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INTRODUCTION

The starting-point for the following comments is the observation that contradictions appear to

exist between the results of the theory of cognition concerning the concept of number on the

one hand, and the history of arithmetical techniques on the other. Reflections on numbers and

their properties led already in antiquity to the belief that propositions concerning numbers pos-

sess a special status, since their truth is dependent neither on empirical experience nor on his-

torical circumstances. In an historical tradition extending from the Pythagoreans through the

Platonic tradition of Antiquity, Late Antiquity and the Middle Ages, further through the ratio-

nalism and the critical idealism of Kantian and neo-Kantian philosophy to the logical positivism

and the constructivism of the present, this fact has been considered proof that there are objects

of which we can gain knowledge a priori. Like a recurring leitmotif, the conviction that num-

bers are by nature ahistorical and universal threads through the history of philosophy, for which

a variety of reasons have been proposed.1 The historian, on the other hand, is confronted with

the fact that numerical techniques and arithmetic insights have a history that is, at least on its

surface, in no way different from other achievements of our culture.2 In view of the variety of

historically documented arithmetical techniques, it is scarcely possible to dismiss the assump-

tion that the concept of number – in the same way as most structures of human cognition – is

subject to historical development, which in the course of history exposes it to substantial

change.

The problem raised by these conflicting views is not just philosophical; it concerns also con-

crete, empirical research in psychology, in anthropology and in the history of science. In par-

ticular, the question of the relationship between the individual development of cognition

studied by psychology and the historical changes of cognitive structures, deserves much inter-

est. If the concept of number expresses a cognitive universal, then the ontogenetic development

of the cognitive structure it is based on, which constitutes the object of research in developmen-

tal psychology, is basically a process independent of culture-specific conditions of socialization

and historically variable circumstances. The historical development of numerical techniques

and arithmetical insights is consequently an epi-phenomenon, the fundamental conditions of

which are unlikely to be adequately addressed by the historian. If, on the other hand, the concept

1  Compare the diverse arguments for this »Platonic« view, for example, in transcendental idealism, particularly
in Kant, Prolegomena, p. 36, and in his  Kritik der reinen Vernunft, p. 201; in Neo-Kantianism, particularly in
Cassirer, Philosophie der symbolischen Formen , vol. 1, p. 198, and vol. 3, p. 400ff.; in logical positivism, for
example, in Frege, Die Grundlagen der Arithmetik, and in Carnap, Grundlagen der Logik und Mathematik; fur-
ther, in constructivism in Lorenzen, Einführung in die operative Logik und Mathematik.

2  Compare the historical accounts: Tropfke, Geschichte der Elementar-Mathematik; Menninger, Zahlwort und
Ziffer; Gericke, Geschichte des Zahlbegriffs; Ifrah, Universalgeschichte der Zahlen.
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of number is affected fundamentally by historical development, that is, if it constitutes a genu-

ine historical phenomenon, then the ontogenetic development of the cognitive structures it is

based on cannot be sufficiently perceived with psychological means, but can only be compre-

hended through the conditions of the socialization of the individual subject in a particular cul-

ture and in a particular historical situation.

If we ask which of the two alternatives is correct or if, possibly, the alternative itself has to be

called into question, we must remember that this is a matter not regarded as solved in either of

the disciplines mentioned, but rather, on the contrary, one which has for some time been the

object of fundamental and ongoing controversy. This is particularly true in the case of psychol-

ogy.

In the initial phase of modern psychology under the influence of neo-kantianism, numbers and

similar mathematically determined objects were primarily regarded as results of thought pro-

cesses found in all humans alike. Only in connection with the reaction of gestalt psychology to

the challenge by the relativization in cultural anthropology of universal concepts of number3

did the question of the nature of numbers find entrance into psychology. In particular the  em-

pirical evidence, provided by Piaget, that the concept of number is not already imprinted in a

child at birth, but is rather formed during the development of the child in a number of develop-

mental stages,4 contributed to undermining the belief in the non-empirical nature of the concept

of number. Piaget himself, however, still interpreted his results entirely in the spirit of neo-kan-

tianism. In his theory the development of the concept of number in ontogenesis rests on expe-

rience; however, the result of the development is, according to this theory, determined

epigenetically – similar to the biologically determined characteristics of humans – and is thus

cross-culturally an a priori universal that only appears at the end of this development.5 Ethno-

graphic research, conducted in the tradition of the developmental psychology that reflects Piag-

et’s work and methods, has predominantly used this premise as its point of departure, and has

accordingly arrived for the most part at the conclusion that the speed of the development of log-

ico-mathematical thought varies markedly under diverse sets of cultural circumstances, not so

however the structure of the logico-mathematically structured concepts themselves.6

Unlike most psychologists, who as a rule avoid discussions of the historical implications of

their theories that go beyond their own discipline,7 Piaget expressly also drew culture-historical

and science-historical conclusions from his theory of the psychogenesis of basic categories of

3  Compare Wertheimer, Über das Denken der Naturvölker; Lévy-Bruhl, Das Denken der Naturvölker.
4  Piaget/Szeminska, Die Entwicklung des Zahlbegriffs beim Kinde.
5  Piaget, Biologie und Erkenntnis; id., Die Entwicklung des Erkennens.
6  Bruner/Olver/Greenfield, Studies in Cognitive Growth; Dasen/Heron, Cross-cultural Tests of Piaget’s Theory;

Dasen/Ribaupierre, Neo-Piagetian Theories; Hallpike, Foundations of Primitive Thought.
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logico-mathematical thought.8 Central to his considerations was above all the question of how

logico-mathematically structured concepts, for instance the concept of number, can be founded

on cognitive universals on the one hand, and on the other be subject to fundamental historical

changes. He offered a number of arguments suggesting that cognition in those primitive cul-

tures that have no developed arithmetical activities is comparable to the pre-logical stage of on-

togenetic development of the child, in which cognition cannot yet revert to mental operations

that are characteristic of the subsequent concrete operational stage of ontogenesis.9 In following

the consequences of such considerations, he distinguished two fundamentally different phases

of development for each logico-mathematical concept: an initial phase in which the historical

development passes through universal stages that are ontogenetically identifiable, and a second

one in which the development is no longer subject to universal laws, but rather to an historical

logic of development constituted by reflective abstractions. Such an implication of his psycho-

genetic theory can, however, only with difficulty be forced to agree with historical findings.10

Contrary to such universalistic interpretations of the concept of number, the examination of the

particular mental processes going on in arithmetic processes led to theoretical approaches in

which the emergence of numbers appears as the result of manifold learning processes.11 Mod-

ern cognitive science has increasingly supported this view, recently by providing evidence that

many arithmetic accomplishments can be attributed to the construction of relatively simple

“mental models”.12 Further alternatives came into the discussion through the work of psychol-

inguists and their interpretation of the concept of number as a linguistic phenomenon, without,

however, bringing the question closer to resolution. Under the influence of Chomsky’s theory,

numbers have been ascribed to a biologically determined syntax of language.13 Psycholinguis-

7  Brainerd, The Origins of the Number Concept, pp. 3-22, at the beginning of his study on the origin of the concept
of number, discusses its historical development. His psychological remarks concerning the various historical
periods, for example the assertion that an abstract concept of number is already apparent in Egyptian numerical
notations from the time around 3500 B.C., remain, however, unsubstantiated and reflect no discernible connec-
tion with the remaining content of the study.

8  Compare Piaget/Garcia, Psychogenesis and the History of Science.
9  Piaget, Die Entwicklung des Erkennens, vol. 2, pp. 73-77. For the parallelism of ontogenesis and historiogenesis

compare also Bachelard, Die Philosophie des Nein; id., Die Bildung des wissenschaftlichen Geistes; Arcà,
Strategies for Categorizing Change; Strauss, Ontogeny, Phylogeny, and Historical Development; Dux, Die Zeit
in der Geschichte, in particular pp. 23-35.

10  Compare Damerow, Ontogenese und Historiogenese des Zahlbegriffs.
11  Compare for example Gelman/Gallistel, The Child's Understanding of Number; Brainerd, The Origins of the

Number Concept; Fuson/Hall, The acquisition of early number word meanings; Smith/Greeno/Vitolo, A model
of competence for counting; Gallistel/Rochel, Preverbal and Verbal Counting and Computation.

12  For the theoretical bases of such explanations compare Minsky, A Framework for Representing Knowledge; id.,
The Society of Mind; Davis, Learning Mathematics; for the current state of research: Ashcraft, Cognitive Arith-
metic; Campbell, The Nature and Origins of Mathematical Skills.

13  Compare, for example, Hurford, The Linguistic Theory of Numerals; id., Language and Number.
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tic investigations of the representation of logico-mathematical structures in language  on the

other hand suggest that we might understand such structures and the objects constituted by them

better in a culture-relativistic context.14

Such contradictions between different conceptions of number obviously can not be solved with-

in the limited point of view of a single discipline, since neither a study of the cognitive functions

of the concept of number excluding the question of its historical changes, nor a study of the his-

torical development of arithmetical techniques leaving out of consideration the cognitive func-

tions of those techniques, do justice to the unsolved problems that are revealed in these

controversies. In what sense does the concept of number represent a universal? In what respect

is it subject to historical changes? What implications result for the relationship of the ontoge-

netic development of the concept of number to the historical changes of numerical techniques

and arithmetical insights? These questions can only be answered by an historical epistemology

of arithmetical thought that is compatible with psychological theories as well as with the results

of historical research.

This view of the problems determines the theoretical program to be outlined in the following

with the draft of a model describing the development of the number concept. The model will be

introduced in two steps. In the first, some theoretical principles are explained, and some con-

cepts clarified that are employed in the formulation of the model. To be outlined is in particular

the theory of reflection and its relation to the external representation of cognitive structures,

which will in turn form the theoretical link between historical developments and those cognitive

structures which are individually shaped in ontogenesis. In a second step based on formulated

principles, stages of the historical development of the concept of number will be defined, ex-

plained, and identified historically.

14  The classical study on culture-relativistic conceptions of cognition is Whorf, Sprache, Denken, Wirklichkeit.
Moreover compare Pinxten, Universalism versus Relativism in Language and Thought; Levinson, Relativity in
Spatial Conception and Description.
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PRINCIPLES OF AN HISTORICAL EPISTEMOLOGY OF LOGICO-MATHEMATICAL THOUGHT

ON THE NATURE OF HISTORICAL DEVELOPMENTAL PROCESSES OF COGNITION

Since the historical development of cognition is realized through the cognitive activity of indi-

viduals, the description of cognitive abilities in the study of their historical development can

not, in principle, be different from that in the study of their individual development. The psy-

chological description of cognitive structures is therefore an adequate medium for characteriz-

ing the stages of development of cognition in the case of the individual as well as that of

historical development. Problematical, however, is the transfer of psychological concepts to

historical development in the case of the developmental processes themselves, insofar as indi-

vidual development of cognitive structures is a process fundamentally different from the histor-

ical development of culturally transmitted facts of knowledge and insight.

The individual development of cognition is a process in the psyche of the individual person. The

identity of this process is founded in the unity of the individual psyche. It starts with the awak-

ening of intelligence in childhood and ends with the death of the person. The historical devel-

opment of cognition, however, is a collective process spanning populations and generations,

based on the interaction of various individuals whose psyches are fundamentally independent

one from the other. The process of transmitting cognitive structures from one generation to the

next takes place in a network of individual paths of tradition, leading from the individuals of

one generation to the individuals of the next and realized in symbolic, and in part also in imme-

diate, interactions. There are no obvious reasons to assume that the network of those avenues

of tradition might show analogies to the individual development of cognitive structures. The

historical development of cognitive structures is by its nature a phenomenon that has to be in-

terpreted socio-historically and not psychologically.

Nonetheless, the historical development of cognitive structures is based on interactive process-

es, founded on very particular conditions that can be described psychologically. Not every in-

dividual process of knowledge influences the historical development of cognition. Results of

individual cognitive processes that are not systematically transferable, so as to be acquired in

the process of socialization, are obviously largely irrelevant to the historical development. Like-

wise, the results of universal ontogenetic processes of development naturally cannot exhibit his-

torical changes that might lead to coherent lines of development in the paths of tradition

constituted by interactions. The network of those paths of tradition of cognitive abilities can ap-

parently only then be subject to coherent processes of development when, in social interaction,
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results of individual cognitive processes are systematically reproduced and expanded by con-

secutive generations.15 The reproduction of culture-specific forms of cognition in the process

of socialization of the individual and the transfer of individual results of cognitive processes to

other individuals are therefore the most important psychologically describable conditions for

historical processes of cognition.

BASIC ASSUMPTIONS CONCERNING THE DEVELOPMENT OF LOGICO-MATHEMATICAL THOUGHT

The theoretic model of the historical development of logico-mathematical thought which will,

in the following, be described with reference to the development of arithmetical thought, is

based on the findings of developmental psychology insofar as it assumes that Piaget’s theoret-

ical reconstruction of the development of the number concept in ontogenesis correctly reflects

this process in all essential points. In order to allow for the specific nature of historical processes

in the development of cognition, however, Piaget’s application of the ontogenetic stages of de-

velopment to the historical processes of development is rejected. Instead of accepting Piaget’s

psychologically defined developmental stages, the stages of historical development are rede-

fined in a specific, historical manner.

The model is essentially based on two assumptions: Firstly, it is assumed, following Piaget’s

genetic epistemology, that logico-mathematical concepts are abstracted not directly from the

objects of cognition, but from the coordination of the actions that they are applied to and by

which they are somehow transformed. According to this assumption the emergence of mental

operations of logico-mathematical thought is based on the internalization of systems of real ac-

tions. The internalized actions form the starting-point for meta-cognitive constructions, through

which they become elements of systems of reversible mental transformations that, following

Piaget’s terminology, we will call here ‘operations’. The meta-cognitive constructs that are gen-

erated by reflective abstractions, that is, the abstract, logico-mathematical concepts, one of

which in particular is the concept of number, can thus be understood as internally represented

invariables of transformations to which objects are subjected in the course of action. Thus the

experience of objects appears to be preformed by logico-mathematical a priori forms (such as,

for example, the structures of number, space and time); these structures themselves, although

they are subject to processes of development that have their origin, at least indirectly, in the ex-

perience of objects, can therefore no longer be changed by those experiences.

15  This aspect has been emphasized in particular by the culture-historical school of psychology; compare for ex-
ample Vygotsky, L. S. (1986). Thought and Language; Leontjew, Probleme der Entwicklung des Psychischen.
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Secondly, differing from Piaget’s theory, it is presumed that the basic structures of logico-math-

ematical thought are not determined epigenetically, but are developed by the individual grow-

ing up in confrontation with culture-specific challenges and constraints under which the

systems of action have to be internalized. The challenges are embodied by material means of

goal-oriented or symbolic actions that are shared external representations of the logico-mathe-

matical structures. Thus, according to this assumption, the cognitive structures, according to

which logico-mathematical competence is defined, are in ontogenesis not construed indepen-

dently from processes of socialization, but have as their constitutive condition the co-construc-

tion of cognitive structures by means of interaction and communication. Such co-constructions

on the micro level of social interaction make it possible that cognitive structures are transferred

from one individual to the next and so, on the macro level of social development, are transmit-

ted as intersubjectively shared schemata of interpretation. This process gains historical conti-

nuity through collective external representations which, as will be shown, embody both

cognitive structures and levels of reflection, and thus levels of abstraction.

The first of these two assumptions formulates a developmental-psychological, the second a

knowledge-sociological precondition for a theory of the historical development of logico-math-

ematical thought. By combining both assumptions, a twofold result is achieved. On the one

hand, psychological theories and conclusions receive a culture-historical interpretation; on the

other, historical stages of the development of thought can be characterized psychologically. As

will be shown in the following, particularly in the case of the development of arithmetical

thought which is the subject of the present study, the historical stages of this development can

be interpreted as subsequent meta-cognitive levels that are connected with each other by reflec-

tive abstractions.

ON THE DEFINITION OF HISTORICAL STAGES OF DEVELOPMENT

The application of psychological concept formation to historical processes raises, however, a

number of fundamental problems that need to be addressed first. One of these problems con-

cerns the definition of historical stages of the development of cognition in general. The problem

results from the fact that psychological definitions of abilities by their nature do not refer to col-

lective subjects. Psychologically defined abilities can therefore not readily characterize histor-

ical stages of development. They can only be attributed to the individual person, to the members

of a group, or to all members of the society in a particular historical situation, not however to

the society as a whole. A definition of historical stages of development using psychological
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concepts seems scarcely possible without determining, with a certain arbitrariness, on which of

these different distributions of competence the definition of an historical stage as a criterion of

its realization is to be based. 

The second of the basic assumptions formulated above offers, however, a solution for this prob-

lem. If, according to this assumption, the historical development of cognitive structures is es-

sentially based on their intersubjective communication and historical transmission by means of

external representations, then the social distribution of the competence is of only secondary im-

portance for this development. It then represents only a framing condition, determining above

all the speed of development and the chances of realization for the cognitive potentials embod-

ied in the representations. The historical stages of development, on the other hand, have to be

defined primarily on the basis of analyses of such representations, and this in a manner that

these definitions express adequately possible functions of the representations which define a

given stage for the individual development of cognition.

The theoretical model of the historical development of logico-mathematical thought proposed

here is therefore not primarily meant to explain the outstanding achievements of individuals nor

the social distribution of abilities, but the historically changing potentials of development of the

individual subject to the conditions prevailing at the time. In particular, the level of develop-

ment of arithmetical thought in the various cultural epochs is not being measured by the actual

results of arithmetical thought, but rather by the arithmetical means and external representations

of cognitive structures that were, in the historically determined cultures, available for the onto-

genetic development of arithmetic abilities, so that these could in principle evolve.

Once stages of the historical development of logico-mathematical thought are defined this way,

the resulting theoretical model can be applied both to the analysis of the construction of new

representations which result from outstanding individual achievement, as well as to the appli-

cation of such a representation by a specifically trained group, or even to the general use of such

a representation in a society whose educational system generally communicates such use. The

results of those naturally diverse analyses illuminate various aspects of the particular historical

stage of development that is defined by representations with certain cognitive characteristics,

so that at this stage certain individual accomplishments become possible, certain professional

qualifications become reasonable and certain goals of education become generally understand-

able.

The external representations by which the stages of development are defined cannot be deduced

abstractly. They are concrete, historically and culture-specifically determined achievements of

human history. Whether the culture-historical stages, definable for the individual abilities, for
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instance the abilities of arithmetical thought, did indeed exist, is therefore a question that cannot

be predetermined theoretically, but one that has to be answered subject to an analysis of actual

history, in this case the history of arithmetic.

THE TRANSITION FROM ONE STAGE TO THE NEXT

In the historical development of cognition, the transitions from one stage of development to the

next higher one can occur in two fundamentally different forms, namely either by cultural ex-

change or by culture-immanent processes of construction.

The diversity of cultures coexisting and interacting with each other today results in such tran-

sitions in most cases taking place in the form of the adoption of representations that have shown

themselves to be effective tools of cognition in another culture. For a global reconstruction of

the history of cognition, those processes of transmission have to be studied carefully, in partic-

ular because this is the only way to judge which of the cognitive structures found in many, or

even in all cultures are biologically inherent in human nature and which, on the other hand, are

a result of a transfer of representations of these structures to many or all existing cultures and

only give the impression of constituting a cognitive universal of the human race.16

Determinative for defining historical stages of development in the processes of the culture-his-

torical genesis of cognitive structures is, however, not this first form of development by cultural

exchange, but rather the second form, the development of cognitive structures by culture-im-

manent constructions. This form of development is based first on individual cognitive achieve-

ments that lead to the modification of existing representations and to the construction of new

ones. These representations become part of a culture by being embedded in existing paths of

tradition, so that they can be integrated into the process of reproduction in this culture.

In both cases, a complex composition of conditions of interactive co-constructions and trans-

missions of cognitive structures from one individual to the next constitutes a necessary precon-

dition for the emergence of a new, higher stage of development. In the light of these

considerations, however, the individual, creative achievement, which spontaneous inclination

tends to credit with a crucial role in the rise of new forms of thought, turns out to be only a pe-

16  A typical problem of this kind is, for example, the debate about whether universal structures of language orig-
inate from the spreading of a “proto-language” or whether in those structures universal, biologically founded
cognitive structures express themselves; see Bickerton, A Two-Stage Model of the Human Language Faculty;
Renfrew, Archaeology and Language; Bateman et al., Speaking of Forked Tongues. Similar questions arise in
the case of the transition to literacy. Can writing systems originate from completely independent roots? Are
there, in particular, completely independent inventions of systems of arithmetic symbols?
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ripheral condition of this development, pre-determined by the existing representations of cog-

nitive structures and by contingent historical circumstances. Without submitting to historical

determinism, we might note that any historical situation defines, employing an ensemble of his-

torically transmitted representations of cognitive structures, a space of potential cognitive

achievements which at once initiates the individual creative achievements and, at the same

time, imposes narrow limits on them. But if these assumptions are correct and can, in particular,

claim validity for the structures of logico-mathematical thought, then the question of how the

meaning of historically pre-determined representations of a cognitive structure can be recon-

structed by an individual in the ontogenetic process becomes a theoretical key question for the

understanding of culture-historical development, one to which logico-mathematical thought is

obviously also subject.

Therefore, in the following an attempt will first be made to satisfactorily address the question

concerning the possibilities of adequate individual reconstructions of the cognitive structures

embodied in collective representations of logico-mathematical thought. For this purpose, two

kinds of representations will be distinguished that are fundamentally different with regard to the

level of reflection crucial for their meaning. The former will be called first-order external re-

presentations, the latter second, or more generally, higher-order external representations. The

difference consists, briefly stated, in the fact that first-order external representations stand for

real objects and actions, higher-order external representations, however, for ideas and mental

activities. How can such a differentiation be theoretically specified?

FIRST-ORDER EXTERNAL REPRESENTATIONS

Definition: First-order external representations (or briefly: first-order representations) are ma-

terial representations of real objects by symbols or by models composed of symbols and rules

of transformation, with which essentially the same actions can be performed as with the real

objects themselves.17

17  This and the definitions given in the following do not correspond with the terms introduced by Bruner for the
characterization of external representations; compare Bruner,  On Cognitive Growth. In particular, his classifi-
cation into enactive, iconic and symbolic representations is not applied here, since, as will be discussed in the
following, it appears unsuited to adequately conceptualize the reflective structure of representations and the re-
flective dynamic of the relationship between symbols and the objects they represent.
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Some simple examples may make this definition plausible:

1. The most elementary form of representation is the identification of a concrete object (or an

attribute, a perception, etc.) with a name, a word or a sign. These symbols are first-order

representations of the quality of objects to be constant, identifiable objects. Concrete

objects can be imagined, recognized and in a given manner put together or grouped with

other objects, and these actions can be performed in the same way with the symbols repre-

senting them.

2. Counters and similar symbolic counting aids that can be simultaneously configured in space

are first-order representations of the cardinal structure of sets of objects. When they are lin-

ked with real objects in one-to-one correspondences, for example with the animals of a herd

of cattle, the same cardinal transformations (increase, decrease, joining, distribution) can be

performed with them on a symbolic level as can occur directly with the represented objects.

3. Names of numbers and similar symbols that can be arranged in temporal and spatial succes-

sion are first-order representations of the ordinal structure of intensive or extensive quanti-

ties. When they are put in homogeneous correspondence to such quantities, for example to

the shades of a color range, the same ordinal operations (comparison, determination of

maxima and minima, etc.) can be performed with them on a symbolic level as they can be

performed directly with the represented quantities.

4. Constructions with compass, ruler and similar graphic instruments are first-order represen-

tations of metrical structures of the Euclidean plane. When compass and ruler are used to

design the accurate drawing of the position of objects in a plane, for instance the drawing of

the foundation walls of a building, then the same spatial transformations (moving of

objects, measurements of distances etc.) can be performed in the drawing as they can be

performed directly in the empirical plane that is represented.

5. Cutting and pasting of areas performed in a fitting medium of geometrical representation is

a first-order representation of the additive structure of areas. When the geometrical repre-

sentation of a real area, for example of agriculturally productive land, is assigned, the same

additive operations (extending, reducing, dividing, etc.) can be performed with the transfor-

mations of the geometrical representation as with any quantity that is linearly dependent on

the real area represented (division of fields, distribution of crops, planning of water require-

ments for irrigation, etc.).
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The usefulness of first-order representations is based on the fact that actions can as a rule be

performed much more easily with the symbols of the representation than with the real objects

they represent, since they are not, to the same degree, subject to accidental restrictions charac-

teristic of real situations. Actions which can be performed with the real objects obviously can

not be actually replaced by the symbolic actions. The function of symbolic actions is rather ex-

clusively of a cognitive nature: they are a device to anticipate the results of real actions. The

purpose of performing symbolic actions of first-order representations is not to substitute real

actions, but to plan and control them.

First-order representations, however, are significant not only for the execution of mental oper-

ations of existing cognitive structures, but even to a much higher degree for their construction.

Unlike in the case of the application of such structures, the symbolic actions can, in the case of

the mental construction of cognitive structures by the internalization of systems of actions,

completely substitute the real actions. Symbolic actions in the system of rules of a model which

is a first-order representation initiate the construction of the same cognitive structures as actions

with the real objects they represent.

This quality of a system of actions is in the following to be indicated by the use of the expression

constructive. The symbolic actions that are performed with first-order representations are in this

sense, concerning the cognitive processing of the objects and actions represented by them, con-

structive operations. They can serve as tools in the construction of cognitive structures, since to

perform them adequately is no more than to perform the actions represented by them dependent

on the precondition that the acting individual has at his disposal already the cognitive structures,

whose construction is initiated by these actions.

First-order representations, therefore, share certain physical qualities with the objects and ac-

tions for which they stand. They are, however, more abstract, since the same symbols are al-

ways used in diverse contexts. This leads to a differentiation in the meaning of symbols

characteristic for this kind of representation. A symbol in a first-order representation embodies

an object that is abstract and remains the same in all contexts of application; it is implicitly de-

fined by the rules of transformation of the representation; on the other hand, in each case of ap-

plication it also represents a concrete object, which, simply because it changes from application

to application, cannot be identical with the first.
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SECOND-(OR HIGHER-)ORDER EXTERNAL REPRESENTATIONS

Definition: Second-(or higher-)order external representations (or simply second-order repre-

sentations) are material embodiments of mentally constructed objects by symbols or by models

composed of  symbols and rules of transformation which correspond to the operations of the

cognitive structure that implicitly define the mental objects embodied by them.

Adequate application of second-(or higher-)order representations requires that they are placed

in relation to real objects and actions. This happens by assimilating these objects and actions to

the cognitive structure that gives the representation its meaning. Its use therefore requires the

adequate interpretation of its meaning and does not, as is the case with first-order representati-

ons, result already from the assignment of symbols and symbolic actions to underlying real ob-

jects and actions.

Here again some examples to illustrate the definition:

1. Conventionally determined names of numbers (one, two, three, …) and non-constructive

numerals (1, 2, 3, …) are, from a certain developmental stage of the number concept on,

second-order representations of abstract numbers. Their application to real objects corre-

sponding to this stage requires the understanding of the concept of number.

2. The use of the word “number” and of a general terminology related to the attributes of num-

bers,18 the use of variables as universal numbers and even abstract calculations with nume-

rals independent of concrete applications, are examples of the use of higher-order

representations of the number concept. Their applicability is based on the reflective mani-

pulation of numbers and their representations, for example on the correct use of predicate-

logical rules of substitution for variables.19

3. Theorems of Euclid’s Elements, for instance of the Pythagorean theorem, are second-order

representations of the metric structure of the Euclidean plane. Albeit propositions on geo-

metric figures, they are independent of these figures insofar as the objects they relate to are

18  That the use of the term number can be seen as an indication of a higher level of meta-cognition compared to
the simple use of designations of numbers is apparent from the fact that non-literate cultures, even those with
developed systems of counting, do not as a rule possess terms of this kind. This is in keeping with the fact that
in those cultures even abstract counting without identification of concrete objects of counting is often regarded
as meaningless. Even the early high civilizations with developed mathematics, for instance Egypt and Babylo-
nia, do not have a term corresponding to our word number.

19  The use of variables instead of specific designations of numbers offers the possibility to determine precisely the
degree of generalization of statements and to verifiably change it by substitution of variables. It thus opens a
potential means of representation for a higher level of meta-cognitive insights.
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no longer concrete figures but rather “virtual” mathematical objects that are implicitly defi-

ned by axioms and definitions within a framework of deductive representation.

Real objects and actions are only indirectly represented by second-order representations. There-

fore, such representations are not constructive in the sense indicated above with regard to the

cognitive processing of the objects and actions indirectly represented by them. The adequate

application of those representations requires that the cognitive structure which implicitly de-

fines the mental objects is already constructed in some way, since the symbolic actions of such

a representation correspond to the elements and operations of this structure and not, as is the

case with first-order representations, to the indirectly represented real objects and actions.

Since symbols are meaningless without the cognitive structure for which they embodyrepre-

sentthe elements and operations, this structure can also not be reconstructed from the symbolic

transformation rules of the representation. Contrary to first-order representations, second-order

representations are, therefore, not constructive with regard to their meaning. They are, however,

constructive in another respect, that is, with regard to the meta-cognitive objects that are con-

structible by reflective abstraction. To clarify this, some basic considerations concerning the na-

ture of collective external representations are necessary.

All collective external representations have a material base that serves to produce the symbols

and to realize the symbol transformations. Second-order representations are therefore not just

indirectly related to the real objects and actions, but also directly. They are indirectly related to

those objects and actions to which the cognitive structure represented by them is applied. They

are directly related to those real objects and actions (signs and sign transformations) that the

symbols and symbol transformations are realized with.

This dual relation to real objects and actions is present in all external representations, but in sec-

ond-(or higher-)order representations it results in a different form of meaning differentiation of

the symbols. As stated above, in the case of first-order representations this dual relation results

in a differentiation of meaning into the abstract object that the symbol stands for, and into the

concrete object to which it is applied. In the case of second-order representations, the concrete

object is replaced by the abstract object and the abstract object is replaced by an object which

is implicitly defined by the symbols and symbol transformations and which, insofar as it relates

to the cognitive structure represented, is of meta-cognitive nature.

A close relationship between second-(and higher-)order representations and the process of re-

flective abstraction exposes itself here. This is the process which, according to the first assump-

tion formulated above, creates logico-mathematical concepts. The material symbols and
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symbolic actions of second-(and higher-)order representations can themselves become objects

of cognition. They then initiate the construction of precisely that kind of concept formation and

cognitive structures for which Piaget coined the term ‘reflective abstraction’.

The above arguments concerning the constructive nature of first-order representations can thus

be analogously applied to second-(and higher-)order representations. The former are construc-

tive with regard to the cognitive processing of the real objects and actions represented by them,

the latter with regard to the meta-cognitive processing of the cognitive structures initiated by

the former. They can serve as tools in the construction of meta-cognitive structures, because

their adequate application and the execution of symbolic actions require knowledge of their

meaning, but not of the meta-cognitive structures initiated by their application. second-(and

higher-)order representations can therefore be considered as first-order representations of sym-

bols and symbol transformations. While they are not constructive with regard to the cognition

of the indirectly represented real objects and actions, they are certainly constructive with regard

to the meta-cognitive level of cognition that has as its object these cognitive structures and their

first-order representations themselves.20

second-(and higher-)order representations are thus constructive tools of meta-cognition. Just as

first-order representations are, because of their constructive nature, suitable to represent both

collectively and externally the fundamental cognitive structures of logico-mathematical con-

cept formation, second-(and higher-)order representations are suitable to represent both collec-

tively and externally the reflection processes that constitute the meta-cognitive structures.

THE HISTORICAL CHANGE OF COGNITIVE FUNCTIONS OF REPRESENTATIONS

As a rule, representations change their function in the process of historical development as well

as in individual cognitive development. In particular, higher-order representations develop

from first-order representations.

All systems of counting, for example, were originally first-order representations. They mainly

represented ordinal structures, as a rule by the temporal succession of a conventionally deter-

mined counting sequence. Primarily, they represented cardinal structures only insofar as, with

20  An excellent example of such a transfer of the constructive character of the representation to a meta-cognitive
level is offered by the emergence of the deductive method in Greek mathematics, which will be discussed be-
low. At first, arithmetic insights were constructed by figured numbers, that are patterns of geometrically ar-
ranged counters, geometrical insights by constructions with compass and ruler. The definitions and logic rules
of deductive systems (e.g. those of Euclid’s Elements) are no longer constructive in this sense, but they are with
regard to the structuring of the mathematical knowledge gained in the process.
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a one-to-one correspondence of real objects with names of numbers in the process of counting,

they also served in the identification of cardinal numbers. With the development of the number

concept, abstract numerical qualities were attributed to their meaning, so that they became sec-

ond-order representations of numbers with all their arithmetic rules; that is to say, they now also

represented structures like multiplication which have no parallels in the symbolic action of

counting. When the abstract concept of number had finally developed, the names of numbers

became the abstract infinite counting sequence, to which were ascribed, step by step, all de-

duced abstract qualities of numbers, for instance the infinity of the number of prime numbers.

The counting sequence thus becomes a higher-order representation of the abstract number con-

cept.

The change of the function of representations was in similar fashion also characteristic of the

development of geometry. The prehistory of deductive geometry was shaped by the use of

drawings and later also of true-to-scale constructions as first-order representations of relation-

ships in empirical space. Constructions were still playing an essential, though different role in

Euclid’s Elements. The ancient version of Euclid’s geometry comprised not only theorems with

the proofs of their truth, but in addition, and to almost the same extent, constructions with the

proofs that the constructed figures possess the required qualities. The analysis of the proofs by

means of modern theory of proof demonstrates that the constructions were indeed essential to

the Elements, for information was derived from the figures concerning the respective position

of points, straight lines, triangles, etc., which tacitly was entered into the proofs. Judging from

a modern perspective, it appears that in this way gaps in the proofs were bridged. With respect

to developmental history, however, the duality of constructions and proofs in Euclid’s Elements

has to be seen as an indication that figures still served here as first-order representations com-

plementing the deductive second-order representation in written language. The information de-

rived from these figures was later only taken from the so-called visualization (German

“Anschauung”), that is, figures that were only mental images and the real figures, including the

Euclidean constructions, degenerated in the new editions and revisions of the Elements into

helpful but basically dispensable illustrations. They now served only as second-order represen-

tations of the geometric meanings implicitly defined by the deductive structures, insignificant

for deduction. All the more important became  their role now at the meta-level of judging the

epistemological function of Euclidean deductions. The representability of all results of such de-

ductions in real geometric figures appeared to prove the a priori nature of deductive geometry.

With the construction of non-Euclidean geometries and the development of modern formalism,

however, this view had to be revised. The visualization lost its constitutive importance as it be-

came, in a technical manner, dispensable in a proof. Hilbert’s Grundlagen der Geometrie might

be interpreted as proto-typical of this transition. This rephrasing of Euclid’s geometry repre-
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sents a developed system of meta-cognitively determined knowledge that was purposefully

construed to prove the complete independence of geometric deduction from any real geometric

figure and any “visualization”, that is, also of any mental image of geometric figures. Geomet-

ric figures have since been understood as “models” of abstract structures, i.e., as higher-order

representations, and this reinterpretation opened completely new possibilities for their use as

means of achieving and processing knowledge.21

ONTOGENETIC RECONSTRUCTION AND THE HISTORICAL TRADITION OF COGNITIVE STRUCTURES 

OF LOGICO-MATHEMATICAL THOUGHT

Having attempted to clarify the diverse roles of first and higher-order representations, we can

now return to the key question, mentioned above, of a theory of the historic development of

cognitive structures based on the assumption that this development depends on the historical

transmission and elaboration of external representations. This is further the question of how the

individual can, in the process of ontogenesis, reconstruct the meaning of representations. The

preceding considerations demonstrate that to answer this question three different processes and

their combined effect have to be examined:

1. the process of the ontogenesis of universal structures which are independent of culture-spe-

cific representations, and which constitute the common precondition of all history-specific

structures of logico-mathematical thought,

2. the process of the reconstruction of the meaning of first-order representations, and

3. the process of the reconstruction of second-(and higher-)order representations.

The basic assumptions constitutive for the theory presented here: first, that logico-mathematical

concepts are abstracted invariants of transformations (transformations which are realized by ac-

tions), and second, that those abstractions are historically transmitted by collective external rep-

resentations, imply a particular relationship between these processes. Culture-dependent

logico-mathematical abilities, part of which are doubtless arithmetical skills, cannot originate

from processes of the first kind alone. Their formation in ontogenesis also requires the abstrac-

21  The meta-constructive character of higher-order representations may, for example, be used to prove, through
the construction of models, the relative consistency of a deductive system. The so-called “Klein model” is a
Euclidean model of the hyperbolic type of non-Euclidean geometry; it demonstrates that a contradiction in hy-
perbolic geometry would generate a contradiction in the Euclidean geometry. By means of meta-mathematical
semiotic reflection, a geometric figure is here constructed which, contrary to Euclid’s constructions, serves only
meta-cognitive purposes.
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tion of cognitive structures from historically transmitted symbolic actions in the context of rep-

resentations of these structures and, in this connection, possibly also communication with

already competent interaction partners.

Since the mere reconstruction of the meaning of first-order representations does not yet require

specific cognitive structures of logico-mathematical thought, they play a special role: first-order

representations are the starting-point of abstraction and thus to a certain extent determine the

structure of the semantics, reconstructible through reflective abstraction, of second-(and higher-

)order representations. In the same way that first-order representations can, as representations

of real objects and actions, initiate the construction of new cognitive structures, they also make

possible the reconstruction of those cognitive structures which already exist historically and

which give a specific logico-mathematical meaning to the culture-specific representations.

second-(and higher-)order representations, that is, representations of mental objects, require,

however, that these objects are already constituted by the construction of corresponding cogni-

tive structures. They have, in other words, already been constructed or reconstructed by means

of first-order representations. The properties of the mental objects that are represented by the

symbols can, in general, not be inferred from the transformation rules for these symbols. But

since second-(and higher-)order representations represent, at the first order, the mental objects

and transformations on a meta-cognitive level, namely on the level of operating with the sym-

bolically represented cognitive operations as these relate to objects, they have, as soon as the

cognitive conditions for their application are present, the same function in the reconstruction of

reflected meaning as first-order representations have for the meaning of concrete logico-math-

ematical activities themselves.

But on a meta-cognitive level, namely on the level of operating with the symbolically represent-

ed cognitive operations, second-(and higher-)order representations represent  the mental objects

and transformations in first order. Thus, they have, as soon as the cognitive conditions for their

application are present, the same function in the reconstruction of the reflected meaning of men-

tal transformations as first-order representations have for the meaning of concrete logico-math-

ematical activities themselves.

This model of the process of ontogenetic reconstruction of the meaning of representations, dif-

ferentiated according to the kinds of representation, provides a powerful theoretical tool for the

explanation of historical as well as individual processes in the development of logico-mathe-

matical thought. According to this model, any process of abstraction of logico-mathematical

structures starts with first-order representations, for instance with counters, standards of mea-

surement, drawings or with terms for intuitively comprehended quantities, for geometrical ob-
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jects, for relations, etc. As long as thinking about real objects and actions occurs without

reference to such means of representation, they do not gain any meaning beyond their physical

perception. Two sheep in this kind of thinking are two individual sheep and not a cognitive con-

struct formed by the general term sheep and the number two as an abstract mental object.

Representations are by their nature, however, more general than the objects represented. Two

counters that stand for two sheep may in a different context represent two cows. Yet even

counters are at first only perceived as counters and not as representatives of numbers. They are

concrete objects, tally objects, which by their nature nonetheless represent potential abstrac-

tions. This abstraction is not arbitrary; rather, it reflects a universal pattern in the actions with

the represented objects which are in the first order represented by the symbolic actions perform-

able with the tally objects.

By performing symbolic actions with first-order representations instead of performing real ac-

tions with the represented objects, the structure of the actions is isolated from its real context

and thus the construction of a corresponding cognitive structure by reflective abstraction is ini-

tiated. This cognitive structure constitutes a mental object that is more abstract than the objects

of the real actions and is no longer based on direct empirical experience. At the same time, the

first-order representation develops into a link between the abstract concept constructed in this

fashion and its adequate application to the real objects that formed the starting-point of the pro-

cess of reflective abstraction.

On the other hand, the constructed abstract concept may itself be embodied by a global symbol

or by an elaborate symbol system, for example by a terminus technicus or a system of axioms.

From this kind of embodiment originates a second-order representation. This second-order re-

presentation reflects the real objects and actions on the level of cognitive competence constitut-

ed by the abstract concept, and at the same time it initiates on a meta-level the abstraction of a

new structure. Again, the abstraction is not arbitrary, but rather reflects a universal structure of

the mental operations that are characteristic of thought about the real objects and actions on the

level of the abstract concepts constructed in first order.

Since such a second-order representation is at the same time a first-order representation of the

meaning of the abstract concept represented, it is a useful tool for performing the mental oper-

ations that constitute this concept. The execution of symbolic actions with the symbols of the

abstract concept, instead of only mentally performing the operations (for example, working

with an arithmetic algorithm), objectifies the mental activity and so again initiates the construc-

tion of meta-cognitive operations in the same way as the original first-order representation ini-

tiated the construction of the abstract concept, which is now embodied by the second-order
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representation. Any process of development of the logico-mathematical thought may thus be

interpreted as an iteration and recombination of such reflective abstractions that are initiated by

culturally transmitted representations.

The historic development of logico-mathematical thought is thus based, according to this theo-

ry, on two psychologically explicable processes, namely on individual construction and on the

ontogenetic reconstruction of the meanings of representations. These processes, however, come

about in culture-specific, historically changing symbolic scenarios which cannot themselves be

the objects of psychological explanations. The scenario of culturally transmitted representa-

tions of cognitive structures in logico-mathematical thought is an external precondition for the

psychological explanation of ontogenetic processes of development. The historical develop-

ment and transmission of these structures is a stochastic consequence of innumerable individual

constructions and reconstructions. Systematically influenced by culture-specific scenarios,

however, these constructs represent a development whose regularities can be explained histor-

ically and sociologically.

Thus the historical development of logico-mathematical thought does not simply occur, as is

for example assumed in Piaget’s theory, in parallelism with the ontogenetic development. It is

true that in ontogenesis the meaning of higher-order representations has to be reconstructed, and

this reconstruction of logico-mathematical meaning establishes a connection with the same ele-

mentary systems of action that also constituted the historical starting-point for the construction,

reflection and representation of the cognitive structures of logico-mathematical thought; but the

individual can only reconstruct those meanings that are indeed present in the systems of action

and representations of a particular cultural environment.

Three different kinds of systems of action are thus of consequence for a reconstruction of the

historic development of logico-mathematical thought.

First, there are systems of action of universal nature, they are quasi part of the biological prop-

erties of humans and can consequently be found in all cultures. Among those systems are, for

example, such actions as the reaching for objects, the arranging of objects, the movement within

a given space, etc. These most universal human activities correspond to the universals of logico-

mathematical thought. Such universals are supercultural cognitive structures that are not subject

to historical changes.22

22  According to Piaget, the logico-mathematical operations of operative intelligence pre-exist as practical intelli-
gence in the pre-operative phase of ontogenetic development in the form of senso-motorical schemata of action.
These “proto-logic” systems of action have been systematically examined, in particular by Langer; compare
Langer, The Origins of Logic.
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Second, there are very common systems of action that are not part of our biological properties,

are therefore subject to historical changes, and are not found in all cultures in the same fashion.

Once these systems exist, they exhibit in their simplicity little if any fundamental variation and

are therefore largely transmitted by the same kind of first-order representations.23 To these sys-

tems of action are to be reckoned, for example, the techniques of counting which are manifest

in almost all cultures.

Third and finally, there are countless culture-specific systems of action and higher-order repre-

sentations that are of importance for the reconstruction of the historical development of logico-

mathematical thought since without them the complex cognitive structures of culture-specific

forms of abstract thinking that they embody cannot evolve in ontogenesis.24

A reconstruction of the historical development of logico-mathematical thought needs to explain

in particular the origin of that characteristic peculiarity of the cognitive structures underlying

this thought pattern which constitutes the starting-point of the present inquiry: the properties of

the implicitly defined objects appear to be logically determined. They apparently are no longer

connected to the empirical knowledge that constituted the starting-point for their construction.

If the theory of the function of higher-order representations submitted here is correct, there is,

however, a simple explanation for this characteristic. The independence of implicitly defined

objects may be interpreted as the immediate consequence of the relative independence of high-

er-order representations from the meaning of lower-order representations that are their object;

for the elements of the meta-cognitive structures they represent cannot be related directly to

their reflected objects, so that the relations between them cannot be empirically falsified.

This results particularly in the fact that the symbolic transformations of a higher-order repre-

sentation at the level of immediate identification of real objects and actions in a cognitive struc-

ture constituted by a first-order representation no longer need to be any meaningful operations.

This consideration provides an explanation for one of the most peculiar phenomena to be found

in the individual as well as in the historical development of mathematical thought: in the course

23  Such systems and their cognitive effects have been made the object of research in developmental psychology,
in particular by Piaget; compare Piaget, Die Entwicklung des Erkennens . To the extent that such systems (for
instance, the technique of constructing one-to-one correspondences to a standard of counting) are indeed nearly
universal (compare Pinxten, Epistemic Universals; Dasen, Are Cognitive Processes Universal?), they can be
identified in historical representations with relative ease ; compare for the concept of number, for example,
Menninger, Zahlwort und Ziffer; Tropfke, Geschichte der Elementar-Mathematik; Ifrah, Universalgeschichte
der Zahlen.

24  All arithmetical skills that result from processes of learning are probably based on these culture-specific sys-
tems of action and representations. Those skills have been described and examined for example in Campbell,
The Nature and Origins of Mathematical Skills. Even though there are precious few ethnographic studies con-
cerning those skills (compare the summary article Ashcraft, Cognitive Arithmetic), there is no doubt that they
are largely of culture-specific nature and depend on the arithmetical tools that are known to us from ethnological
and historical sources.
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of development, formal conclusions contradict more and more interpretations of mathematical

concepts at a lower level of abstraction, until finally, at a sufficiently high level of abstraction,

those contradictions become irrelevant. In light of the theory on the function of representations

presented here, this phenomenon appears as an inevitable consequence of reflective abstrac-

tions.

From those abstractions result, for example, seemingly unreal constructs like “negative”, “irra-

tional”, “transcendental” and “imaginary” numbers. Those numbers can no longer be interpret-

ed as “natural” numbers in the sense of the original representation of sets of objects by counters.

As long as numbers are applied exclusively to the context of their origin in actions with concrete

sets of discrete objects, such numbers therefore appear to be artificial concept formations, ab-

sent any real correlate. Once numbers are understood formally, that is, as implicitly defined en-

tities, however, the unreal character of these objects disappears.

A similar example is provided by non-Euclidean geometries. Those geometries appear absurd

and unthinkable as long as geometrical concepts are, as Euclid’s postulates indicate, applied in

principle to finite figures constructed with compass and ruler. The canonical application of the

concepts makes the construction of Euclidean models of non-Euclidean geometries,25 com-

pletely familiar to us today, at first appear as unmotivated reinterpretations of the basic con-

cepts. What is used as a convincing technique of proof at a meta-cognitive level, appears to

common sense as a violation of the quasi “natural” meaning of geometrical concepts.

HISTORICAL STAGES OF THE DEVELOPMENT OF THE NUMBER CONCEPT

Having developed principles of an historical epistemology of logico-mathematical thought in

section one, we will attempt to construct in the following section a theoretical model of the his-

torical development based on those principles. After the description of basic arithmetical activ-

ities, stages of development that can result from these actions through reflective abstraction will

be illustrated with the help of the theory outlined in section one.

25  For example the »Klein model« of hyperbolic geometry mentioned above.
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ARITHMETICAL ACTIVITIES AS A BASIS OF THE CONCEPT OF NUMBER

According to the considerations presented above, assumptions about systems of action that

were historically constitutive for the concept of number, that is, assumptions about the histori-

cal nature of certain arithmetical activities and their relation to cognitive universals, have to be

the starting-point for the construction of the model. Those systems of action from which the

concept of number can be abstracted have been described in particular by developmental psy-

chology. However, the possibilities for psychology to identify and empirically test the causal

connections between conditions of development and results of development are very limited in

the case of actions that are as fundamental and ubiquitous in our culture as those on which the

concept of number is based, for such conditions of development can scarcely be varied system-

atically. Only ethnographic and historical examinations can here provide information more re-

liable for our purposes.

The arithmetical activities that have to be reviewed as a possible basis for the historical origin

and development of the concept of number are all closely related to the most fundamental struc-

tures of the number concept, that is, to the structures of the so-called “natural” numbers, the pos-

itive integers.26

1. Natural numbers are ordered linearly. Their use as ordinal numbers, that is, as a tool to iden-

tify orders, is based on this order.

2. Natural numbers can be interpreted as equivalence classes of finite quantities of discrete

objects. They can therefore be used as cardinal numbers for the identification of quantities.

3. Two fundamental arithmetical operations are defined on the set of natural numbers, namely,

addition and multiplication. It is therefore possible to calculate with the numbers.

These fundamental structures that are, in natural numbers, integrated in a specific way into an

overall structure, now indeed presuppose the existence of certain systems of action. To deter-

mine in a specific case the relations of order that are to be represented by numbers, comparisons

have to be made. To determine quantities, one-to-one correspondences have to be constructed.

26  The following list is not to be understood as a paraphrase of an axiomatic representation. The structure of nat-
ural numbers can be characterized axiomatically in various ways. Through the Peano axioms, numbers are re-
duced to the iteration of units. Their definition as equivalence classes of sets with equal cardinality characterizes
them as a structure of one-to-one correspondences. In a definition as semigroup with specific characteristics
numbers are characterized by arithmetical operations. Those reductions of the structure of natural numbers to a
few basic conditions are of only limited interest for the reconstruction of the origin and development of num-
bers, for numbers have historically certainly not been deduced from an (axiomatically describable) original def-
inition, but probably rather originated through the integration of structural elements of their overall structure.
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The additive relationship between three numbers corresponds to the combination of two sets of

objects to form a third, the multiplicative relationship corresponds to a repetition of the same

action or the reproduction of the same configuration of objects.

These actions of comparison, correspondence, combination and repetition, integrated into sys-

tems, will here be designated as arithmetical activities. They link the cognitive structures of ar-

ithmetical thought with the concrete objects and situations of empirical experience, for they

constitute the means by which quantitative values and relations are attributed to empirical ex-

perience. Their importance in the development of the fundamental structures of the number

concept lies in the fact that they can in principle also be reasonably executed independent of

each other and, in particular, independent of an idea of number which acts to integrate them. If

according to the assumption formulated above, logico-mathematical concepts are therefore

constructed from internalized actions by reflective abstraction, it is obvious that these arithmet-

ical activities in particular are the ones from which the fundamental concept of number is ab-

stracted in individual development.

DEVELOPMENTAL STAGES OF THE NUMBER CONCEPT AS META-COGNITIVE LEVELS OF 

REFLECTION

Studies in developmental psychology have shown that such arithmetical activities are to a con-

siderable degree based on cognitive universals independent of culture.27 On the other hand, it

is obvious, considering the great cultural differences in the actual formation of even such fun-

damental arithmetical activities, that in their core they are already of an historical nature. They

are not based on cognitive universals alone, but are also constituted by certain culture-historical

processes of transmission. If developmental stages of arithmetical thought are therefore defined

as reflective abstractions of historically developing arithmetical activities, that is, as meta-cog-

nitive levels reflecting actions of comparison, correspondence, combination and repetition, this

definition does not anticipate the answer to the question concerning the degree to which the con-

cept of number is determined by cognitive universals, but rather the definition provides, to the

contrary, an analytical tool to study the question in historical sources.

If the historical development is thus interpreted as a sequence of gradually attained levels re-

flecting the systems of action of arithmetical activities, this results in a describable structure of

process. In the first place, basic cognitive constructs of arithmetical thought are abstracted from

27  Compare Langer, The Origins of Logic.
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the actions of arithmetical activities themselves, then from symbolic actions with vicariously

used tally systems, body-counting, calculi, etc.; further, from manipulating symbols that only

indirectly represent counted objects, that is, from the signs of developed systems of numerical

signs and calculation aids, and, finally, from the formal use of the written representation of log-

ical conclusions concerning properties of numbers and numerical relations. This way, a model

of the historical development of arithmetical thought is provided, in which four distinguishable

phases in the history of the number concept can be described. 

0. Before the development of the concept of number, there must have been a period characteri-

zed by the complete lack of arithmetical activities in the above defined sense.

1. In a first stage of the development of the concept of number, the real actions of fundamental

arithmetical activities were created and became part of culturally transmitted techniques.

Their symbolic representation resulted in first-order representations of these arithmetical

activities in the form of concrete tools for the control of quantities.

2. A second stage of development was reached when cognitive constructs that originated from

the reflection of the real and symbolic actions of the first stage were represented by sym-

bols, and culturally transmitted by means of those representations. With regard to the origi-

nal arithmetical activities, the resulting symbol systems were thus second-order

representations. The transformations performed with the symbols no longer represented the

fundamental arithmetical activities with real objects directly; rather, they now represented

mental operations with the concepts reflectively abstracted from them.

3. A third stage of development was finally achieved by coding, in written language, these

concepts and the mental operations that constituted them; i.e., they were submitted to for-

mal rules for logical transformations in a form specified in writing.

Since reflection and abstraction are two processes which are at the same time dependent on each

other, yet are not identical, and since the specific form of abstraction which produces logico-

mathematical concepts can be interpreted as a consequence of the reflection, the last two stages

can be further subdivided into two substages according to their degree of abstraction.
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The stages of development thus definable as levels of reflection of the systems of action of ar-

ithmetical activities will below be designated in the following ways:

0: pre-arithmetical quantification

1: proto-arithmetic

2: symbol-based arithmetic

2a: level of context-dependent symbol systems

2b: level of abstract symbol systems

3: theoretical arithmetic

3a: level of deduction in natural language

3b: level of formal deduction

These theoretically postulated stages have to be validated by historical analyses. This will be

done here in a preliminary form by specifying the stages, and by identifying them historically,

allowing them to be compared and contrasted with the results of historical research in order to

test the assumptions they are based on. For this purpose each stage will first be defined theoret-

ically. Second, semiotic characteristics will be described that may serve as criteria for assigning

arithmetical techniques of a cultural context to this particular stage of development. Third,

some concrete historical examples will in each case illustrate the respective goals of research

that result from the proposed theoretical model for an historical epistemology of the develop-

ment of the concept of number.

PRE-ARITHMETICAL QUANTIFICATION (STAGE 0)

Definition. The level of pre-arithmetical quantification designates here a stage of development

in which no arithmetical activities can be found with the exception of comparisons, so that judg-

ments of quantities, if they are made at all, can only be based on those comparisons. Pre-arith-

metical quantifications in the sense of this definition are consequently based only on

comparisons, and require neither the construction of correspondences and thus the identifica-

tion of quantities, nor the composition of quantities by arithmetical operations, for instance the

construction of numbers through the repetition of units.
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Semiotic characteristics of pre-arithmetical quantification. The most noticeable difference of

the level of pre-arithmetical quantification from all levels of genuine arithmetical activities is

the absence of socially transmitted standards that might serve as tools for the construction of

one-to-one correspondences. On the pre-arithmetical level there are no structured sequences of

counting and no tally systems such as finger counting, counting notches, counting knots or cal-

culi. No words, signs or other symbols are used that possess any arithmetical meaning. The lan-

guage at this stage possesses terms for quantities, yet these are of exclusively qualitative nature.

Insofar as there are any rudimentary words for numbers at all, these are not used for counting;

rather, they are simple special terms of quality, that is, designations for intuitively and globally

understood quantities. The quantitative aspects of an object of cognition are not yet distin-

guished from its specific physical appearance and from implications of its quantitative aspects.

Historical identification of pre-arithmetical quantification. An historiogenetic theory of arith-

metical thought first addresses the question as to which original conditions for the historical de-

velopment of this thought pattern are already preconditioned by the cognitive universals

founded in human nature and therefore not subject to historical change. In particular, the ques-

tion arises as to whether cultures ever existed that corresponded to the definition of a pre-arith-

metical level given here. The answer to this question ensues from the fact that non-literate

cultures existed until recently, cultures that had no counting techniques before their contact with

European cultural tradition. The definition of a pre-arithmetical level certainly applies to such

cultures.

The number of cultures for which the assignment to this level can be clearly demonstrated is,

however, small. The best known examples are the Australian aborigines28 and South American

natives who are, following older reports, frequently also referred to as cultures without words

for numbers.29 It is difficult to identify such cultures with certainty today, however, since even

the most remote primitive peoples have been in extended contact with modern civilization.

Through trade, which often provided the first systematic contacts with Western culture, those

cultures very quickly assimilated arithmetical activities and concept formations. Thus the pos-

sibility cannot be ruled out that the number of cultures to be assigned to the pre-arithmetical

level was much larger in the period before their contact with the later colonial powers. Proof

that many of these cultures did not possess developed counting procedures before their contact

with Western culture is currently only feasible through often speculative linguistic inferences.

28  Compare Dixon, The Languages of Australia, pp. 107f.; Blake, Australian Aboriginal Languages, p. 33; further
the numerous examples in Dixon/Blake, Handbook of Australian Languages.

29  Compare for example Lévy-Bruhl, Das Denken der Naturvölker, pp. 156f.; Gnerre, Quantification and Numer-
als in an Amazon Language, p. 74.
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Such proof is made the more difficult by the fact that many peoples not only adapted the arith-

metical techniques of colonial settlers and conquerors, but they also changed quantifications in

their own language, for example, by inventing new, indigenous words for counting and new ar-

ithmetical techniques.30 Moreover, the linguistic material can often only be collected by inter-

viewing a few elderly informants,31 whose children and grandchildren attend public schools in

order to learn reading, writing and arithmetic.32 The influence of such contacts in many cases

invalidates the information that can be gained from the informants, in particular because it is

not the explicit transmission in oral communication, leaving identifiable traces in the language,

which results in the transition from the pre-arithmetic level to proto-arithmetic, but rather the

adoption of arithmetical activities which begins changing the semantics of existing terms. Iden-

tifying with certainty the pre-arithmetic level in the development of arithmetical thought histor-

ically constitutes an even larger problem, since written sources usually do not reach far enough

in to the past even to gain linguistic material for an identification according to semiotic criteria.

An important clue is provided by the fact that from periods before the Late Neolithic no objects

or signs, for example counting notches or calculi, have been identified that might have served

as tally systems, or might have had another kind of arithmetical function. It is true that Pale-

olithic, Mesolithic and in particular Neolithic finds, especially of bones, often exhibit repeated

signs such as regular patterns of notches, and that these have occasionally been interpreted to

be representations of numbers,33 but such an interpretation can hardly be justified factually,

since these sign repetitions lack the characteristic subdivision by counting levels that would be

expected in signs with numerical meaning, and which is indeed present in all known real count-

ing systems.

30  Compare Dixon, The Languages of Australia, p. 108; further in particular: Saxe, Culture and the Development
of Numerical Cognition.

31  The sequence of counting of the Iqwaye, studied by Mimica, was, for example, reconstructed mainly from the
information given by two persons; compare Mimica, Intimations of Infinity, p. 27.

32  Compare the detailed description of the cultural environment in Lancy, Cross-Cultural Studies in Cognition
and Mathematics.

33  Compare for example Heinzelin, Ishango; further in particular Marshack, The Roots of Civilization; compare
also the controversy about Marshack’s interpretations, which is documented by: D'Errico, Paleolithic Lunar
Calendars; Marshack, On Wishful Thinking and Lunar “Calendars”; D'Errico, On Wishful Thinking and Lunar
“Calendars”: Reply.
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PROTO-ARITHMETIC (STAGE 1)

Definition. As the proto-arithmetic level in the historical development of the concept of number

a stage of development will be designated here in which first-order representations of quantities

are constructed by means of one-to-one correspondences to standard sets of concrete objects or

other symbols.

Semiotic characteristics of proto-arithmetic. The earliest genuine arithmetical activities histor-

ically attested are without exception based on objects themselves being represented by symbols,

their quantity however by the repetition of these symbols. Symbols are the most simple tools

for the construction of one-to-one correspondences that can be transmitted from generation to

generation. Structured and standardized systems of symbols, from which standard amounts can

be formed that are assigned to the quantities to be identified, are therefore the oldest tools for

the identification and control of quantities.

Since symbols, in order to represent quantities,  may be repeated either temporally or spatially,

in principle two different kinds of such simple standards for the representation of quantities can

be distinguished. The former will here be called counting sequences, the latter tallies.

A counting sequence in this sense is a standardized sequence of words or symbolic actions

which is assigned to the elements of a given set in a fixed sequence, realized in time, a process

that is generally called counting. Through the process of counting, a linear (temporal) first-or-

der representation of the ordinal structure of such a given quantity is realized.

Tallies, on the other hand, are to be understood here as concrete objects such as signs, knots,

notches or calculi, that can be arranged and combined in a simple way for the purpose of con-

structing correspondences. By assigning such objects to the elements of a given set, a spatial

first-order representation of the cardinal structure of a given quantity is realized.

Thus, counting sequences and tallying systems are two different forms of first-order represen-

tations of finite sets of objects, namely, representations of different aspects of their quantity

bound with specific advantages and disadvantages regarding the practical problems that are to

be solved with their assistance. Common to both forms are certain characteristic structures orig-

inating from their function. The deliberate construction of correspondences initiates, in the

course of historical development, processes acting to extend their range of application. Genuine

counting sequences and tallying systems therefore exhibit two typical structural patterns that
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are a consequence of their progressive improvement in the direction of an infinite counting se-

quence. First, older counting limits are preserved as inherent steps of the counting procedure.

Second, counting limits are systematically overcome by certain techniques.

The predominant procedure for extending the range of application of counting sequences and

tallying systems is, when a counting limit is reached, to start over with counting in connection

with a counting procedure of higher order which determines how often the primary procedure

had been used. The repeated application of such techniques of passing counting limits generates

a hierarchically structured symbol system which can, with this technique, be extended to virtu-

ally any required order of magnitude.

The mentioned characteristic structures of genuine counting sequences and tallying systems re-

sulting from this procedure are important indicators of arithmetical activities that have to be at-

tributed to the proto-arithmetic level of the development of the concept of number. On the basis

of their hierarchically organized structures, tools for the construction of one-to-one correspon-

dences that have served in the control of quantities can be identified even when there are no

historical sources that give us definite information concerning their original purpose. Thus there

is in principle no problem in distinguishing cultures that have reached the proto-arithmetic level

of development from cultures at the pre-arithmetic level. Nevertheless, this distinction may in

some cases be difficult. There are, for example, cultures which use rudimentary sequences of

less than ten number words without any structure that would indicate their use in the construc-

tion of correpondences. According to the here submitted definitions, however, developed sym-

bol systems for ordinal relations without reference to arithmetical activities on which the

concept of number is based should occur at most as a transitional phenomenon leading from the

pre-arithmetic to the proto-arithmetic level. Linguistic research, however, appears to indicate

that there are cultures in which rudimentary counting sequences have been transmitted over an

extended period of time without substantial modification. There are two possible explanations

for such cases. Those cultures either developed and transmitted techniques of intuitively iden-

tifying small quantities without the construction of one-to-one correspondences, or the rudi-

mentary counting sequences indeed exhibit techniques for the construction of one-to-one

correspondences which nonetheless remained extremely limited and did not experience any de-

velopment of their inherent potentials even over extended periods of time, because they were

of only small practical significance under the particular conditions of the culture in question. In

the first case those cultures would have to be assigned to the pre-arithmetic, in the second case

to the proto-arithmetic level.
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The proto-arithmetic level is distinguished from higher levels in the development of the concept

of number through the absence of arithmetical procedures, that is, of symbolic transformations,

that correspond to such arithmetical operations as addition and multiplication. Those arithmet-

ical procedures require that the symbols which are transformed according to formal rules no

longer represent the counted objects, but rather their quantity. According to the definition above

of the proto-arithmetic level, however, this level is precisely characterized by the fact that sym-

bolic transformations apply to  representations of objects by tallies.34

Historical identification of proto-arithmetic. Proto-arithmetical tools and techniques are known

to us mainly from surviving non-literate cultures. Most of these cultures are probably to be as-

signed to the proto-arithmetic level insofar as they actually command arithmetical techniques

of their own and have not already adopted arithmetical techniques and concepts from European

cultural tradition. Such cultures do display a wide variety of counting sequences and tallying

systems for the construction of correspondences, realized in all kinds of forms, whereas arith-

metical techniques that are based on the symbolic representation of quantities and the numerical

relations between them are encountered relatively seldom. Their proto-arithmetical tools are

used almost exclusively for the identification of quantities, not, however, for symbolic transfor-

mations with the purpose of quantitative prognosis of results from real interaction with sets of

objects.

The study of the proto-arithmetic level in surviving non-literate cultures is of great significance

for the reconstruction of the development of the concept of number insofar as there is almost

no opportunity to study this stage of development in historical sources. Provided that the con-

ditions in surviving non-literate cultures are comparable to those in historically early periods,

which display similar cultural techniques and are of similar scale in the disposal of natural re-

sources, the study of such surviving cultures provides hints for the interpretation of pre-literate

period achaeological finds with possible arithmetical functions.

The assignment of surviving cultures to historically early non-literate cultures can, however,

hardly proceed other than through criteria that only indirectly indicate arithmetical thought.

Comparisons of various surviving non-literate cultures with regard to their stage of develop-

ment in arithmetical thought suggest that the forms of agricultural cultivation, of animal hus-

bandry and housekeeping connected with sedentariness rendered social conditions that made

proto-arithmetical techniques useful and their systematic transmission and development possi-

ble. Beginning with this assumption, a proto-arithmetic level of development can be identified

in the Late Neolithic and the Early Bronze Age.

34  Compare Lévy-Bruhl, Das Denken der Naturvölker, in particular pp. 155ff.; Gay/Cole, The New Mathematics
and an Old Culture; Hallpike, Foundations of Primitive Thought, in particular pp. 236ff.
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A system of clay tokens possessing apparent proto-arithmetical functions has indeed been iden-

tified as one widely used in the Near East during that period (we are speaking here of a time

span from the beginning of sedentariness in the areas surrounding the Mesopotamian lowland

plain and in the Nile valley around 8000 B.C. until the emergence of cities around 4000 B.C.).35

These tokens were found by the thousands in excavations, especially in those of the Mesopot-

amian alluvial plain and the Persian highland. The oldest clay objects ascribed to these symbols

are dated to the beginning of the 8th millennium.36 Their identification as belonging to a tally-

ing system is based, as will be shown below, on finds from the transitional phase to symbol-

based arithmetic in the cuneiform texts developed around 3200 B.C.

THE TRANSITION FROM PROTO-ARITHMETIC TO SYMBOL-BASED ARITHMETIC

The first stage in the development of arithmetical thought about which we have detailed infor-

mation from historical sources is the level of symbol-based arithmetic. Although, as was shown,

we have relatively exact knowledge of the proto-arithmetic level indirectly through surviving

non-literate cultures, the degree to which conclusions about the past history of symbol-based

arithmetic can indeed be drawn from insights into the proto-arithmetic in those cultures cannot

be known with certainty. It is an unfortunate fact that in surviving non-literate cultures the tran-

sition from proto-arithmetic to arithmetic occurs almost exclusively through the adoption of

techniques of the Indian-Arabic tradition from European culture and not by the culture-imma-

nent development of a symbol-based arithmetic from its proto-arithmetic precursors, corre-

sponding to historical development.

Considering this problematic situation, it is of fundamental importance for the understanding

of the origin of arithmetic that in recent years the study of archaeological sources from the dawn

of literacy in the Near East has lead to the identification of peculiar forms of arithmetical activ-

ities which are, in all likelihood, phenomena of the transition from proto-arithmetic to symbol-

based arithmetic. Therefore, some remarks are in order here concerning this transition, which

may be interpreted as the origin of arithmetic proper.

35  The discovery of this function is of recent date. The first publications in which these objects were, among other
things, interpreted as arithmetical objects are the 1966 article by Amiet, Élamites inventaient l'Écriture, and the
1977 work by Schmandt-Besserat, An Archaic Recording System. Current literature on these clay tokens, how-
ever, is extensive .

36  Schmandt-Besserat, Before Writing; for the date in particular pp. 36f.
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Definition. The transitional phase from proto-arithmetic to symbol-based arithmetic will be un-

derstood here as an historical phase during which, the same as at the proto-arithmetic level, ex-

clusively first-order representations of quantities were used. These are, however, already

represented in a developed symbol system and not only by techniques of counting and tallying.

Semiotic characteristics of the transitional phase. The characteristic semiotic feature of this

transitional phase are complex symbol systems used as counting units, whose numerical values,

however, are not constant, but vary with the context of their application. They do not represent

context-independent fixed numerical meanings, but rather units of counting and measurement

of products whose numerical relations are determined by the social context in which they are

standardized by conventions. They differ in particular from the counting and tallying systems

of the proto-arithmetic level in that they are already the subject of genuine symbolic transfor-

mations. The basis is formed by transformations that still are first-order representations of real

actions; that means they have to be interpreted as representations of economic transactions or

real administrative activities. In addition, transformations occur that are not only symbolic rep-

resentations of real actions, but use the potential of symbol systems for performing transforma-

tions with the purpose of purely getting knowledge about the outcome in situations, in which

the performance of the respective actions with the real units represented would not be useful or

even possible.

Historical identification of the transitional phase. The transition from proto-arithmetic to sym-

bol-based arithmetic is obviously closely related to the invention of writing. With the exception

of cuneiform, there is, however, insufficient documentation of the other early writing systems

preserved from the time of their origin which would permit the identification of a period of tran-

sition from proto-arithmetic to symbol-based arithmetic. Only with cuneiform tablets do we

possess rich sources from the period of that writing system’s origin around 3200 B.C. These are

about 7000 proto-cuneiform and proto-Elamite texts and text fragments, almost exclusively

economical texts with records of quantities. The numerical notations in these texts offer unique

source material for the study of the transition from proto-arithmetic to symbol-based arithmetic.

Seen from an historical perspective, this transition occurred during a relatively short period of

time. The starting-point for the development was constituted by the clay tokens mentioned

above, which had obviously been in general use as proto-arithmetical tools in the Neolithic pe-

riod of the entire Near East. Together with the emergence of Mesopotamian cities and the be-

ginnings of a form of state organization and the centralization in the administration of estates

during the second half of the 4th millennium, a change in the system of clay tokens took place.

The forms became more varied. Their safekeeping in closed and sealed clay balls demonstrates
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that they were used for the encoding of important information. Finally, they were complement-

ed and later completely replaced by markings that were impressed onto the surface of such clay

balls or onto the surface of small clay tablets which were also sealed.

These so-called numerical tablets were the precursors of proto-cuneiform inscribed tablets.

With the invention of this writing system around 3200 B.C., the numerical notations were sup-

plemented with pictograms, and the tablets achieved a more complex structure through the in-

clusion in texts of several quantitative notations arranged according to their function, as in an

administrative form. The number of numerical signs increased to some 60 signs, each represent-

ing various units of measurement and counting. But obviously even this differentiation of signs

was not sufficient to fulfill the numerous demands for the representation of such units, since

most of the signs were used to represent more than just one unit of counting or measurement,

regardless of the quantities represented by these units. The unusual consequence of this – at

least in our modern view – was that the numerical signs had no fixed numerical values. Rather,

their numerical values were determined by their respective metrological context, and changed

with their area of application, without any apparent attempt to attain unambiguous numerical

values for the signs.37

Thus the transition from proto-arithmetic to symbol-based arithmetic occurred in a close rela-

tionship with the emergence of writing and the possibilities which expanded through this new

form of symbolic representation. At first, the proto-arithmetic system of clay tokens became the

central tool for the control of a locally centralized economic administration. The proto-arith-

metical tools for the control of quantities with the help of clay symbols as representatives of the

products to be controlled were exploited to the limit of their capacity, finally to be transformed

into a more powerful form by the innovation of literacy, that is, into the form of representation

through signs that could be flexibly created and manipulated. In a transitional phenomenon, a

symbol-based arithmetic still closely related to the cognitive tools of proto-arithmetic thus de-

veloped in the early Mesopotamian city states.

The resulting peculiar semantic structures that characterized the numerical signs in this period

of transition to symbol-based arithmetic existed for only a short period of time. Already the first

texts from a phase following the archaic period, that is, the texts of the Early Dynastic period,

exhibit the typical semantic structures of the numerical signs of symbol-based arithmetic and

scarcely any traces of the semantics of numerical signs from the archaic transitional period.

37  For the decipherment of proto-literate systems of numerical signs compare Vaiman, Über die protosumerische
Schrift; Friberg, A Method for the Decipherment; id., Metrological Relations in a Group of Semipictographic
Tablets; furthermore in particular Damerow/Englund, Die Zahlzeichensysteme der Archaischen Texte aus
Uruk; Nissen/Damerow/Englund, Archaic Bookkeeping.
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This supports the assumption that the use in the archaic texts of numerical signs as counting

units that are semantically determined by their context must be interpreted as a transitional phe-

nomenon and not as an indication of the existence of a separate stage of development.

SYMBOL-BASED ARITHMETIC (STAGE 2)

Definition. The level of symbol-based arithmetic designates here a stage in the historical devel-

opment of the concept of number in which second-order representations of quantities and arith-

metical activities are constructed by the reflection of proto-arithmetical mental constructs and

by their representation in a symbol system. This development produces semiotically structured

systems of numerical signs. According to the degree of abstraction from the specific context in

which these products of reflection originate, the level of symbol-based arithmetic is subdivided

into two further levels, level 2a of context-dependent symbol systems and level 2b of abstract

symbol systems.

Semiotic characteristics of symbol-based arithmetic. The striking characteristic of the level of

symbol-based arithmetic is the emergence of complex systems of numerical symbols and of for-

mal rules for their application. These symbol systems present themselves mainly in two differ-

ent forms fulfilling different purposes, namely as systems of numerical signs and of calculation

aids. The former are used predominantly for the registration of quantitative information, the lat-

ter for its processing.

Both forms of symbol systems usually consist first of signs for counting and measuring units

that are hierarchically related. The signs are combined in numerical notations and as a rule are

repeated according to the number of units they represent. 

Such systems are thus still based on first-order representation of quantities, on a representation

by sign combinations that are constructed to be in one-to-one correspondences with the units of

real objects they represent. But contrary to simple counting sequence and tallying systems,

these systems contain strict transformation rules for dealing with numerical signs and notations.

Even if the transformations of sign configurations according to such rules correspond to the

meaning of the signs, they remain strict insofar as they are no longer bound to contingent con-

ditions of dealing with the symbolized units of real objects.

The rules according to which the symbolic transformations are performed may relate directly

to the symbols, and may thus be explicitly stated. They may on the other hand only emerge from

the strict application of the symbols according to their meaning, that is, they can remain implic-
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it, transmitted in the context of meaning. The latter is still mainly the case at the level of symbol-

based arithmetic. In historical sources those rules may be discerned from their consequences.

In the case of arithmetical symbol systems, they can be identified in particular because of the

exact numerical relations caused by them among numerical signs and notations.

Although at the level of symbol-based arithmetic the rules for symbolic transformations are still

only implicit rules which can, moreover, be of a specific nature for their respective different

contexts of application, they represent the first genuine arithmetical techniques. They constitute

a new level of arithmetical activities in which objects are no longer the original real objects, but

the numerical notations and their meanings. Therefore, at this level the direct relationship be-

tween the counting unit and the symbol representing it becomes more and more obsolete and

the repetition of symbols gradually loses its function of supporting the arithmetical activities.

Numerical notations as second-order representations are reduced to standardized signs.

The immediate consequence of the development of complex symbol systems is the emergence

of formally determined technical terms. Terms that are at first related to specific applications

of numerical symbols attain second meanings which are implicitly defined by their function in

symbolic transformations. Even this technical meaning is, because of the implicitness of the

semiotic rules, at first only associated with the objects and not with the symbols. Thus, in the

beginning the technical terms in particular do not yet exhibit a differentiation between general

and specific representational aspects, which later leads, for example, to the differentiation of

general properties of numbers and specific properties of special representations of numbers.

Context-dependent and abstract symbol systems. Since numerical symbol systems characteris-

tic of the level of symbol-based arithmetic are, due to the implicitness of their semiotic rules, at

first still closely related to the meanings of the symbols in specific contexts of application, they

are not necessarily from the outset applicable to arbitrary contents. Two sublevels of the level

of symbol-based arithmetic can therefore be differentiated, based on the degree of indepen-

dence of their cognitive constructs, represented by the numerical signs, from particular contexts

of application: a level of context-dependent and a level of abstract symbol systems.

It is characteristic of the level 2a of context-dependent symbol systems that numerical notations

still possess specific areas of application. Although quantities at this level are already symbol-

ically represented by second-order representations, there is not yet a system of notations

through which all special forms of notations can be transformed into a standardized form of rep-

resentation. Consequently, the rules of sign transformation are intermingled with the specific

meanings of the signs in their particular context of application and thus are rarely formal, that

is, depending only on the form of the signs and sign combinations.
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On the level 2b of abstract symbol systems, however, there is an arithmetical symbol system

that is generally applicable, independent of the context of application. It allows the standardized

representation of all quantities, into which all particular application-specific representations can

be transformed. There are no external limits to its application. Consequently, with such symbol

systems formal operations can be performed, that is, without reference to any specific interpre-

tation in their actual context of application.

Such abstract semiotic constructs without canonical reference to specific contexts of real ob-

jects and actions make possible for the first time forms of cognitive processing of abstract ideas

that may be interpreted as early forms of genuine mathematical thought. The constitution of

meanings reflecting formal symbolic transformations leads to knowledge of entirely implicitly

defined artificial objects, with at best metaphorical reference to real contexts of application.

This knowledge can be acquired, represented and historically transmitted as a first body of

mathematical knowledge. However, the knowledge of abstract objects that are only mentally

constructible is at this level not yet integrated into deductive systems with formal rules of infer-

ence. Thus the qualities of these abstract objects cannot yet be derived or substantiated with log-

ical derivations. But mental operations with such objects created by reflection are for good

reason usually considered an early form of mathematical thought.38

Historical identification of symbol-based arithmetic. Most, if not all, advanced civilizations, in

particular the Egyptian empire, the Mesopotamian city states, the Mediterranean cultures, the

Chinese empire, the Central American cultures and the Inca culture, have, independent from

each other, developed or adapted from other cultures systems of numerical symbols that exhibit

the semiotic characteristics of the level of symbol-based arithmetic. The basic symbols of these

systems were, the same as at the proto-arithmetical level, signs for units and not for numbers,

but part of the systems were now complex symbol transformations, that is, arithmetical tech-

niques such as the Egyptian calculation using unit fractions,39 the sexagesimal arithmetical

technique of the Babylonians,40 the transformations of rod numerals on the Chinese counting

board,41 the calendar calculations in the pre-Columbian culture of the Maya,42 or the technique

of the use of knotted cords (quipu) as administrative tools by the Inca.43

38  Although detailed studies of the sources have been presented, there still exists the occasional prejudice that the
Greeks were the first to develop abstract mathematics and that all pre-Greek mathematics was oriented exclu-
sively towards practical purposes. This view can no longer be supported considering the original sources that
have come down to us.

39  Compare Neugebauer, Die Grundlagen der ägyptischen Bruchrechnung, pp. 137ff.; Chace, The Rhind Mathe-
matical Papyrus; Vogel, Vorgriechische Mathematik, vol. 1, pp. 31-44; Gillings, Mathematics in the Times of
the Pharaohs, pp. 20ff.; Damerow, Abstraction and Representation, pp. 188-199.
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The discussion of the transitional phase from proto-arithmetic to symbol-based arithmetic has

already shown clearly that the development of these numerical techniques was historically

closely related with the administrative problems that had arisen through the concentration of

economic goods and services in the governmental centers of those cultures. There is nowhere

an indication that such techniques might have existed in the rural cultures of the Neolithic and

the Early Bronze Age periods before the emergence of these centers and might have only been

adopted from them. Only the emergence of forms of state organization led to problems that

were solved by means of the arithmetical techniques of the early civilizations: a dramatic rise

in the quantities of products that had to be controlled, and an immense variety of decision-mak-

ing implications that had to be executed administratively.

It is thus very probable that administrative bureaucracies have always been the institutions that

created those complex techniques for the transformation of numerical symbols characteristic of

the level of symbol-based arithmetic. As is obvious from preserved sources, these techniques

as a rule served either the control of economic goods or other technical purposes, and this cir-

cumstance also determined the structure of symbolic transformations. Perhaps with the excep-

tion of addition, which, as a trivial consequence of the representation of quantities by repetition

of symbols, developed in all cultures in almost the same form, the arithmetical techniques of

the early civilizations reflect for the most part the culture-specific differences of the areas of

application for which the respective systems had been developed.

Historical identification of the transition to abstract symbol systems. While the transition from

proto-arithmetic to symbol-based arithmetic is relatively easy to identify, the historical identi-

fication of the transition from the exclusive use of context-dependent symbol systems to the

construction of a unified abstract symbol system presents us with greater difficulties. The sourc-

es preserved from early civilizations are often too meager to allow of a sufficiently precise as-

sessment of the area of application of a symbol system that would distinguish between context-

dependent and abstract use of such a system.

40  Compare Neugebauer, Vorgriechische Mathematik, pp. 4ff.; Vogel, Vorgriechische Mathematik, vol. 2, pp. 15-
35; Damerow, Abstraction and Representation, pp. 204-211.

41  Compare Needham, Mathematics and the Sciences of the Heavens and the Earth; Juschkewitsch, Geschichte
der Mathematik im Mittelalter, pp. 12ff.; Li/Dù, Chinese Mathematics, pp. 3-19.

42  Compare Thompson, Maya Artihmetic; id., Maya Hieroglyphic Writing, pp. 51ff.; Closs, The Mathematical
Notation of the Ancient Maya; Gaida/Tear, Kalender, Numerologie and lunare Astronomie.

43  Compare Locke, The Ancient Quipu; Ascher/Ascher, Numbers and Relations from Ancient Andean Quipus;
Scharlau/Münzel, Quellqay, pp. 80-93.
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Even at a stage when they are not yet universally applicable, moreover, the numerical symbol

systems exhibit such great differences with regard to the scale of their area of application that

some, when compared to the others, appear to be much more abstract systems. These are mostly

the counting sequence systems, for counting procedures in contrast to measuring procedures are

as a rule so object-neutral that fortuitous peculiarities of the counted objects can scarcely influ-

ence the counting procedure. The existence of such a neutral counting procedure is, however, a

necessary, though not a sufficient criterion to assign a culture that uses such a counting proce-

dure to the level of abstract arithmetic. Only the actual use of the procedure that allows the ren-

dering of different forms of context-dependent numerical notations for qualitatively

incongruous quantities in a unified form of representation, either mentally or through a symbol-

ic technique, provides the numerical notation with that semiotic structure which is the criterion

for attaining the level of abstract numerical symbol systems according to its definition given

here. The identification of this generalized application of a system of numerical notations re-

quires that sufficient sources have been preserved documenting the use of the system. The dis-

tinction proposed here between a level of context-specific numerical symbol systems and a

level of abstract systems has been made in particular in view of the historical development of

arithmetic in Babylonia, which fulfills this condition due to propitious circumstances of source

material. Hundreds of thousands of preserved administrative texts offer an almost complete pic-

ture of the early use of arithmetical techniques.

These sources demonstrate that from the moment of the emergence of writing around 3200 B.C.

until the invention of the sexagesimal place value system about 2000 B.C., exclusively context-

specific symbol systems were used.44 One of these systems, a sexagesimal system45 that was

already strictly structured at the moment of the emergence of writing and which was used in

counting discrete objects, probably corresponding to a similar sequence of number words,46 did

possess a very wide range of application. It was, however, not used for any objects whatever.

Only with the invention of the sexagesimal place value system around 2000 B.C. was an ab-

stract system of numerical notations introduced that unified all forms of notations.47 This in-

vention had two far-reaching consequences for the development of arithmetic.

44  Compare Damerow, Abstraction and Representation, chap. 7.
45  System S in Damerow/Englund, Die Zahlzeichensysteme der Archaischen Texte aus Uruk; not to be confused

with the later sexagesimal place value system.
46  The recorded Sumerian sequence of number words was strictly sexagesimally structured; compare Powell,

Sumerian Numeration and Metrology. Since this sequence of number words has only been preserved in very
late sources, however, the possibility cannot be excluded that it was artificially created by the scribes of periods
following that of the emergence of writing, based on sexagesimal numerical notations in the cuneiform texts
available to them.

47  This date is based on the arguments presented in Damerow, Abstraction and Representation, chap. 7. A differ-
ent opinion is held by Powell, The Antecedents of Old Babylonian Place Notation.
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First, it revolutionized the Babylonian arithmetical technique. Before the invention of the sex-

agesimal place value system, a multitude of arithmetical procedures obtained for specific prob-

lems, without any indication in preserved sources that these procedures might have been

applications of universal, non-object-specific, symbolic transactions. Within the framework of

the centralized administration of all resources, products and services, for example, were stan-

dardized but highly specialized book-keeping procedures that guaranteed a universal, continu-

ous control of goods at their disposal; the bookkeeping rules, however, always remained subject

to the administrative units organized according to the units of production.48 The computation

of the area of a field, the computation of the expected yield of grain and the computation of the

labor necessary for cultivation were, for instance, performed with different numerical notation

systems and with different procedures, although, from a modern perspective, all three cases

were simple multiplications. Even in the artificial conversions of products and services into uni-

form equivalents of value, which are documented for the period of the 3rd Dynasty of Ur (ca.

2100 to 2000 B.C. – the latest phase of the exclusive use of context-specific numerical systems),

the standard could change from one administrative unit to the other, so the equivalencies of val-

ue could, according to their tasks, be expressed in silver, in fish, in barley or in human labor.49

Beginning at the time of the invention of the sexagesimal place value system, however, hun-

dreds of arithmetical tablets are preserved that demonstrate on the one hand the conversion of

traditional numerical systems into this new system, itself no longer bound to a specific area of

application, on the other the use of abstract operations, in particular a uniform multiplication

procedure.50

Second, the invention of the sexagesimal place value system had as an immediate consequence

the development of so-called Babylonian mathematics, a system of technical terms, canonical

types of problems and abstract mental operations which was only metaphorically related to its

areas of application and which made possible the solution of such complex, but at the same time

practically irrelevant problems as the computation of the sides of a field from its perimeter and

its area, that is of the problem of identifying two unknown quantities from their sum and their

product.51 In contrast to the procedures of economic administration to which it was still meta-

48  Nissen/Damerow/Englund, Archaic Bookkeeping.
49  Compare Englund, Organisation und Verwaltung der Ur III-Fischerei, in particular pp. 18ff.,  96ff. and 181ff.
50  Compare Damerow, Abstraction and Representation, in particular pp. 246ff.
51  The so-called mathematical cuneiform texts mainly come from this period. Compare for this the standard liter-

ature on the history of mathematics, in particular Neugebauer, Mathematische Keilschrifttexte; Neugebauer/Sa-
chs, Mathematical Cuneiform Texts; Friberg, Mathematik. The interpretation of these texts has, however, been
subjected to a sensational revision in recent years through new translations of the mathematical termini technici
for arithmetical operations presented by Høyrup; compare Høyrup, Algebra and Naive Geometry. The view ar-
gued here of Babylonian mathematics resulting from the reflection of culture-specific arithmetical activities at
a level of a unified abstract symbol system is based on these new philological findings.
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phorically related, and although performed by the same persons, namely the so-called scribes,

the officials in the administration of state bureaucracies, Babylonian mathematics was an eso-

teric art not directly related to the practical problems from which the numerical techniques it

used had originated.

Thus the development of arithmetic in Babylonia can be subdivided very precisely into two ex-

tensive phases corresponding to the definitional distinction presented above of a level of con-

text-dependent and a level of abstract symbol systems. The question, however, whether this

kind of subdivision of the level of symbol-based arithmetic is characteristic of all early civili-

zations where a similar degree of abstraction of numerical notations and techniques was

reached has to remain open. Assuming our sources permit this at all, the question can only be

decided based on intensive historical study.

CONCEPT-BASED ARITHMETIC (STAGE 3)

Definition. The stage of concept-based arithmetic designates here a stage in the historical de-

velopment of the concept of number in which second and higher-order representations of sym-

bolic actions with representations of symbol-based arithmetic are constructed by means of the

reflection of arithmetical concepts for properties of numbers and numerical relations, and of the

representation of the thus gained meta-cognitive insights in the medium of written language.

Those representations are in the form of logically structured systems of arithmetical proposi-

tions that make possible their deductive derivation and proof. The cognitive constructs that are

thus abstracted from the sign systems of symbol-based arithmetic are independent from the

characteristics of specific systems for the representation of numbers. According to the degree

of abstraction of these cognitive constructs from the specific context of application of written

language representation, the stage of concept-based arithmetic is subdivided into two levels, a

level 3a of deduction in natural language and a level 3b of formal deduction.

Semiotic characteristics of concept-based arithmetic. The most important semiotic characteris-

tics of the level of concept-based arithmetic are general propositions concerning the properties

of abstract numbers. Since such propositions can only be deduced, they are naturally embedded

in a system of deductive and interrelated relations. Under certain conditions such deductive

webs of relations can be linearized, that is, the propositions can be globally structured in a way

that all circular arguments are removed and all propositions appear to be systematically de-

duced from but a few basic propositions. Accordingly, it is customary following Euclidean tra-

dition to fix in writing such propositions in a deductive order as a theory.
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Arithmetical propositions at this level of concept-based arithmetic are no longer statements

about real arithmetical activities, are moreover no longer statements about numerical relations

in a symbolic representation system for such actions; rather, such propositions are statements

about objects whose properties can be entirely elaborated by mental operations. They are state-

ments about abstract numbers. Thus, at the level of concept-based arithmetic not only some –

as at the level of symbol-based arithmetic – but all terms are  technical terms in the sense of the

characterization given above.

Further, theoretically established arithmetic concepts are, through the deductive context that

constitutes them, also determined in a fashion other than is the case with simple arithmetical

technical terms, determined as they are through the context of a system of symbolic represen-

tations of numerical relations. We have seen that, although the meanings of arithmetical tech-

nical terms in symbol-based arithmetic are determined by their function in arithmetical

techniques, this determination of their meaning occurs only implicitly. In a deductive system,

however, the meanings of arithmetical terms are, in general, established not just implicitly, but

are reasonably determined by explicit definitions.

Thus, theoretically established concepts do not owe their structure directly to the arithmetical

techniques that constitute them, but to the knowledge that can be gained by the application of

those techniques. These concepts are consequently embedded in structures of argumentation in

natural language, that is, in structures at a meta-level of reflection of simple technical terms. At

this level of reflection, the seemingly canonical meanings of arithmetical concepts that had been

established at the stage of symbol-based arithmetic, may again be subject to development and

can, if necessary, be modified by considerations of suitability of a higher kind. Thus they can,

to a certain extent, be freely fashioned.

Theoretical concepts, for example the concept of prime number or the concept of perfect num-

ber52, do not have the same kind of immediate technical meaning as do technical terms of sym-

bol-based arithmetic such as sum, factor or divisor. Only the reflection of all possible

summations, multiplications, divisions, and their results that are logically determinable in a de-

ductive system, leads to the formation of such concepts as a prime number being a number that

cannot be further decomposed into factors other than one and the number itself, or a perfect

number being a number equal to the sum of its factors.

The relevance of such concepts is no longer based on their practical applicability. We could not

justify the formation of the concept of prime number, for example, by any practical significance

of the question of whether it might be impossible or not to decompose a given number further

52  Book VII of Euclid’s Elements; compare Heath, The Thirteen Books of Euclid’s Elements.



Peter Damerow

44

into factors, although of course such a question may well be of some relevance for certain ar-

ithmetical techniques. Rather, the definition of the concept of prime number obtains its rele-

vance from such theorems as the proposition that every natural number can be unambiguously

factored into a product of prime numbers, or that the series of prime numbers is infinite. The

concept of prime number is not justified by its applicability but by the structuring capability it

achieves in the system of arithmetical knowledge.

The establishment of meanings of concepts by reflections of this kind seemingly frees state-

ments about numbers from their real representations. Numerical notations that are used to han-

dle them for practical purposes, for example, appear to have no influence on the truth of such

statements. Abstract numbers appear to exist a priori, because they have their origin in reflec-

tion.

Deduction in natural language and formal deduction. Similar to the level of symbol-based

arithmetic, the level of concept-based arithmetic can, according to the degree of independence

from their origin of the cognitive constructs deriving from reflective abstraction, be divided into

two sublevels, namely, into a level of deduction in natural language and a level of formal de-

duction.

The level 3a of deduction in natural language is characterized by the fact that the deductive sys-

tems still consist of statements and proofs that are formulated in natural language. Mathematical

terms, for instance the concept of number, are explicitly defined and are abstract insofar as they

are determined within the logical structure of a deductive system. They still refer, however, to

concrete objects and actions, since a representation in natural language entails connotations of

the concepts that are determined by their origin in real actions. Numbers, for example, have an

abstract structure on the one hand, on the other a connection to the arithmetical activities that

the numerical notations are based on; they not only have provable properties, but these proper-

ties also apply to quantities of real objects.

Arithmetical concepts at this level of development thus have at the same time extrinsic mean-

ings that result from their origin in arithmetical activities and intrinsic meanings that are de-

duced from seemingly self-evident axioms. This results in particular in a canonical meaning of

the concept of number at this level of development, usually expressed by the term natural num-

ber. Natural numbers are extrinsically determined as reflectively constructed structures of ac-

tions of correspondence and comparison. As cardinal numbers of quantities, they have thus a

canonical object that determines their quasi natural properties. Intrinsically, their properties are

determined by universal laws such as the distributive law or the commutative law of addition
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and multiplication. Those laws can be arranged deductively in a way that makes them appear

to be logical conclusions of a few, seemingly self-evident axioms, for example the Peano axi-

oms.

At level 3b of formal deduction, the concepts formulated in natural language are substituted by

terms of formal languages, so connotations with their original meanings are systematically pre-

vented. The concepts can be subsumed in generalized, unifying concepts that may be construct-

ed artificially, and be entirely determined by mathematical structures. Their meanings no longer

appear to be determined naturally, but through axioms that seem to be presupposed arbitrarily.

Numbers at this level appear as superposition of algebraic structures, structures of order and to-

pological structures. These structure can be precisely defined and distinguished from each other

by axioms. These axioms can be modified and in various ways combined with each other into

structures for which artificial concepts have been created, for example, the concept of semi-

group, the concept of group, the concept of topological group, the concept of ring and the con-

cept of body. The only condition to be fulfilled is the condition that there may be no

contradiction deducible from the axioms that define a structure. A mathematical object is con-

sidered to exist when the defining system of axioms is consistent. Numbers are no longer in any

way distinguished among these mathematical objects; their apparent “naturalness”,  character-

istic for the level of deduction in natural language, appears to be an fortuitous historical relict

of the history of mathematical thought.

Historical identification of concept-based arithmetic. The definition of the level of concept-

based arithmetic shows that the transition to this level is not a process specific to the concept of

number. The criterion for the transition to concept-based arithmetic is the emergence of repre-

sentations of arithmetical facts in written language and of deductions based on this form of rep-

resentation. The historical identification of this transition thus appears to be straightforward,

since a recurring topos of mathematical historiography states that pre-Classical mathematics

did not know proofs.53 If this observation were correct, the transition from the level of symbol-

based to concept-based arithmetic in the sense of the definitions given here would not have been

accomplished in any of the early literate civilizations.

Historians who study pre-Classical mathematics have with good reason repeatedly raised the

objection that here a particular form of representing deductive conclusions is being confused

with the mental operations themselves and thus that European mathematical tradition, of which

53  Compare for example Becker/Hofman, Geschichte der Mathematik, p. 41; Vogel, Vorgriechische Mathematik,
vol. 2, pp. 84f.; Wussing, Mathematik in der Antike, pp. 56f.; Gericke, Geschichte des Zahlbegriffs, p. 20; Ger-
icke, Mathematik in Antike und Orient, pp. 71ff.
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this form of representation is characteristic, is being eurocentrically overestimated.54 Besides,

the logical structures of pre-Classical mathematical activities have unfortunately been only in-

sufficiently studied. For a long time historians of science have, in the assumption – influenced

by the rationalistic-idealistic tradition – that logical and mathematical thought is by nature uni-

versal, failed to see the problems connected with the translation of documents of pre-Classical

mathematical thought into modern mathematical terminology. Pre-Classical mathematical

sources have often been translated in modern transcription, with the consequence that informa-

tion on the Eigenbegrifflichkeit of the sources, in particular on the structures of technical terms

and of immanent deductive relations, can only be gained by reverting to the original texts.55

Thus, for the moment it can only be stressed that the first examples for the explicit representa-

tion of chains of inferences, which described abstract mathematical objects and led to universal

propositions about such mental objects, come from the Classical ancient world and that the

question whether comparable structures of abstract concept formations and deductive thought

as implicit structures of cognition already existed in the early civilizations has to remain unan-

swered.

The oldest known example of a deductively ordered system of universal propositions is the so-

called doctrine of even and odd numbers, a theory that has not come down to us in its original

form through preserved sources, but which can be reconstructed in its outlines from definitions

and theorems of Euclid’s Elements.56 The doctrine goes back to the Pythagorean tradition of

the 5th century B.C. The universally formulated arithmetical insights of the doctrine are mainly

concerned with how the property of a number created by a calculation to be it either even or odd

is dependent on the respective properties of the original numbers. The 14 relevant theorems that

have come down to us have, in all probability, been found with the help of geometrical config-

urations of Greek counters, the so-called figured numbers, in connection with the attempt by

the Pythagoreans, to associate all objects with numbers.57 Later, the theorems of the doctrine

were deductively arranged according to the logical dependencies among them. In the modified

form in which the doctrine has been transmitted, the theorems appear to be arranged in a deduc-

tive schema, which obviously does not correspond to the original considerations that led to the

54  Compare Joseph, The Crest of the Peacock; Gerdes, Ethnogeometrie, in particular pp. 24ff.; for Chinese math-
ematics: Chemla, Theoretical Aspects of the Chinese Algorithmic Tradition; for Babylonian mathematics: Frib-
erg, Mathematics, in particular pp. 582ff.

55  Compare for this the results of more recent philological studies, for example for Greek mathematics: Szabó,
Anfänge des Euklidischen Axiomensystems; id., Die Entfaltung der griechischen Mathematik; for Babylonian
mathematics: Høyrup, Algebra and Naive Geometry.

56  The definitions VII 1 through VII 2, VII 6 through VII 10 and VII 12, as well as the theorems IX 21 through IX
34.

57  Heath, The Thirteen Books of Euclid’s Elements, p. 67; Becker, Die Lehre vom Geraden und Ungeraden; van
der Waerden, Die Arithmetik der Pythagoreer.
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formulation of the theorems.58 Euclid’s version, for example, uses as evidence the distributive

law, which is of much more general nature and does not belong to the special doctrine of even

and odd numbers.

The development of the doctrine of even and odd numbers therefore begins with the reflection

of the sophisticated use of a symbolic representation of numbers. The results were on the one

hand technical terms such as the concept of odd and even, on the other hand general insights

about logical relations between those abstract concepts, for example the realization that the sum

of two even numbers is again even. The preliminary conclusion of the development was con-

stituted by the proof of such propositions based on explicit definitions of concepts as well as on

more universal theorems about abstract numbers, for example the distributive law, a proof that

has become completely independent of the origin of the insights. This development of the doc-

trine from the symbolic representation of numbers by counting units to a representation in writ-

ten language and deduction of their properties from universal basic assumptions marks

precisely the transition from symbol-based to concept-based arithmetic in the sense of the def-

inition given here.

Historical identification of the transition to formal deduction. Like the transition to concept-

based arithmetic in general, the transition from the first sublevel of deduction in natural lan-

guage to the second sublevel of formal deduction is not a process specific to the concept of num-

ber, but a process that is characteristic of the development of mathematics in general and which

includes all mathematical concepts.

In the case of the concept of number, the starting point is constituted by deductions in natural

language of properties of numbers, whereby the concrete relation of the arithmetical concepts

to the arithmetical activities, conveyed by the language, firmly connects these with a specific

real meaning and thus gives the impression that they are not of  merely formal nature. Through

a reflected dealing with a more and more refined technique of logical proofs and its heuristics,

however, more and more differentiated formal structures of higher-order develop as products

of reflection, structures which are increasingly distant from the basis of arithmetic activities,

from which they have been abstracted.

Historically, this process presents itself as a recurring, crisis-prone analysis of the bases of the

concept of number which through the processes of reflection is becoming increasingly problem-

atic. Conditioned by the origin of the concept of number, deductive arithmetic was understood

as the theory of natural numbers, although the limitations of such a notion soon became appar-

ent. The expansion of the number concept from natural numbers to numbers that no longer rep-

58  Lefèvre, Rechenstein und Sprache.
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resent cardinal numbers of finite sets, the expansion to fractions, negative, irrational and

imaginary numbers, appears at the level of deduction conditioned by natural language as an un-

natural, artificial construction. It is incompatible with the connotation that the concept number

can as quantity be attributable to concrete sets of objects.

Thus the problem already existed in antiquity that fractions could no longer be related to the

origin of the number concept in counting sequences and tallying systems. They did not come

under Euclid’s definition “number is a quantity composed of units”, from which the properties

of numbers in Euclid’s Elements were deduced.59 In order not to endanger this whole deductive

edifice, Platonism dogmatically excluded from theoretical arithmetic all numerical structures

that did not come under this definition.60 The theory of proportions functioned as a substitute

for the expanded concept of number. The problem was aggravated with the renaissance of an-

cient mathematics in the Early Modern Era, since numerical structures constructed by reflective

abstractions which did not fit the ancient definition of number became ever more extensive. As

long as the ancient concept of number determined thinking, they were perceived as “absurd

numbers”61, “irrational numbers” and “imaginary numbers”.

The precondition for overcoming this understanding of number and thus for the transition to the

level of formal deduction was the development of the technique of using in deduction, instead

of words,  variables without connotations regarding content. This went so far as to cause the

concept of number to lose its apparent association with specific meanings of words. Only with

this transition to the level of formal deduction, at which consistency is the only criterion for the

existence of a mathematical object, do constructions become acceptable that are connected with

the expansion of the number concept and which relativize the canonical meaning of the concept

of natural numbers.

Leibniz, who systematically freed himself of traditional deductive systems and made use of the

potentialities of symbolic representations of mathematical facts with at times entirely new in-

vented symbol systems in constructing new deductive systems, is rightly seen as an early advo-

59  Def. VII 2, compare Heath, The Thirteen Books of Euclid’s Elements, p. 277.
60  In Plato’s Republic Socrates instructs his interlocutor Glaukon: ‘I mean, I’m sure you’re aware that the experts

in the field pour scorn on any attempt to divide the actual number one and refuse to allow it. If you chop it up,
they multiply it; they take steps to preserve one’s oneness and to prevent it ever appearing to contain a multi-
plicity of factors (…) What do you think they’d say, then, Glaucon, if someone were to ask them, in surprise,
“What are these numbers you’re talking about? What numbers involve a oneness which fulfills your require-
ments, where every single unit is equal to every other unit, without even the smallest variation, and without be-
ing divisible in the slightest?” ’I think they’d reply that the numbers they’re talking about are only accessible to
thought, and cannot be grasped in any other way.’ Plato, Republic, book VII., §§. 525d-526a (translated by R.
Waterfield, Oxford University Press 1994).

61  Michael Stifel called the negative numbers “numeri absurdi”, compare Tropfke, Geschichte der Elementar-
Mathematik, vol. 2, p. 98.
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cate of such a formal concept of number. Through the analytical tradition co-founded by him,

mathematical concepts became obsolete that were concrete and mostly oriented to meanings

based on geometry.

This tradition, which originated at the beginning of the modern era, but which was insufficiently

developed to generally assert itself in mathematics before the end of the 19th century, finally

brought about the transition to formal arithmetic. This transition coincided with the emergence

of modern theory of proof. Hilbert’s characterization of mathematical concepts – as in principle

implicitly defined by the axioms – made the formal perception of mathematical objects which

constitutes the condition of the level of formal deduction programmatic for mathematical

thought.

FINAL REMARKS

Historical epistemology does not have as its object the real history of acts of thought and cog-

nition, but it is supposed to answer the question whether in this history theoretically interpret-

able, universal stages and processes of the development of thought can be identified, stages that

mark, for a real history of processes of cognition, the horizon of the insights possible in partic-

ular historical situations. Accordingly, the historical epistemology of the development of the

concept of number does not comprise the development of the external form of arithmetical tech-

niques that can be directly documented through sources, but the development of arithmetical

thought which finds its expression in those techniques. The purpose of the theoretical reflec-

tions presented here is to create the conditions for a reconstruction of this history of arithmetical

thought.

The starting point for our considerations was constituted by a basic problem one encounters

when attempting, in line with our purpose, to draw conclusions, by means of cognitive psychol-

ogy, on the development of arithmetical thought from historical sources that document arith-

metic operations or their results. The problem becomes particularly evident from the fact that

there is no satisfactory answer to the question: which of the cognitive structures and processes

of arithmetical thought are in some way variable and can thus in principle be explained histor-

ically? It results from the contradiction that appears to exist between the non-empirical, logical-

ly necessary character of the properties of numbers and the historical changes of arithmetical

techniques. Psychologically, it appears reasonable to infer that propositions which are non-em-

pirically valid because they are logically deducible must be universal. Historical and cross-cul-

tural studies, however, encounter the continuous development and change of arithmetical
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techniques. The uncertainty resulting from this problem as to which conclusions about arith-

metical thought are in principle admissible from our historical documents can obviously not be

eliminated through the perspective and with the means of a single discipline. It rather requires

theoretical considerations that bridge psychology and history, and which can be reconciled with

findings by both scientific disciplines.

Which structures and processes of arithmetical thought have their origin in ontogenesis and

which are, on the other hand, the result of historiogenesis? Very different general answers have

been given to the question of the relation between ontogenesis and historiogenesis.

In the quasi “Platonic” tradition, which extends from the Pythagoreans to logical positivism, an

attempt has been made to find a sharp boundary between mathematics and empirical knowl-

edge, that is, between logical thinking and sensory experience, and to ascribe the logico-math-

ematical side to an historically immutable human intellect, the empirical side, however, to an

historically changing experience of things. Following the assumptions of this theoretical tradi-

tion, the development of cognition in ontogenesis and in historiogenesis would be concerned

with fundamentally different objects of cognition.

Against these attempts to draw an absolute boundary, attempts which implicate that ontogenesis

and historiogenesis exhibit only marginal points of contact, developmental theory has formu-

lated the genetic principle. This principle postulates parallelism of ontogenesis and historiogen-

esis in two mutually exclusive ways. According to the genetic principle of the theory of

evolution, the individual, in order to attain the phylogenetic and historiogenetic climax of his

development, must in ontogenesis recapitulate the developmental process of the human species,

both as a biological, and as a social being. According to genetic epistemology as it was brought

forth by developmental psychology, however, the historical development of fundamental struc-

tures of logico-mathematical thought only makes explicit ontogenetic stages of development

that are epigenetically determined, just like stages in the biological development of the individ-

ual. Thus, in the former case the individual recapitulates in ontogenesis the evolution of the hu-

man species, in the latter the the human species follows a developmental sequence which is

predisposed in ontogenesis. 

The solution of the problem which has been outlined in considerations presented here, cannot

be subsumed in any of these alternatives. It is, rather, based on the assumption that ontogenesis

and historiogenesis represent processes which are, albeit concerned with the same objects of de-

veloping cognition, fundamentally different. This solution is based on a particular interpretation

of a concept of cognitive psychology that is central for the understanding of communication and

transmission of cognitive structures, that is, the concept of the external representation of cogni-
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tive structures. External representations of cognitve structures are interpreted here from the per-

spective of the history and sociology of knowledge. If the assumption of cognitive psychology

is correct that the cognitive structures of logico-mathematical thought in ontogenesis are con-

structed by reflective abstractions from coordinations of actions, and if the external representa-

tions can represent stages of reflection in a way that their meaning might be reconstructed in

symbolic actions by the individual, then there is no longer an insurmountable basic contradic-

tion between the alterability of logico-mathematical constructs in history and their indepen-

dence of experience. With the interpretation of the historically transmittable tools of

arithmetical techniques as embodiments of the cognitive structures constructed by reflective ab-

straction, ontogenesis gains a genuine historical dimension – embodied in the culture-specific

symbolic scenarios as conditions of development.

What is achieved with this answer to the question about the historical or ahistorical nature of

logico-mathematical and in particular arithmetical thought?

The result of such considerations certainly can not consist of replacing historical arguments

with theoretical arguments. Indeed, the theoretical considerations in the first part of the work

have by no means made historical research redundant. The answer to the question, to what de-

gree the structures and processes of arithmetical thought represent culture-independent and his-

torically unalterable universals of the nature of homo sapiens, and what part of arithmetical

thought on the other hand derives ultimately from cultural achievements and what structures of

this cognition have developed in which historical periods, is by no means theoretically preempt-

ed by the considerations presented here. These considerations, to the contrary, create one deci-

sive precondition to study and answer such psychologically oriented questions by historical and

cross-cultural studies. For the theory presented here concerning the transmission of cognitive

structures of logico-mathematical thought provides an opportunity of identifying such struc-

tures not only along the direct way of experimental psychology, but also indirectly by recon-

structing them through an analysis of their external representations.

In the second section of the work conclusions were indeed drawn which concern our under-

standing of the historical development of arithmetic. This occurred in relating developmental

stages of reflective abstraction which can be psychologically identified with historically iden-

tifiable stages of the levels of reflection represented by external representations of arithmetical

thought. The result is a psychological interpretation of the global historical development which

leads from cultures without arithmetical techniques to the modern arithmetical thought of the

industrial age, in the following stages of development:
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Stage 0 Pre-arithmetical quantification: approximately until the end of the Mesolithic
period (in the Near East until ca. 10,000 B.C.).

No arithmetical activities. All judgments about quantities are based on direct
comparisons of amounts and sizes. Communication and transmission only by
transmittable techniques of comparison and by comparative expressions of lan-
guage.

Stage 1 Proto-arithmetic: Neolithic period and Early Bronze Age (in the Near East until
ca. 3000 B.C.).

Quantities are precisely identified by one-to-one correspondences. Communica-
tion and transmission with the aid of conventionalized counting sequences and
tallying systems.

Stage 2a Symbol-based arithmetic with context-dependent symbol systems: Period of the
early city cultures (in the Near East until the invention of the sexagesimal place
value system around 2000 B.C.). Quantities are structured by metrological sys-
tems. Communication and transmission of these systems and of the correspond-
ing mental constructs through complex symbol systems and developed
techniques for the transformation of symbol configurations.

Stage 2b Symbol-based arithmetic with context-independent symbol systems: Period of
developed city cultures (in the Near East until the beginning of Classical Antiq-
uity around 500 B.C.).

Quantities are structured by abstract numerical systems with object-independent
arithmetical operations. Communication and transmission of these systems by
unified, context-independent, but culture-specific symbol systems for the repre-
sentation of arbitrary quantities, including abstract “rules of calculation”. Emer-
gence of first forms of “pre-Classical mathematics” that are abstract but
dependent on culture-specific symbol systems.

Stage 3a Concept-based arithmetic with deductions in natural language: Classical Antiq-
uity, Late Antiquity, Middle Ages and Early Modern Era (until the emergence of
analytical mathematics in the 18th century A.D.).

Abstract number concept with “a priori” provable properties. Communication
and transmission with the aid of a written representation of “propositions” about
abstract numbers and their mathematical properties. Propositions are logically
ordered and systematically arranged by deductive theories according to the mod-
elof Euclid’s Elements.

Stage 3b Concept-based arithmetic with formal deductions: The modern mathematical
tradition until the present.

Formal understanding of arithmetical structures and expansion of the number
concept by construction of new arithmetical structures. Communication and
transmission with the aid of formal language systems.
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The theoretical model of the history of arithmetical thought, gained through the assignment of

stages of reflective abstraction to external representations, establishes a connection between

theoretical assumptions of psychology and historical facts. This connection, however, concerns

only general characteristics of the development of arithmetic such as the emergence, the change

and the increasingly more complex representation of numbers which  are so elementary that any

theory of the historical development of arithmetical thought has to consider them and to explain

them satisfactorily in one way or another. Thus the ultimate historical validity of the model is

not a given. In this sense, the considerations offered are to be regarded only as a first step to-

wards an historical epistemology of the development of the concept of number.

Such preliminary considerations are, however, indispensable. So long as we are unsuccessful

in finding a satisfactory explanation for the extraordinary differences between logico-mathe-

matical thought on the one hand in surviving non-literate cultures, cognition which at its face

seems identifiable with first stages of the historical development of arithmetical thought, on the

other the abstract and highly complex arithmetical thought of the present; so long as we are un-

successful in theoretically illustrating how the forms of the latter have developed from the

forms of the former, the studies of historical details of this development have no chance of even

proposing plausible hypotheses about the psychological determinants of arithmetical thought in

the various periods of the development of arithmetical techniques. In this sense the consider-

ations offered here are not just preliminary discussions, but might be taken seriously as an at-

tempt to create the theoretical framework for an historical epistemology of the number concept

as the outcome of the developing material culture of calculation.
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