
formal symmetry between them was weakened: 

 

 ,   , … …,  .92 

 
According to Duhem, “the mechanical determination of the system” required firstly the 

specification of the function , and then the deduction of the generalized forces A, B, …, L, 
and , and the “thermal coefficients” , , …, and . Duhem’s vocabulary swung 
freely between the mechanical and the thermal poles: the fact is that both the series of 
generalized forces and generalized thermal coefficients had mechanical and thermal meaning. 
He thought that, from the formal point of view, he had really perfected the design outlined in 
1886: the derivation of mechanical and thermal features of the system from the potential  
and the function 

€ 

Θ.93 

                                                        
91 Duhem P. 1891, pp. 238-9. 
92 Duhem P. 1891, pp. 239-41. 
93 Duhem P. 1891, p. 251. An unaccountable missing sign in the equation for entropy led Duhem to compute, in a 

relatively easy way, the expressions for U, S and C. The fact is that the mistaken sign makes the derivation too 
easy: the right computation leads to differential equations for U and S, which are not so easy to solve. The 
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In 1892 Duhem submitted a long paper with the very general title “Commentaires aux 

principes de la Thermodynamique” to the Journal de mathématiques pures et appliquées. It 
was the first part of a sort of trilogy whose second and third parts were hosted by the 
mathematical journal in 1893 and 1894 respectively. The set of three papers, when considered 
as a whole, was nothing less than a treatise on thermodynamics. 

He pointed out the difference between the physical quantities which preserved their values 
over time, and those which did not: mass and electric charge belonged to the first set, while 
kinematical parameters belonged to the second one. He qualified the former as those which 
“define the nature of the system”, and the latter as those which “define the state”: he labelled 
A, B, …, and L the elements of the first set, and , , …, and  the elements of the second. 
Matter could be described geometrically by some functions of Lagrangian parameters , , 
…, : among state quantities Duhem distinguished those which appeared explicitly in those 
equations from those which did not appear. He reserved the labels , , …, and  for the 
former, and introduced new labels a, b, …, l for the latter: in some way he separated 
geometrical quantities from other quantities. In the latter subset Duhem placed temperature, a 
quantity which would have played “a remarkable role in the present work”. According to 
Duhem, temperature was not a “quantitative feature” of a physical system: a given value of 
temperature could be “reproduced, increased and decreased”, but temperature did not have the 
additive property. Temperature could not measure literally, but only locate the different levels 
of heat. Moreover, temperature could not be univocally defined: after having defined a 
temperature , any continuous and increasing function  could play the role of 
temperature.94 

In the third chapter he started from a complex system , which was isolated in space, and 
could be looked upon as the composition of two “independent systems” S and S’. If the 
kinetic energy of  was simply the sum of the kinetic energies  and  of S and S’, the 
potential energy could not consist only of the sum of the two isolated potential energies U and 
U’, but had to contain a term of interaction: 

 

. 

 
The key entity was the total energy  
 
                                                        

qualitative features of Duhem’s design are not threatened by the wrong derivation, and its conclusion is 
qualitatively correct. Duhem’s mistake stems from the difference between the definition  (p. 236) 
and the other definition  (p. 251).  

94 Duhem 1892, pp. 276, 278-9, 284 and 286-8. According to Duhem, temperature stemmed from the concept of 
“equally warm”, and could replace that concept in the definition of equilibrium: “if an isolated system is in 
equilibrium, the temperature  has the same value everywhere”. In the second chapter, he tried to clarify some 
basic physical concepts: closed cycle, work, kinetic and potential energies, internal energy, the additive property of 
work, and the principle of the conservation of energy. He stressed the status of “physical hypothesis” of that 
principle: it was submitted to experience, and it could not be demonstrated, but only put forward by means of some 
physical considerations. (Ibidem, pp. 291-307) 
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. 

 
 Heat had a relational nature: in a “complex isolated system, consisting of two independent 

systems S and S’, … one of them sends out as much heat as the other receives”. The concept 
of an isolated body placed in an empty space, and sending out or receiving heat, seemed to 
Duhem “not consistent with the definition given above”. According to Duhem, heat meant 
exchange of heat: heat required interactions between different bodies, or at least between a 
body and the surrounding aether.95 

Consistently with the separation between geometrical and “state” parameters, he introduced 
two sets of “thermal coefficients”, , , …, , and , , …, , such that  

 

 ,   

€ 

E Rβ = ..., E Rλ = ... 

 ,     

€ 

ERb = ..., ER l = ... 

 . 

 
In the first set of equations, geometrical parameters involved the motion of the physical 

system as a whole, and ordinary Lagrangian terms appeared. On the right-hand side of the last 
equation, the first round brackets contained the effect of mechanical actions, and the second 
the effects of other kinds of influences: the latter was a generalization of the term  which 
Duhem had introduced in 1891. Virtual work was the sum of three components, since actions 
split into forces and influences: , where 

 

, , .96 

Duhem’s generalised Mechanics/Thermodynamics became a sort of Analytical 
Thermodynamics, and ordinary mechanics could be looked upon as one of its specific 
implementations. In order to derive ordinary mechanics from his thermodynamics, he 
assumed that , and all “thermal coefficients” vanished. In this case, the equations 
became  

 

                                                        
95 Duhem 1892, pp. 308-10 and 319-20. In the last part of the chapter, Duhem stressed his relational conception of 

heat once again. See p. 323: “Ici vient naturellement se placer une réflexion semblable à celle que nous a suggérée 
la définition du travail : on ne peut parler de la quantité de chaleur dégagée par chacune des parties d’un système 
qu’autant que chacune de ces parties peut être considérée comme un système indépendant. Lorsque les diverses 
parties d’un système ne sont pas indépendantes les unes des autres, le mot : quantité de chaleur dégagée par 
chacune d’elles n’a aucun sens.“ 

96 Duhem 1892, pp. 320-1. 
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, … …, 

, … …. 

 
Since the first set of equations corresponded to Lagrange’s equations of rational mechanics, 

the derivation seemed successfully achieved. Nevertheless, a question arose: could the 
physical derivation be reversed? In other words, are we sure that, when ordinary mechanics is 
at stake, all thermal coefficients vanish? At that stage, Duhem could not satisfactorily answer 
the question, and he acknowledged that further theoretical investigations were required. At 
the end of Duhem’s 1892 paper, the nature of the formal relationship between Mechanics and 
Thermodynamics was waiting for a complete clarification.97 

In 1894, in the third part of his Commentaire. he astonished the readers because of the 
reference to an Aristotelian interpretation of the word “motion”: not only was motion looked 
upon as a kinematic process, but as transformation in general. It is worth quoting Duhem’s 
whole passage.  

 
Nous prenons, dans ce Chapitre, le mot mouvement pour désigner non seulement un changement de 
position dans l’espace, mais encore un changement d’état quelconque, lors même qu’il ne serait 
accompagné d’aucun déplacement. Ainsi, il y aurait mouvement si les variables que nous avons 
désignées par a, b, …, l … variaient seules, les variables , , …,  gardant des valeurs fixes. 
De la sorte, le mot mouvement s’oppose non pas au mot repos, mais au mot équilibre.98 
 
Then he opened another pathway: instead of starting from general equations, he started 

from the case of thermal equilibrium (

€ 

dQ = 0 ), which corresponded to the specific 
mechanical instance, and introduced a perturbation, which represented a source of 
irreversibility for the physical system: 

 

. 

 
The new functions  represented “passive resistances to be overcome by the 

system”. Those resistances depended on basic parameters , , …, , , their time 
derivatives , and time t: from the mathematical point of view, they were 
“resistances” in the usual mechanical sense. Equilibrium was perturbed by actions which 
were the generalisation of mechanical friction: the total work  
could be associated to that kind of actions. Once again, for his generalized thermodynamics, 

                                                        
97 See Duhem P. 1892, p. 324: “On voit que les lois de la Dynamique rentrent, comme cas particulier, dans les lois 

de la Thermodynamique ; elles se déduisent de  ces dernières en supposant tous les coefficients calorifiques du 
système égaux à 0 ; mais dans quel cas cette hypothèse est-elle vérifiée? C’est une question qui reste à examiner et 
que rien, dans ce que nous avons dit jusqu’ici, ne permet de résoudre. Dans la plupart des cas, elle n’est résolue 
que par voie d’hypothèse, directe ou indirecte. D’ailleurs, nous verrons plus tard qu’il existe une autre manière, 
distincte de celle-là, de faire dériver les équations de la Dynamique des équations de la Thermodynamique.” 

98 Duhem P. 1894, p. 222. 
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Duhem chose a generalisation of the traditional mechanical lexicon. He was transforming the 
meaning of mechanical concepts and words, in order to set up a new generalized and 
Aristotle-flavoured physics.99 

Unfortunately the last n equations depended on the n+1 Lagrangian parameters  , , …, 
, and , and Duhem did not have at his disposal a mechanical generalization for the 

equation corresponding to the parameter . 
 
Lorsque l’état des corps extérieurs est donné à chaque instant t, les résistances passives deviennent 
des fonctions des variables 
 

, , …, , , , t. 
 
Les équations … deviennent lors des équations différentielles du second ordre, qui détermineraient 
les valeurs des variables , , …, , , en fonction de t, et, partant, le mouvement du système, 
si elles étaient en nombre suffisant ; mais le nombre des variables dont il faut déterminer la valeur 
à chaque instant excède d’une unité le nombre des équations du mouvement fournies par la 
Thermodynamique ; il faudra donc, pour compléter la mise en équations du problème, emprunter 
une dernière équation à une théorie physique étrangère à la Thermodynamique ; telle serait, par 
exemple, l’équation 
 
  
 
qui ferait connaître à chaque instant la température du système.100 
 
Duhem was forced to look for the missing equation outside the field of his formal structure: 

purely thermal processes, involving only temperature changes over time, could not naturally 
emerge from his theoretical generalisation. Nevertheless, he dared to widen the formal 
structure of the “thermal coefficients” he had introduced in 1891, and had subsequently 
generalized in the first Part of his Commentaire. The updated version was only slightly 
different, since it contained the generalized resistances: 

 

. 

 
In the -component of this series of equations, the term representing the passive resistance 

was missing: it had not been put forward at the beginning, and it could not be found at the 
end.101 

Consistently with the conceptual framework of a generalized Mechanics, he put forward a 
“fundamental hypothesis” on the passive resistances : the work done by them 
could be only null or negative. That hypothesis allowed Duhem to attain a meaningful result 
concerning the second Principle of Thermodynamics. If in 1891 

                                                        
99 Duhem P. 1894, pp. 223-4. In this case the symbolic mismatch seems even more puzzling: in 1891 Duhem had 

made use of the functions  in order to express explicitly the dependence of external forces on the 

basic parameters, namely  and so on. In 1894, the new dissipative forces  had to 
be added to the already existing forces A’, B’, …, L’. 

100 Duhem P. 1894, pp. 224-5. 
101 Duhem P. 1894, pp. 225-6. 
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, 

 
in 1894 
 

 

. 

 

For a closed cycle, , and therefore  

 

.  

 

If , then .  

 
Duhem could finally identify the work  with Clausius’ 

“uncompensated work”.102 
 
Generalised resistances allowed Duhem to re-interpret entropy: in an isolated system, 

dQ=0, and  
 

. 

 
Because of the positive value of the right-hand side of the equation, the left-hand side, 

namely entropy, was positive as well: no transformation in isolated systems could “make the 
entropy of the system increase”.103 

The concept of thermal dissipation in natural phenomena was mathematically dressed with 
the clothes of mechanical dissipation. The second principle of Thermodynamics had therefore 
received a mechanical interpretation, but that interpretation was mechanical in a sense to be 
carefully specified. As I have already stressed, we are not dealing here with a microscopic 
mechanical explanation of macroscopic thermodynamic effects. We find a macroscopic 

                                                        
102 Duhem P. 1894, pp. 228-9. 
103 Duhem P. 1894, p. 229. 
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mechanical re-interpretation, linked to a re-interpretation of the word “motion” in a new 
Aristotelian perspective. 

At the end of the third Part of his Commentaire, Duhem outlined some general 
“Conclusions”, where he put his approach to Mechanics and Thermodynamics into a 
historical perspective. He identified two different pathways to Thermodynamics. On the one 
hand, most of the founding fathers of Thermodynamics had tried to transform 
Thermodynamics into “an application of Dynamics”. They had interpreted heat as “the 
microscopic and very fast motion of particles which form ordinary bodies”, and temperature 
as the “average living force” corresponding to those motions. On the other hand, other 
physicists had tried to found Thermodynamics “on its own principles”. They had not put 
forward “hypotheses on the nature of heat”; neither had they “borrowed theorems from 
rational Mechanics”. The former had managed to successfully interpret the first Principle, 
namely the Principle of conservation of energy, but had failed to explain the second Principle 
or “Carnot’s Principle”. In spite of their “daring efforts”, Clausius, Boltzmann and Helmholtz 
“had not managed to make Carnot’s principle stem from the laws of Dynamics in a 
satisfactory way”. According to Duhem, the latter had attained more success.104 

He claimed that he had undertaken a third pathway: Thermodynamics as a wide-scope 
theory of transformations. His design can be looked upon as a reduction of physics to the 
language of Analytical Mechanics, but at the same time, as an anti-reductionist design, which 
involved a deep re-interpretation of that language. In Duhem’s “more general science” we 
find the coexistence of a mechanical approach, in the sense of Lagrange’s mathematical 
physics, and the rejection of “a mechanical explication of the Universe”, in the sense of 
specific mechanical devices.105 

From the 1880s onwards, Duhem had pursued a new alliance between Lagrangian 
mechanics and the science of heat, and that pursuit was not an isolated enterprise. In the same 
years, in Great Britain, G.F. FitzGerald, J.J. Thomson and J. Larmor were looking for a new 
alliance between Lagrangian mechanics and the science of electromagnetic phenomena. A 
new kind of alliance between abstract Mechanics and a field theory purified by the concept of 
force led Hertz to a bold design of the geometrization of physics in 1894.106 

 

                                                        
104 Duhem P. 1894, pp. 284-5. 
105 See Duhem P. 1894, p. 285: “Nous avons essayé, dans le présent travail, d’indiquer une troisième position de 

la Dynamique par rapport à la Thermodynamique ; nous avons fait de la Dynamique un cas particulier de la 
Thermodynamique, ou plutôt, nous avons constitué sous le nom de Thermodynamique, une science qui embrasse 
dans des principes communs tous les changements d’état des corps, aussi bien les changement de lieu que les 
changements de qualités physiques […]; on comprendra mieux que le changement de lieu dans l’espace n’est pas 
une modification plus simple que le changement de température ou de quelque autre qualité physique ; on fuira dès 
lors plus volontiers ce qui a été jusqu’ici le plus dangereux écueil de la Physique théorique, la recherche d’une 
explication mécanique de l’Univers.” 

106 Hertz’s main aim was the reduction of all physics to a generalised new mechanics. Fundamental laws and 
concepts of mechanics had to be clarified, in order to rebuild a reliable theoretical framework, where “the ideas of 
force and the other fundamental ideas of mechanics appear stripped of the last remnant of obscurity”. In the end, 
physics was reduced to mechanics and mechanics was reduced to geometry and kinematics. This new physics 
appeared in accordance with the theoretical model of contiguous action.  See Hertz H. 1894, in Hertz H. 1956, 
“Author’s Preface”, p. 1, and p. 41. 
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Concluding remarks 
 
In the last decades of the XIX century we find in front of us two kinds of Mechanics: 

mechanics as mechanical models and machinery on the one hand, and mechanics as a formal 
language for physical sciences, on the other. If something like “the crisis of Mechanics” 
crossed the late XIX century, it did not dwell at Massieu, Gibbs, Helmholtz, Planck, 
Oettingen, and Duhem’s homes, because they were not involved in devising tangled 
machinery of matter and aether.  

Duhem put forward the most original and systematic reinterpretation of Thermodynamics, 
and at the same time the boldest upgrade of Analytical Mechanics. In 1896, in the very long 
essay “Théorie thermodynamique de la viscosité, du frottement et des faux équilibres 
chimiques”, he made a detailed reconstruction of some physical and chemical processes 
neglected or underestimated by physicists because of their complexity. In the equations of his 
generalized Mechanics-Thermodynamics, the collection of physical parameters contained 
geometrical variables, temperature, and chemical concentrations. New terms had to be 
introduced in the generalised equations of motions, in order to account for complex chemical 
reactions. 

In 1901 Duhem synthesised his theoretical pathway in the Revue des questions scientifiques, 
and interpreted that pathway as an improvement or “evolution” of Mechanics. It is worth 
stressing that what in 1894 he had qualified as a third pathway to Thermodynamics, in 1901 
was looked upon as an evolution of Mechanics. He had contributed to widen the scope of 
Mechanics, and at the same time, he had contributed to lead Mechanics beyond the 
boundaries of “local motion”. According to Duhem, the old mechanical world-view was a 
“daring pathway”, where non-geometrical features of physical systems were forced to be 
expressed in geometrical terms, but the attempt to reduce thermal and electric phenomena to 
matter and motion had led to “overwhelming difficulties”.107 

He claimed to have undertaken a “larger and safer pathway”, where all states and features 
of a physical system were accepted without any reduction to matter and motion. They could 
be translated into Lagrangian parameters: as a consequence traditional rational Mechanics 
became “nothing more than the first chapter “ of a more general Mechanics. In other words, 
local motion became only a section of a “science” dealing with “every kind of change of state 
and quality”.108 

The principle of virtual velocities of “the ancient Statics” acquired “a wider meaning”, and 
was expressed by the equation 

 

€ 

dTe − dF = 0, 
 
where the first symbol represented the infinitesimal work of external actions, and the 

second represented Gibbs’ “internal thermodynamic potential” of the physical system.109 

                                                        
107 Duhem P. 1901, pp. 130-1. 
108 Duhem P. 1901, pp. 131-3. 
109 Duhem P. 1901, pp. 131-3. 
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When the work performed by “inertial forces” 

€ 

dTj  and “the virtual work of viscosity” 

€ 

dTv  
were taken into account, the equation became 

 

€ 

dTe + dTj + dTv − dF = 0, 

 
where the word “viscosity” represented a generalisation of the old mechanical meaning. 
If 

€ 

dTj = Jαdα + Jβ dβ + ...+ Jλdλ  and 

€ 

dTv =Vαdα +Vβ dβ + ...+Vλdλ , the generalised 
equations of motion became 

 

€ 

A− ∂F
∂α

+ Jα +Vα = 0 . 

€ 

B− ∂F
∂β

+ Jβ +Vβ = 0

... ... ...
 

€ 

L − ∂F
∂λ

+ Jλ +Vλ = 0 .110 

 
In 1896 the generalisation of the concept of mechanical “friction” and mechanical 

“hysteresis” had led to even more general equations where 

€ 

α '= dα dt : 

 

€ 

A− ∂F
∂α

+ Jα +Vα +Fα
α '
α '

= 0 . 

€ 

B− ∂F
∂β

+ Jβ +Vβ +Fβ
β '
β '

= 0

... ... ...
 

€ 

L − ∂F
∂λ

+ Jλ +Vλ +Fλ
λ '
λ '

= 0, 

 
This mechanical approach, on the track of Analytical Mechanics, offered a consistent 

interpretation of the second principle of Thermodynamics. In case of cyclical transformations 
without any dissipation, 

 

€ 

dQ
T

= 0∫ , 

 
whereas dissipative effects like generalised viscosities, frictions and hysteresis led to 
 

                                                        
110 Duhem P. 1901, pp. 136, 139, and 145. 
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€ 

dQ
T

> 0∫ .111 

 
Duhem was aware that, along his pathway, the words and the mathematical structures of 

Mechanics experienced a bold generalisation and re-interpretation, in order to express a series 
of phenomena which lay outside the traditional boundaries of Mechanics. In this sense, 
Duhem’s programme of research was anti-mechanical, because he refused the reduction of 
non-mechanical features to matter and local motions at the microscopic level. At the same 
time, his programme was mechanical in a wider sense, because he aimed at widening the 
boundaries and the scope of Analytical Mechanics. In other words, Rational Mechanics 
offered the formal structure or the formal language for physics, even for the fields of physics 
which did not deal with mechanics. The language of rational mechanics had nothing to do 
with the specific mechanical models which had been used by some physicists in the context of 
Thermodynamics.  

Duhem’s design had a two-fold target: the unification of physics under the principles of 
thermodynamics, and the translation of that unified physics into a sophisticated mathematical 
language. The specific features of Duhem’s design were quite different from the specific 
features of Boltzmann’s design: if the latter had tried to give a microscopic mechanical 
explanation of the macroscopic laws of Thermodynamics, Duhem assumed those macroscopic 
laws as starting point. There is a great difference between their theoretical procedures indeed, 
even though we cannot find a great difference in their general perspectives. Both Boltzmann 
and Duhem exploited the tradition in which they had been trained, and led it to its ultimate 
consequences; at the same time, they dared to go far beyond that tradition.  

In the second edition (1984) of his book Rational Thermodynamics, Clifford A. Truesdell 
regretted that “DUHEM’s work had fallen into the general oblivion of classical mechanics in 
the interbellum”, although “most of the work since 1960” had followed “the example of 
DUHEM”. He recommended that “DUHEM‘s researches be studied until justice be done them”, 
and qualified Duhem’s Preface to his Treatise on Energetics or General Thermodynamics as a 
“program of modern rational thermodynamics”.112 

Truesdell remarked that, before Duhem, Thermodynamics had fluctuated between 
technology and cosmology: he saw the interpretation of thermal engines, on the one hand, and 
“the speculations about the universe”, on the other. Thermodynamics had “always had a hard 
time striking a mean between these extremes”: while “its claims” had often been “grandiose”, 
its applications are usually trivial”. Furthermore, the mathematics of thermodynamics 
appeared to Truesdell obscure and misleading. He aimed to state and teach Thermodynamics 
“just as classical mechanics is stated precisely and learned”. Truesdell’s aim was not different 
from Duhem’s: in Truesdell’s words, he was himself looking for “a thermodynamic theory 
formally similar to the classical one but vastly more general in scope”. Generalized 
Thermodynamics should “extend the concepts of mechanics so as to allow for diffusion and 
chemical reactions as well”.113 

                                                        
111 Duhem P. 1901, pp. 145-6, 153, and 155-6. 
112 Truesdell C. 1984, p. 38, 40-1 and 45. 
113 Truesdell C. 1984, pp. 59, 61-2, and 106. With regard to mathematics, he regretted that the readers of 

textbooks on Thermodynamics had to face equations like . See p. 61: “He is told that  is a 
differential, but not of what variables S is a function; that  is a small quantity not generally a differential; he is 
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What Truesdell called “modern continuum thermodynamics” consisted of a “collection” of 
theories concerning “elastic materials”, “viscous materials”, “materials with memory”, 
“mixtures”, and so on. Nevertheless, all these branches of physics were based on the same 
principle: the “Clausius-Duhem inequality”. In brief, “for any process suffered by any body 
composed of the material under study”, Rational Thermodynamics assumed  

 

, 

 
“  denoting the element of heat received from external sources and  the temperature of 

the part of the system receiving it”. Truesdell claimed that this inequality could be applied to 
“general motions”, far beyond the states of equilibrium: to deny this was to deny “that there 
can be such a thing as a thermodynamics of irreversible processes”.114  

 
 

                                                        
expected to believe not only that a differential can be bigger than another, but even that a differential can be bigger 
than something which is not a differential.” 

114 Truesdell C. 1984, pp. 123 and 157. The Clausius-Duhem inequality was explicitly mentioned by Truesdell for 
the first time in 1960, in the long essay “The Classical Field Theories” he published in 1960 together with Richard 
Toupin. (I thank Sandro Caparrini for this information.) In the second half of the twentieth century, other 
mathematical physicists developed what we call rational thermodynamics: among them, Bernard Coleman and 
Walter Noll. 
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