| Folio 125 v (final text) |
| 1A
|
Altitudines semiparabolarum, quarum eadem sit amplitudo, reperire. |
| 1B
|
Id autem absolvitur per dimidiam tangentem arcum elevationis datae semiparabolae. |
| 1C
|
Inventa, ex dictis, altitudine, sublimitates singularum semiparabolarum, quarum eadem sit amplitudo, facile reperies. Nam, cum dimidia amplitudo mediet inter altitudinem et sublimitatem, diviso [quadrato] mediae amplitudinis per altitudinem, habebimus sublimitatem, quae postea, addita altitudini, exibet impetum. |
| 1D
|
Fabricemus ergo tabulam sublimitatum, sitque semper dimidia a[m]plitudo semiparabolae 5000. Eius [quadratum] semper idem 25000000. Elevatio sit gr[adus] 1, tangens ipsius 174 1/2, qualium tangens gr[adus] 45 est 10000. |
| 2
|
tangens gr[adus] 1, 174 1/2. Eius dimidium 87 1/4: per hunc numerum divide [quadratum] 25000000. |
| 3
|
Tabula Altitudinum semiparabolis ad singulos grados elevationis |
| C01
|
| Elevationes | Altitudines | Sublimitas | | Gr: 1 | 87 | 287356 | | Gr. 2 | 175 1/2 | 142450 | | 3 | 262 | 95802 | |
| C02
|
Gr.1 174 1/2 |
| C03
|
91 91 92 93 95 95 96 98 98 99 101 103 103 106 107 108 111 114 113 95 98 |
| C04
|
Gr. 4 10000000 : 349 = 28653 50000000 : 349 = 143266 143062 |
| C05
|
995? 1529[00] 162899 172299 |
| C06
|
500000000 : 87 = 574758 286533 [* 2 =] 573066 |
| C07
|
| 88 | 88 | | 87 | 87 | | 77 | 77 | | 88 | 88 | | 138 | 89 | | 89 | 88 | | 88 | 89 | | 95 | 89 | | 84 | 90 | | 91 | 91 | | 91 | 91 | |
| C08
|
Gr. 4 699 [: 2 =] 349 1/2 50000000 : 699 = 71531 |
| C09
|
G. 5. 50000000 : 875 = 57285 50000000 : 875 = 57142 |
| C10
|
G. 6. 50000000 : 1051 = 47573 |
| C11
|
G. 7. 1225 [: 2 =] 614 25000000 : 614 = 40716 |
| C12
|
G. 8. 50000000 : 1405 = 35587 |
| C13
|
G. 9. 1584 [: 2 =] 797 25000000 : 31368 25000000 : 792 = 31565 |
| C14
|
G. 10 50000000 : 1763 = 28367 |
| C15
|
G. 11. 1944 [: 2 =] 972 25000000 : 972 = 25720 |
| C16
|
|
| C17
|
G:12. 2125 1/2 [: 2 =] 1063 25000000 : 1063 = 25[?] 25000000 : 1063 = 23518 |
| C18
|
G. 13. 2303 [: 2 =] 1154 25[000000] : 1154 = 21701 50000000 : 2309 = 21654 25000000 : 1154 = 24[?] |
| C19
|
701 - 654 = 47 2125 : 2 = 1062 |
| C20
|
25000000 : 87 = 287356 100000000 : 349 = 286533 |
| C21
|
Gr. 2. dimid[?] 349. 25[000000] : 175 1/2 = 50000000 : 351 50000000 : 351 = 142450 |
| C22
|
G. 3 524 [: 2 =] 262 25000000 : 262 = 95802 |
| C23
|
G. 31. 50000000 : 6009 = 8336 |
| C24
|
G. 32 50000000 : 6249 = 8001 |
| C25
|
G33 6494 [: 2 =] = 3247 25000000 : 3247 = 7699 |
| C26
|
G34 50000000 : 6245 = 7413 |
| C27
|
G. 35. 50000000 : 7002 = 7141 |
| C28
|
G. 36. 5000000 : 7265 = 6882 |
| C29
|
G37. 7536 [: 2 =] 3768 25000000 : 3768 = 6635 |
| C30
|
| Gr.1 | 174550 | | | | | | 174657 | | | Gr. 2 | 349207 | | 87 | | | | 174871 | | | Gr. 3 | 524078 | | 87 | | | | 175191 | | | Gr. 4 | 699269 | | 88 | | | | 175617 | | | Gr. 5 | 874886 | | 88 | | | | 176804 | | | Gr. 6 | 1051042 | | 88 | | | | 176804 | | | Gr. 7 | 1227846 | | 89 | | | | 177562 | | | Gr. 8 | 1405408 | | | | | | 178436 | | | Gr. 9 | 1583844 | | | | Gr. 10 | | | | |
| C31
|
G. 14. 2493 [: 2 =] 1246 5000000 : 2493 = 20056 |
| C32
|
G. 15. 2679 [: 2 =] 1339 5000000 : 2679 = 18663 |
| C33
|
G. 16. 2867 [: 2 =] 1484 5000000 : 2867 = 17405 |
| C34
|
G. 17 3057 [: 2 =] 1529 5000000 : 3057 = 16355 |
| C35
|
Gr. 18. 3249 [: 2 =] 1629 5000000 : 3249 = 15390 |
| C36
|
G. 19. 3443 [: 2 =] 1722 5000000 : 3443 = 14522 |
| C37
|
Gr. 20. 3640 [: 2 =] 1820 25000000 : 1820 = 13736 |
| C38
|
Gr. 21 3839 [: 2 =] 1919 5000000 : 3829 = 13024 |
| C39
|
G. 22. 4040 [: 2 =] 2020 25000000 : 2020 = 12376 |
| C40
|
G. 23 4245 [: 2 =] 2123 5000000 : 4245 = 11778 |
| C41
|
G. 24 4452 [: 2 =] 2226 25000000 : 2226 = 11230 |
| C42
|
G. 25 4663 [: 2 =] 2332 5000000 : 4663 = 10722 |
| C43
|
G. 26. 5000000 : 4877 = 10253 |
| C44
|
G. 27 5000000 : 5095 = 9812 |
| C45
|
G. 28 5000000 : 5317 = 9404 |
| C46
|
G. 29 5000000 : 5543 = 9020 |
| C47
|
G. 30 5000000 : 5774 = 8659 |